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In general when one writes a relativistic wave equation of the form (—il-0+ m)y(x)=0, that
transforms covariantly under some representation A— T(A) of SL(2,C), it is nontrivial to determine whether
or not the equation is irreducible or to avoid ending up with a reducible equation; especially if T(A)
contains repeating irreducible representations. In this paper a simple(st) criterion is given by which one
can determine whether or not an equation is irreducible. It is shown that if ', have any invariant subspace
at all, then that subspace must be a representation space of some combination of SL(2,L) representations in
T(A). Knowing this, it is shown that a wave equation is reducible if and only if there exists some
idempotent projector P such that (1— P)I'y P =0 other than P =0 or I. A method for constructing all
possible admissable P’s is given. A simple example of the technique is also given.

. INTRODUCTION
Relativistic wave equations of the form:
(=iC -3 +m)Y(x)=0

can be reducible or irreducible. The meaning of
“reducible’” in the context of relativistic wave equations
is precisely formulated in the next section,

It turns out that reducible equations have particular
properties that make theories based on such equations
equivalent to simpler theories, both in the free field and
interacting cases.?® It is therefore important to know
when a given equation is reducible, and hence, possibly
equivalent to a simpler equation. The structure of re-
ducible equations has been studied in Ref, 2,

When one constructs a wave equation, it is in general
nontrivial to insure that the equation is irreducible.
The main concern of this paper is to formulate the
simplest possible criterion by which one can determine
whether a given wave equation is reducible or not. Such
a criterion is formulated in the next section.

Finally, in Sec, III, a simple example is considered
that illustrates the use of the criterion.
Il. CRITERION FOR REDUCIBILITY
(=4l 0" +m)Yx)=0 1)
is a relativistic wave equation that transforms covari-
antly under a representation of SL(2,T), A —T(A):
n
T(A):jezsv1 a,T,(A). (2)
The set of matrices {l"u} may be regarded as a set of

linear transformations over a linear space R(N), where
N is the number of rows (or columns) of T,

{Fu} ={Fos r, T, Fa}-

Definition 1: {I"“} is called a reducible set <=> 3 a
proper subspace R, CR(N)>

TR,CR,CR(N) vref{r,}. 3)

The subspace R, is called an invariant subspace of {T',}
(18 of {r" ..

Definition 2: Suppose R, with j=1,...,L is a collec~
tion of all the invariant subspaces of {I',}; then
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L
R,= U, R, @

is an invariant subspace of {l"u} called the maximal
invariant subspace of {T',}.

The space R(N) is a representation space of A — T(A),
i.e., T(A) act as linear transformations on R(N).

Definition 3: If R, is an IS of {T',} and TR ,=R,, then
R, is called an invariant SL(2,T) subspace of ', }.

Lemma 1: R,C R(N) in Eq. (4) is an invariant SL{2,T)
subspace of {T',}.

Proof: T,R,CR, VT,.
Recall that

T'r,T=A'T,, (8)

I',TR,C TA,'T,R,. (6)
Suppose ¢, is any vector in R;

L,T¢,=TA,'T,p, (1
now

AT, €R, (8)

since for any value of ©=0,1,2,3 the right-hand side
of (7) is a linear combination of I', acting on ¢,, and
each I' ¢, c R, hence (8) follows. Now according to (7)

L.Too=Tdg, ¢o, Po< Ry
or
T,TR,C TR, )

Therefore, TR, is also an invariant subspace of I',, but
R, is a maximal invariant subspace of I',, hence

TR,CR,. (10)
Recall that T are nonsingular transformations so
TR,=R,. ® (11)

In the following discussion a criterion for determining
whether or not {I',} is a reducible set, will be formu-
lated. For later convenience the bases for R(N) will be
chosen to be completely reducible bases (CRB’s). A
CRB is any basis in which T(A) is block diagonal, and
each block corresponds to an irreducible representa-
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tion, T,(A) of SL(2,C), in Eq. (2). Recall that altogeth=<.
er there are M irreducible representations where M
=3".,a, [Eq. (2)], there are o, copies of the irreducible
representation 7,(A) for each j; so T(A) is M XM in block
form. Similarly R(N) is a direct sum of M subspaces,
each being a representation space of some irreducible
representation of SL(2, ) in (2),

R(N)=f?l R ). (12)

One can now define SL(2, T) projecfors represented
by Hermitian matrices in some CRB, that are idempo-
tent and act on R(N) such that

PaR(N)zR[aI’ (13)
where R, is an SL(2, €) subspace of R{(N), i.e., a
direct sum of some R, in (2),

n
Rig= G a;R ), (14a)
O<sa;<a, (14b)

The subscript [@] denotes all the different combinations
of a, that satisfy (14b). P, can be written in n Xn block
form, where each block j corresponds to the connection
of the a, representations T, and is thus an a, Xa, block
matrix that is idempotent. The P, do not mix vectors
from spaces corresponding to different representations
of SL(2, ) in (2), but can mix vectors corresponding

to the same representation of which there are o, copies
for a given T, in (2). In this form it is obvious that

[P, T(A)]=0 WA eSL(2,T). (15)

Since R, is an SL(2, €) subspace of R(N), there exists
projectors of the type described above, P,, such that

P,R(N)=R, (16)

and every vector ¢, < R, can be written as P,¢ for some
vector ¢ € R(N).

Lemma 2: {1"“} reducible <= 3 some 130 satisfying
(16) that is idempotent such that
{1 -P)r B, =0. amn
Pyoof: 13D is not required to be Hermitian. Suppose
{r,}is reducible, then by Lemma 1 3 an SL(2, €) sub-
space R, of R(N) 2T ,R,C R,. Choose a particular basis
for R{N) where ¢ R(N) is in the form

¢ z[h] , (18)
Y
where every vector of R, can be written
®o € R, ¢o=[%?‘]' (19)

Now in this basis I’} still has the property
T, R,CR,,

since this property is basis independent. Now clearly
one may pick a P¢ in this basis such that

10

pl= (20)

010
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Iis a g Xgq identity matrix where g =dimR,. Note that
(20) is an idempotent operator (actually in its Jordan
canonical form). Apply the matrix [I',BJ - BJT,P{] to
an arbitrary vector ¢ € R(N),

TLP® - P{T,P{¢ =T, ¢, ~ PY(T g) =0.

The last step follows because ') ¢,= ¢; € R, and in this
basis PJ ¢! = ¢ for any vector ¢ R,. The only matrix
that maps every vector ¢ € R(N) into 0 is the zero
matrix

r.BJ -P{r,PJ =0, (21)
Since an idempotent projector exists in one basis satis-
fying (21) (by construction) such an operator exists in
all bases; i.e., forany I' , = VI, V", the operator
VP{ V™ is such an operator. In particular a P, exists
in all CRB’s satisfying (17). The quality of P, being
idempotent is preserved by all nonsingular transforma-
tions but the hermiticity is not. So in general for any
CRB, only 2 =P, will be required.

Now assume that some SL(2,€) invariant operator P,
exists such that (17) holds. Suppose ¢ is any vector in
R(N), then Py¢ = ¢, € R, and by (17),

T, Pyp=P,T,Pid <> [, d,=B, b,

Now [, ¢, < R(N) since I', : R(N)—~ R(N). The right-hand
side of the above equation,

BT, 0o =Pod' = ¢, € Ry,

so one can see that I',: ¢,— &g, Pe, ¢o€ R,. Since every
vector ¢,< R, can be written as ﬁo¢> for some ¢ € R(N)
one concludes that I' ) maps every vector ¢, <€ R, into
some other vector of R, therefore I' R,C R, and {r,}
is a reducible set. m

Lemma 3: (1 = B)T' B =0 <= (1 = P)T P, =0.

Proof: It is obvious that (1 - B)T',P,=0
S (1 - PO)FOPO =0,

On the other hand, suppose (1 - P,)[',P,=0, then since
T';=iT(N, - iN,T', where N, are the generators of the

boosts in the i direction for the representation A — T(A),
one notices that

(1 =BT, B, =i[(1 = B)TN By - (1 = B)N,T P, ].
Since

[ﬁo: Ni] =0,
(1 = BT Py =i[(1 = PToPoN; = N (1 = P)T,Py] =0.
The conclusion one can draw is that {I',} is a reduc-
ible set <=> there exists an idempotent SL(2, €) projec-
tor P, such that
(1 -P)T,P,=0, (22)

B, being an SL(2, €) projector, is of the following form
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in the CRB indicated:

o, T, T, ... @,T,
By a7,
i;‘z;z T,
P0= ~ . .
. .
L ﬁg’ anTn

[P} =Py for each j=1,...,n.

If one finds that no such projector exists other than
I or 0, then one may conclude that {I',} is an irreducible
set.

Relativistic wave equations where {I',} is a reducible
set are called reducible wave equations.

1l. AN EXAMPLE

Consider any two irreducible, interlocking represen-
tations of SL(2,T) denoted A and B. For illustrating the
technique consider any wave equation that can be con-
structed so as to transform under T{A)=A® B & B,
then T'; is the following:

A B B
ab, bD, | A
Fo=| ¢D, B, (23)
dD, B

where a, b, ¢, and d are complex numbers, assumed to
be nonzero (no requirements of unique mass or spin are
imposed). The most general allowed P is

A B B
1 A
5 al|B|® |alB
P= [e 4 B =
£ Y1p yiol’
YDJB
(24)

where a, 8,y, and p are complex multiples of the appro-
priate dimensional identity matrices.

The criterion (1 - B)I', P=0 yields

(1 —a)c—ﬁd=0, (252)
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-ye +(1 —p)d=0. (25b)
If (25 is a nontrivial idempotent operator (#0, ), then

a+p=1, (26a)

Qp—B‘y:O. (26b)

The condition (1 -~ P)T', P=0 and Eqgs. (25) can be re-
written, using (26a), as

pc ~Bd=0,
but (26b) assures us that there is always a nontrivial
solution

1- d
B=_(___—C_¥_)_L:’ Y= -

d c

ad —'yc=0,

So, whatever be the specific nonzero values of ¢, d
(and any values of a, b) there exists a family of projec-
tors (one for each choice of a),

1 0 0
P=|o0 a (1-a)e/da| (3.5)
0| ald/c) (1-a)

such that P°= P and P+#0 or I, and (1 —f’)l"o;’:O. In
case ¢ =0, choose @=0; similarly if d =0, choose o =1
(¢ and d cannot both be zero). Therefore, any equation
transforming under A & B® B must be a reducible equa-~
tion. The structure of such equations, and general
theorems regarding the condition on T(A) when one is
forced into reducible equations are discussed
elsewhere. **

An example of the use of these results to prove a
given equation to be irreducible can be found in the
references.’
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We consider a gas in which the density and temperature fields are spatially and timewise nonuniform. We
then show that on the basis of the entropy principle the stress tensor is nonsymmetric. This nonsymmetry
of the stress tensor is shown to be the driving force behind the creation of microrotational fields and
dynamic spatial polarizations in the gas. It is also shown that the nonsymmetric part of the stress tensor
arises out of the interaction of gradient fields of temperature and density.

1. INTRODUCTION

The modern theories of fluids with microstructure
have not allocated any space for gases in which the state
of the stress is antisymmetric. The antisymmetric part
of the stress tensor in such theories!'? strongly depends
on the higher gradients of the deformation rate tensor
D;; and spin rate tensor w,;;, where

(1.1)
(1.2)

1
Dyy=z(v ;+v; ),
1
wyy =2V 5= v;,) +Qy

where v, is the velocity vector and a comma denotes
partial differentiation with respect to a rectangular Car-
tesian coordinate system x;, i.e., v, ;=8v,/8x;, and

£2,, is some intrinsic microrotation tensor.

The purpose of the present work is to show that for
gases with spatially and timewise nonuniform density
and temperature fields the stress tensor is asymmetric
while the couple stress tensor is zero. The asymmetry
in the stress tensor is due to asymmetric interaction
of gradient fields of density p and temperature 6 in the
form of (p ;6 ,-p x0,;).

First we write down the governing equations of motion
and energy for a gas in the presence of asymmetric
fields and then we employ a generalized entropy prin-
ciple to arrive at the pertinent constitutive equations.
We also make use of Truesdell’s equipresence prin-
ciple and let all constitutive variables appear in all con-
stitutive functional representations.

By employing a method of Lagrange multipliers we
arrive at the expressions for the stress and the couple
stress. Finally we relate the asymmetric part of the
stress tensor to the field of microrotations.

2. GOVERNING EQUATIONS OF ASYMMETRIC GAS
DYNAMICS

Generally from a mathematical point of view, a micro-
continuum is the one possessing internal degrees of
microfreedom or internal fields® B(x,, t), such that B
could be of any tensorial character. Among all micro-
fluids the simplest emerges as the one we are going to
consider. Namely, we consider gases with only one in-
ternal polar field w;(x;,¢). Further, w; characterizes
a field of rigid rotations throughout the body V(¢) en-
closed by a regular surface S(¢). The existence of
w;(x;,1) could imply the rigid microinclusions in the
body which creates poles by rotation while moving with
the gas. Therefore, in the above sense the gas is polar.
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We note that the presence of the w; field also corre-
sponds to the presence of a rigidly rotating and moving
frame comparable to the rigid triad of E. and F. Cos-
serat.? Shahinpoor and Ahmadi® have presented a simple
approach in deriving the governing equations of motion
and energy for such a polar medium and from them we
find that, in the absence of body force, body couple, and
any heat source, they reduce to

p+puy, =0, (2.1)
pPY; = Thy p=0, (2.2)
Py = gy, 2= €1t Ty = 05 (2.3)
PE+Gy =Ty V54 =ty w;,=0, (2.4)

where p(x,, t) is the mass density, a dot denotes total
differentiation in time, v; is the material velocity vec-
tor, w; is the local angular spin vector, J is the local
constant micro-inertia, 7, M,; are the stress and the
couple stress tensors, respectively, defined as forces
and moments per unit surface area, € is the internal
energy per unit mass, and g, is the heat flux vector,

We, furthermore, employ a generalized entropy prin-
ciple proposed by Miiller.®*” It states that in every body
there exists an additive scalar quantity, which is called
entropy, which has a positive-definite production, so
that if there is no supply of energy® in the body then

pﬁ+¢k,k20’ (2.5)

where 7 is the specific entropy and &, is its flux.

Our objective is to find thermodynamic fields in the
gas by determining eight unknowns {p, Uy, Wy, 6} where
the last unknown is the absolute temperature. Clearly
the set (2.1)=(2.5) is not deterministic for the fields of
unknowns and further relations are needed. These re-
lations are the constitutive equations. Since we are
particularly concerned with the effects of the spatial
and timewise variations in density and temperature we
consider the following set of independent variables:

{p’b’p.kveyésg,k}- (2.6)

Employing Truesdell’s equipresence principle® we con-
sider the following constitutive relations:

lez?ij(p,bvp,k’ B!éye.k)y (2'7)
ll(j=ﬁu(p,.b)p,k;G’éye,k)’ (2'8)
qi =ai(p,ﬁ.)9p.h! 9’ éy g,k); (2'9)
ez‘é(p’byp,k’eyéye,b), (2'10)
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(2.11)
(2.12)

ﬂ=ﬁ(P,b,P,m 6,9, 9.):)’
Qi =&i(p9 b,p,lu 67 é; e.k)-

Here 7,; and u;; are generally nonsymmetric tensors.
We further note that through the constitutive dependence
on both p and p the constitutive functions (2.7)=(2.12)
also depend on the gradients of dilatation v, .

The constitutive functions have been assumed to be
objective under Galilean transformations, which implies
that they are isotropic with respect to the orthogonal
group of transformations as is discussed by Noll,!°
This also implies that for any material there exists an
isotropy group in the form of a group of orthogonal
transformations which allows all admissible processes
to remain admisgsible after a change of frame. Repre-
sentation theorems are well known for (2.7)-(2.12) and,
for example,

q;=-x(p,p,6,0,1,1,,1,)6
+D(p,0,6,6,1,1,,1,)0 ;, (2.13)
®,=¢(p,p,6,6,1,,1,,1,)6
+3(p,0,6,6,1,,1,,100 ;, (2.14)
where
I =040, 1,20 4P ny 13=0,0,, (2.15)

We call every set of solutions of (2.1)-(2,12) existing in
the close neighborhood N(x,, ¢), a thermodynamic set
and every solution in N(x;, {) a thermodynamic process
for the nonsimple gaseous medium under consideration,
Not allowing any shock wave dissipation of energy as-
sures us that the functions in (2.7)~(2.12) are analytic.

Once (2.7)-(2.12) are defined over the space of all
admissible functions p, v;, w,, and 6, then the system
of equations (2.1)-(2.5) gives rise to acceptable solu-
tions for which the inequality (2.5) must hold for all p,
vy, w;, and 6. In effect, (2.5) puts additional restric-
tions on all constitutive relations (2.7)-(2.12). To eval-
uate such restrictions we choose to employ the method
of Lagrange multipliers proposed by Liu,* according
to which inequality (2.5) is equivalent to

P+ Py = AP(P+pUL L) =A% (pT; = Ty )

= AY(PJW; = Py o~ €4y Thy)
~AS(PE€+qy =Ty Uy 4= Myjw; ) =0, (2.16)

holdmg for all admissible arbltrary values of p, p, p ;,
9 9 8{1 Uiy ""t’vi’ wz’ vt’ i p’pkvg e.ky P rvy
64, 6.a1p Usy and w,,. The set {A?, A%, A% A%} com-
prises a set of Lagrange multipliers over the eight-di-
mensional space of (p, v;, w,, 6) and are in general func-
tions of the above mentioned variables.

Since the laws governing the thermodynamical be-
havior of the gas, namely Eqgs. (2.7)-(2.12), do not de-
pend on

8%p p, %6 86, 3y, dw,
{“" YL I s P 115 O ks Vn 1 Y, » We 1y Y,

(2.17)

therefore arbitrary variations of such quantities should

859 J. Math, Phys., Vol. 18, No. 5, May 1977

not alter the nature of inequality (2.5). Thus the coef-
ficients of all such fields in (2.16) must be set equal to
zero., This procedure yields:

o _ ye 28
o ~ A 55 =0, (2.18)
a7 . 08¢ > <a<f> XY )
“A )4 Z5h —pc
p<3p,k 9p ap ap
A% T —lia:', =0, (2.19)
0
oM . BE _ 2.20
86 A% =0, (2.20)
o _ge 88 (a_%_ <)
p(aa,,h A aek)‘L Y JRRrY:
A% 2Tai g By (2.21)
86
_2_(& + AV _.(kL +AW .__(Ei Ae_ik =0, (2.22)
ap ;) 9 .,1) 90 5 P 4)
ad 0q
e v __.(&L wi _m e 994
T T T T (2.23)
ad 8q ) <ad> 83, )
—k op€ts A€ -pAYt o
(ab ap /P T\ %8 Y PAT Uy
=pOy AP +ATy =0, (2.24)
Avi :0’ (2’25)
Affy, =0, (2.26)
JAY =0, 2.27)
The inequality (2.16) now shrinks to
on € BE) <_8_q’_g v gi wy l‘l“
p<89 -A ag 0+ ap A% ap A ap

8q > 0d )
— A€ 1k _...R vy _..BL wy __B.I. ‘_L

81 . -
(B p)-a s erranise
We note from (2.25) that A’ =0. However, from (2.27)

we conclude that A“ =0 only if the microinertia J is dif-
ferent from zero. From (2.24) it is clear that the stress
can be nonsymmetric. We assume J> 0 and thus A“ =0,

(2.28)

Thus, inequality (2.28) reduces to
o1 eze_) 3%, )
p<39 A ge)lr <ae A 3e)?
8¢ q [ a1 a%) J
At ST 20 A 2=V arlp
<8p 6p>p"’+ p(Bp A g P20
(2.29)

Furthermore, the conditions (2. 18) (2.29) must hold for
arbitrary values of p, 6, p, p ,, 6, 6 i Uy, and w,, . We
then conclude that A®? and A€ are scalar isotropic func~
tions of the variables p, b,p" , 6,0, 6 ; and in particular

A€=A%(p,p,6,6,I,,1,1,). (2.30)
We explore the case when [,,=0 and thus A€ #0,

With representations (2.13) and (2.14) Eqs. (2.22) and
(2.23) lead to
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®,=A%g,, (2.31)

and the conclusion that A€ is independent of 1, I,, and
I, provided that x+#0. This being true, we can write

A®=A%(p,p,8,06). (2.32)

3. GENERAL STRUCTURE OF THE STRESS AND THE
COUPLE STRESS TENSORS

From (2.26) if A€ 0, then [i,,=0. Now from (2.31)
and {2.24) it is found that

" AP D
Tri = F PO, + Q;Q,kP,J -Q, (;'>p,kp,j

D
+@,0 4 9,;"Qz<‘;>P.n 0., (3.1)

Q K a' (hu‘ ) Qz K '(llu‘ 3 2
t 1Y ’ a8 )- ( ‘ )

By means of the trace of (2.1) we can eliminate A? and
rewrite (3.1) in the form

D

(Tps = %T“ 8,) = Q0,0 ,;~Q, <;‘>(P.kp.j

=30 ,4P i 04y)+Qy(6,4 6,136, 6,;04;)

D D
- Qz <'K_>P,,, 9';‘ - %[Ql - Qz(;)} p.; 9" le'
3.3)

This is the deviatoric part of the stress tensor. As can
be seen the stress tensor is generally in this case non-

symmetric. The antisymmetric part of the stress ten-
sor can be found from either (3.1) or (3.3) to be

D
=4[ @+ (2| (0.1 0.4 -p.00,0 6.9
Note from (2.3) that
Ttes1 =20 €4y Dy . (3.9)

It must be mentioned here that if 7,;; is assumed to be
equal to zero, then it can be easily shown that on the
foundation of the validity of Fourier’s law of conduction
with 6 interpreted as a temperature field the following
representations are valid:

€=¢€(p, 6, 5,11), (3.6)
qi=—K(py 9, 9.’11)9,(’ (3o7)
Tpi = —P(p,fl, 9: é’ 11, lz) 13)6121
+Q,(0,6,6,1,)6,6 5, (3.8)

71=TI(P, 9,9',11). (3-9)
@, ==A%(,6)(p,6,6,1)8,, (3.10)
on e O€

A 3.11
B—é 26’ ( )
oM _ e Kk BAC e<i€_ 2;)
ol, " oI, "2 T80 =A oI, = 2p)’ 3.12)
Q 0Q,/96
Ha__ __949,/00
K 2p0€/0] +Q,"’ @3.13)
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8 8A € 8e K
ao(ln—a—a->——<2p oI, —a—é)/x, (3.14)
and the residual inequality
0 _pe(2€ BNy, (30 _pe 26\ g
p[ap A <8p pzﬂ‘”"(ae A 56)°
) €
-K —51%— 6,6,20, (3.15)
holds.

In this particular case A(6, 6) is the “coldness” as
suggested by Miiller.® This universal function will equal
the inverse absolute temperature at equilibrium, i.e.,
when equality holds for (3.15).

4. GOVERNING THERMODYNAMIC EQUATIONS FOR
AN IDEAL ASYMMETRIC GAS

Let us define an ideal asymmetric gas by assuming
the following relations to be true:

€=a 0+a, a,q,=constants>0, (4.1)

q;==k6 ;+Dp ,, k,D=constants, x>0, (4.2)

- 3T, =0,p6, (4.3)

Af=a,07te¥/5 @ =0, @,=a,=const,

a, =const. (4.4)

The stress tensor now reduces to

Tai == @, P00, +,(6 ,6,,=56,,6,;04)

—a4<§>p_,9_,+§a4(€-)p" 6,404, (4.5)

and the complete set of governing thermodynamic equa-
tions for an ideal asymmetric gas reduce to

b"’pvk,k‘_‘oy (4.6)

. 2
pv,:[—azp'ke-azpelk— 50‘49.u 0,

1 D 1 D
+ §a4<;>P.ik9.i + '3""4(7)P.4 e,uz:lau

D
+ 0y (0 20,4040 54) ‘a(7>(P,u 0.5+P 20 5x)s 4.7

. D
pdw, =%€ma4<;>[0,i 0x=Pxb ], (4.8)

PG =+K6 4= Dp ket Uin [‘ a,p-3a,6,6,
D D
- %014(;)0 16,10+, ,6 ;- a4<;>p,k 9,1}-
Thus we have a set of eight nonlinear coupled partial
differential equations in the eight unknowuns p, v;, w,,

and 6 for the governing thermodynamic equations of an
ideal asymmetric gas,

5. CONCLUDING REMARKS

As can be clearly seen from the general expressions
(3.1), (3.3), (3.4) or the special expression (4.5) for the
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stress tensor in asymmetric gases the asymmetry in
the stress tensor arises because of the presence of an
asymmetric differential operator (p ;0 ,~p 0 ;) in the
expression for the stress tensor. This is what we
meant in the Introduction by “the asymmetric interac-
tion of gradient fields of density and temperature.”

For the case of an ideal asymmetric gas the assump-
tions (4.1) and (4.3) are clearly motivated by the clas-
sical assumptions for the thermodynamic behavior of
an ideal gas with (~ 3 7,;) interpreted as the hydrostatic
pressure p. The assumption (4.2) is the simplest ex-
tension to the classical Fourier’s law of heat conduction
in order to have nonsymmetric stress tensor fields.
Clearly D being zero would reduce the stress tensor to
a symmetric tensor unless @, #0. The assumption (4.4)
is motivated by the fact that if both @, and @, are zero,
then A€ would reduce to an inverse temperature scale
which is typical for ideal gases.
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Classical systems of infinitely many noninteracting particles
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It is proved that the C*-algebra of observables of an infinite classical system is isomorphic to the group
algebra on the test function space . The physical dynamical system consisting of infinitely many
noninteracting particles is studied. A particular class of states, called the quasifree states, is exhibited and
their properties are studied. Some results on the spectral properties of monoparticle evolutions are obtained.
Finally we give explicitly a solution of the classical KMS condition for these evolutions.

1. INTRODUCTION

Since the work of Haag and Kastler' much progress
has been made in the mathematically rigorous descrip-
tion of quantum systems with infinitely many degrees
of freedom. In particular, statistical mechanics bene-
fitted from their approach. In this context of special
importance, for physics as well as mathematics, was
the work of Haag, Hugenholtz, and Winnink® where they
studied the properties of infinite systems satisfying the
KMS condition.

On the other hand, for classical infinite systems much
less has been done in this direction. We mention the
results of the algebraic approach on thermodynamic
functions to be found in Ruelle’s book.® A new impetus
has been given to the study of classical systems by the
recent work on the classical KMS condition, *-® Motivated
by these works, and by the fact that to our knowledge
the only Hamiltonian evolution known for an infinite
system is that of infinitely many free particles,” we
describe explicitly the class of states which naturally
should describe noninteracting infinitely many particles.
We call these states, in analogy with quantum mechan-
ics,® quasifree states. To that end we construct in Sec,
2, in a “canonical way” the algebra, generated by the
exponential of unbounded observables on the configura-
tion space, in analogy with the Weyl algebra. We prove
that it is isomorphic to the group algebra on the set of
test functions /), This enables us to work with the latter
algebra making unnecessary the use of the classical
phase space, which is rather difficult to handle.

On this algebra the set of quasifree states is defined
and its properties are studied; in particular we give
its GNS representation on Fock space.

In Sec. 4 the quasifree dynamics is introduced through
monoparticle evolutions, and some results on the spec-
trum are obtained.

We prove that the spectrum of the Liouvillian for the
infinite free system is absolutely continuous except for
the point zero (Theorem 4.2).

Finally in Sec. 5 we study the quasifree states satisfy-
ing the KMS conditions and reduce the problem of the
infinite system to the one-particle case. We prove that
for quasifree evolutions given by a Hamiltonian there
always exists a solution of the KMS equation which is
quasifree. We do not go into the uniqueness of these
solutions,
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2. THE ALGEBRA OF OBSERVABLES AS A
GROUP ALGEBRA

By analogy with the Weyl algebra in quantum mechan-
ics, we construct a new algebra of observables for the
classical infinite systems, which has the advantage of
being generated by the exponential function of test func-
tions. Our algebra is contained in the one of Ruelle.?

Let X be the set of infinite countable subsets x of R?
XR% de N such that for every bounded subset V of RY,
x 01 VX R?* contains only a finite number of elements.
K is called the set of configurations. Let/) be the set of
real C* functions of bounded support on R¢XR¢, For each
element f</) define the function Sf from X to R by

(57) (%) =§f(x.-), xeK.
Denote by W(f) the bounded function on K defined by

W(f) =expiSf
and let A4 be the complex Abelian C*-algebra generated
by the set {W(f)|f</)} with respect to the usual pointwise
multiplication of functions, involution the complex
conjugation, and norm the supremum norm over K. We
call / the set of observables of the infinite classical
system,

Now we define a particular class of states on the alge-
bra 4, through its family of density distributions
(1) for each bounded open set A of R?Y, Let o be any
nonnegative Lebesgue measurable function on R¢xR?
such that

w(A)szdea(x)dx
is finite, then let the family of density distributions be
given by

xn)zexp[- w(A)]

auile, ..., 1

Do(xy) ar,

for all n> 1 and p =expl— w(A)].
It is clear that (u%) satisfies:
(a) the normalization condition.

lz,é(gf(Ade)" dﬂ.;’\(xl, ..
(b) the compatibility condition, i.e., for each A’'D A

LX),

api (X, ...y x,)

+p)!
= (TL l p!) /"' du."”(xl,...,x,,.p)-
=0 nlp Xpel,eens¥ned © AC\AXRT
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Given any family of density distributions (%), they
determine a state w onA by

w (X) =§f AT D, { A

for X ¢ A with “support” in A, Any state determined by a
family of density distributions of the above type will be
called a product state,

It is easily checked that if w is a product state deter-
mined by the function o then for all f /)

w(expiSf) = exp( [ payza (x)explif () - 1]dx). )

Now we define the group algebra of ). Let A()) be the
set of complex valued functions on /) which vanish except
on a finite number of elements of ) ; A()) equipped with
the following addition, multiplication, involution, and
norm:

(a +b)f)=alf) +b(f),

(aa)f)=aalf),
(@* D)) =22 a@b(f-g),
‘ED

a*() =al=7),
llall, =jg_.}) PIGIR

forall a,bec A()), aeC, f,gcl), is a normed involu-
tive algebra. Denote by 5, the element of A(D) given by

5,(g)=0 if f#g,
d,(g)=1 if f=g.

Note that 5,5, =56,,, for all f,gc/), 5, is the unit element
of the algebra A())), 8¥ =5, and that the set {5,Ife)} is
a basis for A()).

Denote by A()), the closure of A()) with respect to
the norm |[|* ||,. For each element a < A(/)) the map from
A()) into R,

l*ll:a—llall =sup wli @),

where the sup means the supremum over all nondegener-
ate representations 7 of A()); {|° |l is a C* norm.

Consider now A(/)), the completion of A{/)) with
respect to this norm; it is a C*-algebra, called the C*-
group algebra of ).

In the following theorem we prove that C*-algebras
A and A()) are isomorphic. This result simplifies the
study of classical dynamical systems when the configur-
ation space is not involved, in particular the study of
states on the algebra.

Theorem 2, 1: The C*-algebra of classical observables
A is isomorphic to the group algebra A() )} of ).

Proof: Let ¢ be the linear map of A(/)) into A given by
¢ (6,) =expiSf.

It is clear that ¢ is a x-homomorphism of A()) into
A. Now we prove that ¢ is injective. Let f,,...,f, be
different elements of ), a,,***,a, be complex numbers
and suppose that
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¢(j:21a,6,,)=0.,
Then
‘ba,expisszo
and ﬂ:r any &
a, + j%a, expliS(f, - f,)]=0.
*)
Consider the product states w, determined by the func-

tion 0, (g,p) =X exp(-p?) with  a positive number. Then
applying the state w, on (*), and using (1), one gets

a, +]§a,exp{— i S e dqdp | expliff, - f)1-1|?

- iIm e~ dqdp (expli(f, - 7,)] - D]} .

Since the functions f, are continuous [ exp(- p%) dqdp
I expli(f, - £,)] - 112 #0 for j+k, hence by letting X tend
to infinity one gets g,=0. As this is true for all k, we
proved that ¢ is injective.

Since ¢ is a *-homomorphism of a dense subalgebra
A(D) onto a dense subalgebra ¢(A())), we have that for
any ac A()),

a*a < llai® and ¢la*a) < llallP.
Therefore,
o @) =lipla)* pla)ll = lip(a*a)ll < llall®.

Since ¢ is a *-isomorphism, the inverse ¢! also
satisfies

o=t (@)l < llall,
hence
llall =ll¢ (@)l
and the theorem follows by continuity.
Q.E.D.
3. QUASIFREE STATES

Denote bybth~e set of functions given by /) ={f +ig|
f,geD}, i.e., [ is the complex algebra generated by
the algebra /).

Theorem 3.1: Let w, be any positive linear functional
on /), and let w be the linear functional on A(/}) defined
by

w(8,) =explwglexp(if ~ 1], fe .
Then

(1) w extends to a state (i.e., positive normalized
linear form) on A(7))

{ii) for all f and g in/) with disjoint supports
w(6,6,)=w(d,)w(,).

Proof: (i) Let ¢, ..., cy be arbiitrary complex num-
bers, and g, ..., gy be arbitrary in /),

N
"';ﬁ L CnCon 6 £ ‘m)

= n'Zmil cn&m explw,(expli(g, - g,)]~ D],
()
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But, using
[exp(ig,) - 1]lexp(- ig,) - 1] - (1 - expig,) - [1 - exp(- ig,)]
=expli(g, - g,)] - 1.

(o) becomes
N
W B €XD s 4,), 8)

where u, =c, explw,(exp(ig,) — 1)] and (-, +) in the ses-
quilinear form on /) given by

@, ) =w,[@P) ¥, b))
and (pn:exp(ign) -1,

It is well known from the theory of positive definite
type functions that the expression (B) is positive. This
proves the positivity of the linear functional w. Further-
more, as w(d,)=1 and the algebra is Abelian, w is a
continuous positive normalized linear form on A(/)).
Therefore, w extends to a state on 3({J).

(ii) If f and g have disjoint supports then [exp(ig) — 1]
[exp(if) - 1]=0 and therefore exp[i(f+ g)] - 1=[exp(if)
— 1]+ [exp(ig) - 1] and (ii) follows.

Q.E.D.

This theorem shows that any positve linear functional
w, on the one-particle space /) gives rise to a state w of
the infinite system. All states of this form will be
called quasifree states

Furthermore, any state w on A(/J) such that the map
A€ R —~w(5,,,) is continuous for all fand g in /), will be
called a regular state.

Let w be a regular state and (r,//, Q) be its GNS
representation, then it is easily checked that for all
fe D, {n(6,,) Ixe R} is a strongly continuous one-param-
eter group of unitaries on//. Hence by Stone’s theorem
there exists a self-adjoint operator B(f) on/#/ such that

1(5,) =expliB(f)]

and B(° ) is linear on /); B(*) is called the classical field
operator

Moreover, any state w on A(/)) such that the map
re R—w(5,,,,) is infinitely differentiable for all fand g
in /) will be called a C” state.

A C” state is always a regular state, moreover it
shares the property that for all f,,...,f, and gin )

B(f,)*** B(f,)2 belongs to the domain of B(g). For each
C~ state we can define the truncated functions w, by the
following recurrence relation: For each set g,...,g,
in /),

(Q,B(gl)"'B(g")9)=2wr(g,"')°"wr(“'gi,,), (2)
where the summation is over all possible partitions

(8y5°**)y ...y (o0o,4,) of the set {1,...,n}, within each
cluster the original order being preserved.

Theorem 3.2: Let w be a quasifree C* state, deter-
mined by the functional w, on /), then for each set
Giyeeos 8y in /) one has wqolg o g,) =wolg °*>° g,)-

Pyoof: For quasifree states the differentiability of
X —~w(5,,,) ie equivalent with the differentiability of
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A~ wolexplif+g)i-1), and for n=1, the relation
between w and w, follows by differentiating x — w(bu)
at A =0. From the definition of w, [see Eq. (2)],

wrlg, *g,)= (R, B(g,)*+ B(g,))
-2 wrlg, *)eewp(eog, ),

?
where 2/ stands for the summation 2 without the
trivial partition (1,...,n). As now

a- SN
(Q,B(g’l) ose B(g’n)ﬂ) =m’ w(é%{ Ajgj)

=Ewo(g¢1"‘)"° wo("'g;")

Al Beeszhpn=0

by induction on n, the theorem follows.
Q.E.D.

Now we turn to the study of representations of the alge-
bra of observables induced by quasifree states. Let w
be the quasifree state determined by the positive linear
form w, on [, let \/ be the kernel of the quadratic form
(¢, ®) = w,(P¢) on /) and let # be the completion of 1) /N
with respect to the inner product induced by w,. Denote
by 7(#) the symmetrized Fock space on %, i.e.,

F#=sBH®

where
,L/(n): R

n times

Consider the total set of coherent vectors {Q(1)| e A}
where (k) is the vector with nth component,

1" TRy
Q(k) _Wexp - T h h®°°°®h.

We note that Q(%) can be written in the form
Qh) = exp[iR(R)] Q(0),

where R(-) is the canonical field operator for bosons
on the Fock space 7 (#).°

Define the map 7 of A{JJ) into the linear operators on

F#H) vy:
7(8,)9(h) = exp{iIm[(y_,, k) + wo(¢ )]} Qe th + 1) + 1),
(3)
where ¢, =exp(ig) - 1.
It is easily checked that
(i) (2(0), 7(6,)2(0))=w(5,).

(ii) (Q®), 7(5,)9(N) = ((6_)n), Q) for all f, he/H
and ge/.

Hence 7 is a + representation of A{/J) into the bounded
operators on F#(4)

(iii) Now we prove that Q(0) is cyclic for the represen-
tation 7.

Let F, be the dense set of F#) consisting of the vec-
tors Y= y'™ such that p'" =0 except for a finite num-
ber of components.

Then for all yc F, and g/
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11m—xg[—@%‘—]— P=R(ig)}, (4)

A=+0

lim xp[tR(d)l' ] 1 "l

A=0 l>\

Therefore, the vectors R(ig)y and R(g®)y are in the
closure of the linear hull, X, generated by vectors of
the type

MRig) o, 1 R(g?)y. (5)

T exlir(y,,)120),

where g, are elements of /). Now, an arbitrary element
fof [, can be written as

f= (g.)" - (g2)” + igs,
where g,, g, and g, are in J). Hence, since
R(NY =R@W + Rlig)¥,

the vector R(f)¥ is in X. As £(0) is cyclic for the field
{R(DI fe D} the cyclicity of 2(0) for the representation
7 follows,

Resulis (i), (ii), and (iii) are now formulated in the
following theorem.

Theorem 3.3: Let w be a quasifree state on A())_
determined by the positive linear functional w, on D.
Let # be the completmn of J/N with respect to the
scalar product (f,g) = w,{fg), NV being the kernel of w,,
and 7(4) the symmetric Fock space on /4.

Then 7, given by (3) is the GNS representation of the
state w on F(#/), with the Fock vacuum as cyclic vector.

We note that if w, is continuous with respect to the
supremum norm on /), we can give a simpler form of the
the representation,

Let /) be the involutive algebra /) + C and let @, be
the extension of w, given by

Wolx + A) = welx) + Alw,ll

for all xeD and e C. Denote by %7 the completion of
D/N with respect to the scalar product (f, g)=®,(f2),
N being the kernel of &,. It can be checked that the
Hilbert space # contains the constant functions. This
allows us to diagonalize the representation 7.

Let
Vi FH) - FH)
be the unitary operator given by
V) = Q(h - 1) exp[iIm(1, h)]
for all hc/) define 7(6,) b
T(8,) = V*n(8,)V
Then
7(6,) Q) = Q{expifin).
The cyclic vector for the representation 7 is now V*Q(0)
=Q(1).
4. MONOPARTICLE EVOLUTIONS
Now we introduce the dynamics of a particular kind,

namely the monoparticle evolutions. Let (T,), be a one-

865 J. Math. Phys,, Vol. 18, No. 5, May 1977

parameter group of automorphisms on /): this induces
a one-parameter group of automorphisms (a,), on Ay
by

a,(8,)= 56 f, feb.

Any time evolution a, of this kind is called a quasifree
evolution; 7, is called the monoparticle evolution.

In the following we will only be interested in time in-
variant quasifree states, i.e., states w determined by
functionals w,, invariant under T, extended by linearity
to /). In this case T, extends to a one-parameter group
of unitaries on /# which is also denoted by 7,.

As the state w is invariant there exists a group of
unitaries (U,), on the representation space 7(//) such
that

ﬂ(atX) = Utﬂ(X)U_t ’
U,0(0)=2(0),

for all £« R; it can be checked that U, is given on the
coherent vectors by

U, (k) = AT, k),

Xealh,

hekH.

Furthermore, it can also be checked that, if 1~ 7, is
strongly continous, than {— U, is strongly continuous,
and therefore by Stone’s theorem there exists a self-
adjoint operator / , called the Liouville operator, on
F(H) such that U, =expif/ . In the following we assume
that ¢ —~7, is strongly continuous.

Let us introduce the time reversal operator 6 on 4
by,

(ef)(q’ P) :f(q’ 'p)'

The evolution T, will be called “time reversal invariant”
if 67,=T_,8. This is the case when T, is given by a
Hamiltonian of the form H=p?/2+ V(q).

Theorem 4.1: (i) K the spectrum of T, is continuous,
then 1 is the only discrete point in the spectrum of U,,
moreover it is a simple eigenvalue,

(ii) If T, is time reversal invariant and Q(0) is the only
invariant vector of U,, then the spectrum of U, is con-
tinuous, except for the point one,

Proof: (i) Suppose first that the spectrum of 7, is
continuous. Then

M |(Tyg, )| =0 for all g,het,
where

MAF) = nm 1 f(t) dt,

but

1 (), U;2(2)) - (24k), 2AOINRA0), Q1)) |
=exp(— $(I1)1? + llgl®) | M{expl - (&, Tyg)] -~ 1}])
< exp(- $(IRII? + ligl*Vh | expl—, T,2)] - 1])
< exp(- 3(lIR1* + NgIPM{| (r, Tyg) exp|(k, Tyg)| P
< exp(- s (Al - lg*M | (r, Tyg)|) =0.

Hence

M(Q(R), U;0(g)) = (Rn), 2(0))(Q(0), 2(g)).
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Since
{Qn)|neH}

is a total set in 7(#), this proves that §2(0) is the only
invariant vector of U,.

Analogously, for all vectors ¢ € (/) such that
(¥, 200 =0, 1M (p, U;¢)l =0 for arbitrary ¢ F7(H).
Hence 1 is the only eigenvector of U,.

(ii) Suppose now Q(0) is the only invariant vector and
suppose that the spectrum of T, is not continuous so that
there exists an eigenvalue A and eigenvector f. For
het, let

R*(h)=3[R(r) FiR(ih)]
be the usual creating and annihilation operators on 7(#)
and let

¢ =R'(f)R*(8) (0).
Then
U, =RT,f)R(T,0f)Q0)= |r|*¢p=¢.
Since ¢+ Q(0), 2(0) is not the only invariant vector of
u,.
Q.E.D.

In the rest of this section we specialize the free
evolution and the state w induced by w,, where w, is
given by

wof)=pflq,p)dulg,p), (6)

where dulg,p)=exp(- 8p*/2) dg dp: p and B are positive
real numbers corresponding to the density and inverse
temperature respectively; the state w is a KMS state for
the free evolution (see Sec. 5). As the measure u is
absolutely continuous with respect to Lebesque measure
dgdp we can just as well work with Lebesque measure,
so that # =/ 2(R¢ xR?). The infinitesimal generator L

of T, on # is well known to be self-adjoint® and given
formally by

L:—ipé%—. (mn

As the representation U, is given by
UM =QTh), heH

it is well known that
U,=explitdT(L)],

where dT(L) on D,NA'™, with

D, ={y € F,|¢'" €3 Cs(R*) for all n}
is given by
L®1®'"®1+-oa 1®...®L.

Consider the unitary map U of / onto #,

~ 1 \¢/2
W=t =(5)  feria,praa.

Then ULU"! is the multiplication operator by —pk. One
checks that the time evolution is given by

(U Rypry . vy kyd,)
=expli(k, +py + oo+, p ]V ey, . .o R D,),
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i.e., on the orthogonal complement of ©2(0), U, is a
multiplication operator, its infinitesimal generator is
also a multiplication operator by a real-valued con-
tinuously differentiable function with nonzero gradient
almost everywhere. Hence / is spectrally absolutely
continuous (see Ref. 10, p. 518) except for the point
ZETO.

Theorem 4.2: For the infinite classical system of
free particles in the quasifree state determined by w,
as in {6), the spectrum of the Liouvillian / is absolutely
continuous except for zero,

5. KMS STATES

In this section we have to introduce the Poisson
brackets, therefore we turn for the moment to the ori-
ginal algebra /4. The Poisson bracket between two
generators of the algebra expiSf and expiSg, f,g< [ is
given by

{expiSY, expiSg}=-S({f, g} expliS(F+ &)}, (8)
where
=% O 08

is again an element of /). Let w be a regular state on
A[Y, using the isomorphism between 4 and A{J)
(Theorem 2.1), formula {8) suggest that we define the
Poisson bracket between two generators in the GNS
representation 7 as follows:

{n(s,), n(8,)}=- B{f,&hn(s,.,), (9)
where B is the associated field.

Definition 5.1: The state w on the algebra A()) is
KMS with respect to the monoparticle evolution (a,), at
inverse temperature 8 if

(i) wis a C~state,
(ii) w is time invariant,
(iii) for all fand g in ), {~w(d,0,5,) is differenti-

able and

B w(8,,0,) = - (2, {1(6,), 7,8},

Definition 5,2: The positive linear functional w, in
0 is said to be KMS for the evolution (7)), at inverse
temperature 3 if

(1) w, is T, invariant,
(ii) for all fand g in J: ¢~ w,(fT,g) is differentiable,
and

B_d(_lz wo(ngg) == wo({fs Ttg})'

Now we have the following theorem.

Theorem 5.3: Let w be a quasifree state on A{J],
determined by the positive linear functional w, on /),
then w is KMS for the evolution a, if and only if w, is
KMS for the corresponding evolution (T,),.

Proof: Suppose first w, is KMS, then
d
Ba—t- w(é,a,ét)
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- B ( 101‘")
= B;ditexr:[wo(exp[i(f +T,g)]-1)]

= 0(8uz,0) B wollexplif) ~ 1] T(explig) - 1),

where the invariance of w, was used.

Since w, is KMS,

d
BZiTw

(Gfatél)

= - w(6,a,8,)w,({expif, expiT,g})
6w {f, T gt expi(f+ T ,g)).
Now as for all h,kef)

(2, Bh)n(5,))

E= w(é"a'

== expw,(exp(i(k + Ar)] - 1)

=0

= w(8,)wy(h expik),

we have

Bdt w(8,a,8,)=-(Q,{n(5,), m(a,5,)}R).

Conversely, suppose that w is KMS, then as above,

(6,.,“r wo([exp(zf) ~ 1]7T,(exp(ig) - 1))

d
= 6;17 w(8,a,8,)

=-(Q, {n(5,), 1(a,5,)}Q)
== w(bf‘T:') > wo({expif, expiT g}).

Since w(6,)# 0 for all /), this relation is equivalent
with w, satisfying KMS, because all functions of the type
exp(if) - 1 with fe/) generate /), and the invariance of
w, follows immediately from the invariance of w.

Q.E.D.

By Theorem 5,3, the problem of solving the KMS con-

dition is reduced to solving the KMS condition for the
functional w, on /).
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I T, is given by a Hamiltonian H(g,) which is con-
tinuously differentiable, and if we suppose that w, is
absolutely continuous with respect to Lebesque measure,
then by partial integration the w, KMS condition has a
unique solution up to the parameter p, given by

wolk) = p [ exp(~ BH) hdgdp,

where p is a positive constant. Hence we may conclude
that for quasifree evolution induced by monoparticle
evolutions given by a Hamiltonian there exists at least
one solution of the KMS condition. We treat the unique-
ness problem of these solutions elsewhere.

Note added in proof:. After the completion of this work,
we received the thesis of J, L., van Hemmen, “Dynamics
and ergodicity of the infinite harmonic crystal,” Univer-
sity of Groningen, where he considered Gaussian states
for classical harmonic crystals.
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On a family of interior solutions for relativistic fluid
spheres with possible applications to highly collapsed stellar

objects*
Patrick G. Whitman

North Texas State University, Denton, Texas 76203
(Received 7 September 1976)

A one-parameter family of interior solutions to Einstein’s field equations for a static spherical fluid is

given. It is shown that for various values of the parameter and choices of the constants of integration,
several previously known solutions for static fluids are contained therein. This family of solutions can be
joined continuously to the Schwarzchild exterior solution, and as such may be applicable to the

investigation of stellar interiors where high central densities and pressures are of interest.

. INTRODUCTION

The field equations of general relativity in the pres-
ence of matter form a highly nonlinear system of equa-
tions. For this reason, few exact solutions have been
obtained, even for the simplest cases. The most notable
of these is the constant density solution for a spherical
distribution of matter.?

For the case of a static spherically symmetric fluid
of density p and pressure P, the field equations reduce
to a set of three coupled ordinary differential equations
involving these fluid variables and two metric functions.
In order to solve this system, it is necessary to specify
in some manner one of the unknowns, or to introduce
a subsidiary relation between two of them, i.e., speci-
fy an equation of state. Such an assumption removes
the indeterminancy of the system. We now consider
these equations in more detail.

The general relativistic field equations for a static
spherically symmetric line element in the presence of
a perfect fluid

ds?=Ar)2dt? - 1(r) 1t dr = Ad® +sin¥(8)de?) (1.1)

can be written as one equation relating the metric
functions y and 7, and two equations which can be taken
as the definitions of the fluid variables in terms of the
metric functions. The relationship between ¥ and 7 is
given by the expression

7(v) = exp[— F(7)] [fr exp[F(u)] glw) du + c]

with the functions g and F being defined as

(1.2)

gr)==2v/r(y +7ry’),

F(r)= ["gw)y ™y +uy’ —y") du.

C is a constant of integration to be fixed by the boundary
conditions, Here the prime refers to differentiation of
the function in question. This equation, in slightly
altered form, is due to Adler.?

The two remaining field equations define for us the
pressure and density in terms of the metric functions.

These are
872 P(r)=(y +2ry' ) 7/y) -1 (1.3)

and
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m(r)=4n for plu) v? du, (1.4)

where m =37(1 - 7™!) expresses how the mass is distri-
buted throughout the fluid.

Analytic specification of the equation of state does
not always lead to a tractable solution, and numerical
or graphic techniques must be applied. Exact solutions
in terms of known functions are most easily obtained by
requiring one of the field variables to satisfy some
subsidiary condition which simplifies the full set of
equations. Once the field equations are solved in this
manner, an equation of state can then be extracted.
Such solutions may be useful in understanding a system
in the extreme relativistic limit where we cannot speci-
fy a priori what the equation of state might be,

. A SPECIFIC CHOICE OF v {r)

As stated above, the set of equations (1.2)—(1.4)
cannot be solved without either choosing an equation of
state or making a specific assumption on one of the
functions P, p, v, or 7. After Adler, we note the Eq.
(1, 2) is linear in 7 if v is a known function. This being
the case, we choose y in such a manner that Eq. (1.2)
can be immediately integrated. Such a choice is that
v satisfies the Cauchy equation:

Py —ry'+(1 =a?)y=0, O0sasl, (2.1)

This expression can be immediately integrated. It
yields

y(r)=ar' +bv, (2.2)
where i=1+a, j=1 - . In this solution, a and b are
constants of integration.

When Eq. (2.1) is used in conjunction with Eq. (1.2)
7 can be readily obtained

T(r) =5+ [akP® +b1P T,

where s =2~ 0%, k=2+a, |=2-a,

(2.3)

Since ¥ and 7 are now known, they may be used to
solve the remaining two equations (1.3) and (1.4). We
find the pressure, Eq. (1.3), is given by

87°2P(r) = 7(7) [anr®® +bq|[ar®™™ +b]* -1 (2.4)
and the density, Eq. (1.4), is
Copyright © 1977 American Institute of Physics 868



81p(r) =1 =1(r) =2(s7(r) = 1)
x(ar*® +b)(aky®™ +b1)7, 2.5)
where n=3 +2a.

The three constants of integration can now be deter-
mined by matching the solutions at the boundary to the
Schwarzchild exterior solution. The result is

a=(1-gy?)(4aR "ys)'l, (2. 6a)
b= —(1-nP)4aR'y)?, (2.6b)
c=(A=-1/s)[(1 +y3)(2y R*)1P/ 1, (2. 6c)

with ¥2=1-2M/R and ¢ =3 - 2. R refers to the radius
of the fluid and M to the total mass:

M=47 [ p(u)u® du. 2.m

Note that now 0 <a <1, The solution with @ =0 cannot
be matched to the Schwarzchild with a finite boundary.

111. CONCLUSION

The solutions discussed above have the following
properties:

(1) The pressure and density diverge at the origin for
0 <a <1, but the ratio of central values
P /p.=(1=a)l+a)* (2.8)

remains finite and is independent of the total mass and
radius of the fluid.

(2) Though the density diverges at the origin, its
integral remains finite:

4n [ plr)rPdr<M, e<R. (2.9)

(3) If the fluid is considered adiabatic, the velocity of
sound is given by the relation

ap
ap=—1 (2.10)
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where I is the speed of sound in the fluid. Requiring
that this quantity be less than one places restrictions on
the values of M/R.

For particular values of the parameter « and integra-
tion constants @, b, and C, several previously known
solutions for static fluids are contained herein. The
limiting value of @ =1 is the solution given by Adler.?
This is the only solution of the family which does not
diverge at the origin. Three solutions published by
Tolman are also in this family.® These are the solutions
listed as Tolman numbers 1, 5, and 6. Tolman number
1 is also known as the Einstein Universe, Tolman num-
bers 5 and 6 were compared to the numerical solution
for a degenerate quantum gas.*

The family of solutions described in this paper,
though singular at the origin, may be useful in the
investigation of massive stars. They allow the investi-
gator to vary the equation of state in a continuous man-
ner by changing the value of the parameter a. It is
interesting to note that this is the only family of interior
solutions for relativistic fluid spheres in which none of
the field variables are considered constant.
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Group theory of the collective model of the nucleus
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(Received 12 July 1976)

In the present paper we extend the group theoretical analysis of a previous publication to obtain explicitly,
as a polynomial in siny, cosy, the function ¢,§"‘L(y) required in the discussion of the quadrupole vibrations
of the nucleus. The states appearing in the ciollective model pAuLM Y= F} (B)Z K¢;““L () Dy (),

! = (v ~1)/2, are then defined, as F,)‘ ®), D;““( (9;) are well known. All matrix elements required in the
collective model of the nucleus are related then with the expression (AuL; XN'u'L’"; \"'u""L") =

T Tk CEE L) SR (@ H L (1)g2#E” (y)sin 3y d y, which is a reduced 3jsymbol in the O(5) DO(3)

chain of groups.

1. INTRODUCTION

In a recent publication® the authors, in collaboration
with Sharp, developed a procedure for the exact solu-
tion of the quantum mechanical problem associated with
the quadrupole vibrations of the nucleus., This problem,
originally discussed by Bohr, 2 played a very important
role in the development of the collective model of the
nucleus. It is related with the liquid drop model in
which the surface of the nucleus is given by the equations

R=R, (1 +§a"'Y2m(9,<p)), 1.1)

where R, is the radius in the absence of deformation,
Y,, is a spherical harmonic, and a™, m=2,1,0,-1,-2
the contravariant form of the generalized coordinates
describing the collective motion. The Hamiltonian of
the problem, in appropriate units,' can be written

ag!~?

Hy=32{m m+a a™), a,=(-)"a"",
m

| =

9
dam? T,=(=)mrm, (1.2)

TTm= T

-~

We can then pass to the coordinates fixed in the body
through the transformation'=?

am=z:{1)3,;;,(19i)a,,, , (1.3a)

a,=a_,=(1/V2)Bsiny, a,=a.,=0, a,=Bcosy,
(1. 3b)

where ¢;, {=1,2,3, are the Euler angles, B,y the re-
maining coordinates, and D} ,(#,) the Wigner functions
that are the irreducible representations of the O(3)
group. The eigenstates of the Hamiltonian (1.2) asso-
ciated with the number v of quanta and of definite sen-
iority A, angular momentum L and projection M can be
denoted by the ket

|vau L) =F¢(ﬁ)§ XL (y)DEX(S,) (1.4)

where
(1.5)

and u indicates the remaining quantum number required
to fully characterize the states of the Hamiltonian (1.2).
In (1.4) F}(8) are well known'~® functions of 8 associated
with the radial part of a five-dimensional oscillator.

=3(v-2)
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Thus the essential remaining point is to determine the
y-dependent functions ¢}*F(y) that have the symmetry
properties

oM () =0 if K is odd,

Whiy)=(=)LMF(y) if K is even, (1.6a)

K=L,L-1,L-2,...,-L, Os'y\g—. (1. 6b)

Already in 1959, Bes gave a recursive technique for
deriving ¢}*(y) for L=0,2,3,4,5,6. In the present
paper we shall use the procedure of Ref. 1 to determine
d¥L(y) explicitly for arbitrary L and A.

At this point the reader may well ask whether it is
worthwhile to make the considerable algebraic effort
needed to achieve this purpose. We shall answer the
question by discussing some of the problems that
appear in the collective model of the nucleus and show-
ing that they require the reduced Wigner coefficients
for the chain of groups O(5)2 O(3). These coefficients in
turn can be determined by an integral involving the
functions ¢3*%(y). Thus many aspects of the collective
model of the nucleus reduct to a problem of group
theory.

In the original work of Bohr and Mottelson,? two
points of view were stressed. In one of them the
Hamiltonian (1.2) was used to describe the low energy
vibrations of the nucleus giving rise to equidistant
energy levels. In the other B8,y were not considered as
dynamical variables, but were substituted by the num-
bers B,, ¥, giving the minimum of the potential energy
surface. The operator (1.2) becomes then a function of
the Euler angles only, giving rise to the Hamiltonian of
the symmetric {y,=0 or 7/3) or asymmetric (0 <y,
< 7/3) top. The rotational levels obtained are afterwards
modified by the rotation vibration interaction and also by
coupling with the single particle degrees of freedom.?

The two approaches indicated in the previous para-
graph were combined in a single one in the work of
Greiner and his collaborators.*® They consider a
Hamiltonian

H=T+V(8,7) 1.7

in which T is the kinetic energy J,, ™7, in (1.2) but may
also include higher order corrections and the potential
energy V(8,y) (which is taken as a polynomial function
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of the @, invariant under rotations) can then be written
1,4,5
as [t

v(B,7) =Z—‘J: Upu{zr 0},:{3’ 0}“
=21 (~ VIPU, B

=2V, 5P, (x), (1.8)
ik

where in the work of Greiner and collaborators 2p +3u

<6, In (1.8) the U,, are some constant coefficients and

the elementary permissible diagrams {2, 0}, {3,0} are

polynomials in the a, discussed in (5.1), (5.2) of Ref,

1, of the form

{2,0}=V5laxall =4 (1.9a)

{3,0}=vTllaxaPxal =~ vIg%, (1.9b)
where

x=cos3y (1.9¢)

and the square brackets with multiplications signs indi-
cate the coupling of the a’s to the definite angular mo-
mentum given at the upper right hand side corner. We
can write the potential energy V(8,y) in terms of powers
of p*#*** and Legendre polynomials P (x) with constant
coefficients which we now call V,,. The advantage of
this is that from the form of the Casimir operator A2

of O(5) given in Eq. (2.14) of Ref. 1, the P,(x) is an
eigenfunction of it with eigenvalue A(x +3), where A =3pu.
Thus the potential energy (1.8) can be expressed as a
linear combination of irreducible tensors of O(5) whose
row is characterized by L=M=0.

The problem of determining the eigenvalues of the
Hamiltonian (1.7) reduces then to the evaluation of the
matrix elements of g?*3*P (x) with respect to the states
(1.4). Once they are available we have the matrix of the
H of (1.7) as function of the parameters V,,. Greiner
and his collaborators*® were able to determine these
parameters by diagonalizing the matrix and comparing
the resulting eigenvalues of H with the low lying energy
levels of even-even nuclei. Thus they could obtain the
potential energy surfaces (PES) associated with V(3,y)
and find the minima 8;, v, for this potential which in-
dicates the type of deformation of the nuclei in
question.

Before proceeding to determine the matrix elements
we are interested in we briefly indicate how they were
obtained by Greiner and collaborators. *° The states
(1.4) are characterized by irreducible representations
(IR) or the chain of groups®'*5
U(5)20(5)> 0(3) 2 0(2),

x L P

v

(1.10)

where underneath each one of them we have put the
corresponding quantum number. In the analysis of
Greiner and collaborators*® the states were originally
characterized by IR of the chain of groups*5

U(5) > 0(5) D SU(2)xXSU(2) (1.11)

used by Hecht.® Then numerically they obtained the
states characterized by IR of the chain of groups (1.10)
as linear combinations of those of (1.11) by essentially
diagonalizing L? in the latter basis.
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The procedure followed by Greiner and collaborators
allowed them to obtain results of considerable physical
significance. These include not only the potential energy
surfaces mentioned above but also the problem of giant
dipole resonances that require the matrix elements of
a,, with respect to the states (1.4)*5; the collective
nuclear excitation by electron scattering; the fission
problem when described as two nuclei with quadrupole
excitations joining to form a compound nucleus with the
same type of excitation®’; the problem of back bending
related with the crossing of two bands with different
moments of inertia, %% etc. There are even applications
outside nuclear physics as for example in the Jahn—
Teller effect in crystals discussed by Judd® where again
matrix elements of &, with respect to the states (1.4)
are required,

The importance of the problems indicated in the
previous paragraph, has prompted the present authors
to reduce them essentially to the determination of the
reduced Wigner coefficients in the chain O(5) 2> O(3),
then in turn to express these coefficients in terms of
an integral involving the functions ¢}**(y) and finally
to evaluate explicitly these functions and the integral
in which they appear.

The matrix elements required in all the problems
mentioned above are related with those of operators
that are homogeneous polynomials of degree A in the
a,’s corresponding to definite angular momentum L
and projection M and that satisfy the five dimensional
Laplace equation. As the generators of the O(5) group
can be expressed as

2 w 8

Al=a,so——a™ =, (1.12)
the Casimir operator becomes

N =325 ATAT = N(N +3) - 272, (1.13a)

mnt
where
2 92
= —— V2= -
N ?am v’ A:J( " SaAa (1.13b)

Thus the homogeneous polynomials in the a,’s men-
tioned above are eigenfunctions of A? with eigenvalue
A(x +3) and can be designated by
o
vt -o1y (%), 19
where the polynomial function T)}'*(x,/B) depends only

on y and the Euler angles 4,, and is associated with
irreducible representations of the chain of groups

0(5)2>0(3)20(2). (1.15)
2 L ¥

We have added an extra index u in T%**(a,/B) as we
shall show in Sec. 3 that the most general polynomials
in the &, requires it in the same way as the state (1.4).

From (1,3) we see that

s (%) =21 (%) piete,

where T3'*(a,/B) is the same polynomial as the one
appearing in (1.14) but now of the ratio a,/8. We note

(1.16)
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then from (1. 3b) that T¥**(a,/p) is a function of y only
and thus we can write

T¥E(a,/ B = ¢} y). (1.17)

We use the same notation as for the function ¢ appearing ,

(V” 2! m “LY MY BZNXT}‘“L (%m)

VNWL M) = [ FE@FEFe8 a8 (

LA
x ("% (
KK K»
1]

in (1.4) because we shall show in Sec. 3 that the iden-
tification is justified.

All of the operators required in Refs. 4—9 are of the
form (1.14) multiplied by some power of 8°. Therefore
the most general matrix element we need is given by
L LI LII
MM - M”)

Lr L ¢ ur L wg g :
KK Ku) “‘L(Y ¥ WL(‘Y)QV ur (‘y)sm3‘ydy

::{2#[2'!1"(1’ +X’ +%)]—1/2[z"1r(l" FAT D)oy

r[z(x' FA" 4+ +2p + 501520 +x =N ) + 1015 (2p +2 =N +27) +1)

e

XLy a ' L\

In (1.18) we made use of {1.4) and (1.16), (1.17) to
have an integral over Euler angles of the product of
three D%, functions which give the ordinary 3j-coeffi-
cients in the integral over y. The radial integral over
B appears separately and is evaluated explictly in the
curly bracket at the right hand side of (1.18) in terms
of gamma and hypergeometric functions of the argu-
ments indicated in which, as in (1.5), ' =3(»' =2")

1" =3(v” —=1"). The radial part is also a result of an
analysis associated with a O(2,1) group whose gener-
ators are

I =%§; (mam-aam), L=42 (aamn+1ma,),

L= m " +ama, )=3H, (1.19)
m

as shown in several publications, %2

Our remaining concern is then the determination of
the reduced Wigner coefficient in the chain O(5)D O(3)
given by the expression

(qu; X';L'L'; 7&" ”L")

r L L' L”
(" [( ) 12()
f,{m,. KK K 4
[}

X" Hom ) | sinsy
where we have made use of the symmetry properties

(1.6) and the fact that the ¢}*%(y) we shall determine
later are real.

What are the types of irreducible tensors T¥'%(a,/B)
=o}'L{y) we have encountered so far? For the potential
energy V(8,y) of (1.8) we see that L =M =0 and then
from (2.23) of Ref. 1 we have

P Hoy) =P, (x),

where P is a Legendre polynomial and x =cos3y as
indicated in (1.9c¢). For the quadrupole matrix elements

{1.20)

A=3p, p integer, (1.21)
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2o+ HA+5), -1, ="
420 +A -2 +2") ~

Tlzl20 +x =2 +A") =7 +1]T[3(20 +A = A" +27) =

_z”+1;1]}

l” +T

U+1,22p +x 2" +2%)

?
u/lLll)a.n.Z(_)M"(L L

Lll
o M_M,,)o (1.18)

Ibetween collective states, required in many applications
discussed by Greiner and his collaborators,*-® Judd®
and in the recent papers of Iachello and Arima, ** one
congiders the operators

(¢ 399} (10223.)

VTilaxal, (1,22b)

The irreducible tensors corresponds then to L=2,
M=m and A =1 or 2 respectively with the value of y,
from the discussion given in the following sections,
being 0. In fact from (1.3) the ¢/$*ly) corresponding to
o has the components

102(y) = 02 (y) = (1/ V2) siny,
(1.23a)
) =012 )=0, ¢p*y)=cosy,

while ¢3%(y) associated with vTlaXa ]2 takes the form

2% (y) = $232(y) = sin2y,
(1,23b)

$120) =920 =0, ¢7%=- V7 cos2y.

The purpose of the present paper is to determine the
o3 L(y) explicitly for arbitrary values of A, p, L and
then to discuss the reduced Wigner coefficient in the
chain O(5) D O(3) given by (1.20). With other collabora-
tors we intend to publish later a book of tables and
programs for the evaluation of all matrix elements of
the form (1.18). We hope that this book may play for
the collective model the role that the Tables of Trans-
formation Brackets of Brody and Moshinsky, * first
edited in 1960, played for the harmonic oscillator
shell model.

We shall start our analysis by indicating that the
states discussed in Ref, 1 in terms of traceless boson
creation operators can also be expressed in terms of
annihilation operators or in a mixed traceless creation
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and annihilation form. It is the latter that will prove
particularly convenient for the definition of the ¢3*L(y)
which we want to determine.

2. THE STATES IN A TRACELESS “PARTICLE-
HOLE"” PICTURE

In the discussion carried out in Ref. 1 (to be desig-
nated below by I, with specific equations indicated by
the number followed by I) we noted that we only need to
analyze states (1.4) in which v=), M=L. The states
with arbitrary v can then be obtained! from those men-
tioned by introducing an associated Laguerre polynomial
in 8%, while for the matrix elements we require only
the reduced ones which can be calculated from states
with M =L, as the others can be obtained from them
using the Wigner—Eckart theorem of O(3).

We showed in (4.12I) that a complete, though not
orthonormalized set of states with v=X, M=L, and
L even, can be written in the operator form

|[v=x,,u, L, M=Ly=|xpL)=[1,2p[2, 2]7[3, 0]*|0),
2.1)

where [v, L] are certain elementary polynomial func-
tions (epd)* of the traceless boson creation operators

== D e N +5)7,

2.2)

and, in turn, , and ¢ are the standard creation and
annihilation operators

.=/ Vla, ~ir,),

£ =/ V2N, +ir,),
and N=Em‘r]

m,m’ =2,1,0,-1,-2,

(2.32)

(2. 3b)

nE m 18 the number operator.

The epd are given in (3,10I), (3.20I) when we replace

N, PY a,,, but as we shall make extensive use of them we
give explicitly those appearing in (2.1), i.e.,

{1,2]=a, (2.4a)

(2,2]=2vZasas - V3 (a?P?, (2.4b)

(3,0)= = vZ(a})® - 3v3ayat,)? - 3v3at,(al)?
+3VZatatal, + 6VTalaial, @. 4c)

We note finally from (4.12al), that 0,7, are nonnegative
integers satisfying

o+7=L/2, (2.5a)
0+27+3u =2, (2. 5b)
o, T, u=0, (2. 5¢)

where in this and the following sections we shall assume
L even, reserving to Sec. 8 the extension of the results
to L odd.

We showed in Appendix A of I that from (2. 5) the
number of states (2.1) consistent with a given value of
A is equal to the dimension d, of the IR of O(5) associated
with A,
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Are there other ways of constructing all the states
of given seniority A and angular momentum L for which
v=\, M=L? We note first that if 0 =7 =0 the state
(2.1) becomes

|3u,u,0)=[3,0]“|0)

and it corresponds to angular momentum 0 {(remember
L is even here) and seniority A =3u. It is explicitly
given as a function of 8, v in (2.26I). States of arbitrary
angular momentum were obtained then by applying
powers of the epd of traceless boson operators [1, 2]
and [2,2]. The essential point for these states to be of
definite seniority A, is that when applying the operator!

(2,—0)s§(-)"'s wEom 2.7

(2.6)

we get zero. As (2,0) commutes with £, if we apply
any homogeneous polynomial function of the ¢, to (2,6)
we still get a state of definite seniority. This suggests
immediately that we can define the states

[xuL]=(@,2)7(2,2)°[3,0]4*" | 0), (2.8)

where (1,2), (2,2) are the epd (2.4a), (2.4b) in which
£, replaces a}. The total number of quanta of the state
(2. 8) continues to be given by the A of (2.5b) while the
angular momentum L is related to ¢, 7 through (2. 5a).
We have then the same number d, of states for a given
X as in the case (2.1).

The states (2.1) are given in what could be called a
traceless creation or particle picture, while those of
(2. 8), which are distinguished by a square instead of
round bracket, are in the traceless annihilation or hole
picture. If for a given L, A there is only one possible!®
value of u the states (2.1) and (2. 8) are proportional
to each other. If there are several values of u the
states | L] are linear combinations of |au’L) and
vice versa,

Can we construct states in a mixed traceless crea-
tion and annihilation operator form or what could be
called a traceless “particle—hole” picture? We note
that if we apply powers of ¢, to the state (2.6) we get =
state of definite seniority as when we apply (2, 0) of
(2.7) to it we continue to get 0. If we then apply powers
of the traceless creation operator a} to the state just
mentioned, the resulting final state continues to be of
given seniority and angular momentum because the
arguments of Sec. 4 of I. This suggests that we can
define a traceless “particle—hole” state

i L}=(a)7313, 0)*+7]0).

As in {2.1) and (2. 8) we have that for (2,9) the total
number of quanta is still A =0 +27 + 3y and the angular
momentum is L=2(0 +7), We have then for the kets
(2. 9) the same number of states d, for a given A as in
the case of (2.1) or (2.8). There is still the question
whether all the states (2.9) are independent. The
proofs for this proposition based solely on the form
(2. 9) of the states seems very cumbersome and so we
will postpone the discussion of this point o a later
publication, where we plan to give compact expressions
for the scalar products of the states (2.9) with different
u’s and the same L, A.

(2.9)

E. Chacon and M. Moshinsky 873



We shall use the definition (2.9) of the states, which
we characterize by a curly rather than round or square
bracket, in the procedure of determining explicitly the
corresponding function ¢}*Z(y) in an expansion similar
to (1.4). The reason is that in the traceless “particle—
hole” picture of the states both £, and a} involve only
first order derivatives! with respect to the variable y.
On the other hand in the “particle” or “hole” pictures
(2.1) or (2.8) the operators [2,2], (2,2) involve second
order derivatives in y. Thus it is considerably simpler
to proceed in a recursive fashion to obtain ¢}*Z(y) if
we are dealing with the traceless “particle—~hole”
states (2.9).

3. THE POLYNOMIAL IN THE «,, APPEARING IN
THE STATE [A\p L}

When we study the states of the three dimensional
oscillator |vLM), where v is the number of quanta and
L, M are the angular momentum and its projection,
we learn that

v=L,L,M)=A,v"Y (8, 9)exp(-r*/2)

=AY, (r) exp(-72/2),

where A is a normalization constant and {/,,(r) is a
solid spherical harmonic which is a homogeneous poly-
nomial of degree L in the components x,, ¢=1,0,-1
of the position vector. Furthermore, _(/LM(r) satisfies
the Laplace equation V% ;,(r)=0.

The chain of groups here is U(3) 2 0O(3), but it is
well known that in the general case U(n) D O(n), the
states in which the IR of U(n) is the same as that of
O(n) (corresponding to the v =L of this case) can also
be expressed as homogeneous polynomials in the com-
ponents of the position vector multiplied by a Gaussian.
Thus we are certain that we can write

(3.1

[xuL}=P,u la,)exp(- B7/2), (3.2)
where P,,,(a,) is an homogeneous polynomial of degree
A in the o, associated with the angular momentum L
and projection M =L, Therefore P,, (o) satisfies the
equations

oP

2, Fatk=APyup, (3.3a)

m m

L,P,,; =0, (3. 3b)

LoP,up=LP,,,, (3.3¢)
where!s!®

3

Lq=2 fBKZlmqum')am,a—a—, q=1,0,—1° (3.4)

mm m

The problem we have to solve in (3. 3) is thus iden-
tical to the one we discussed in Sec. 3 of I only it is
now expressed in terms of the a, variables instead of
the n,,. We note though that Eqs. (3. 3) do not completely
define the P,, (o) as there remains the condition

21 (=)™ | AL L}=0 (3.5)
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which from (2.3b), (3.2) leads to the equation

Z(—)m aszL(a ) =0, (3.6)

da, dao.

If we were able to find the polynomials P,, (a,) that
satisfy the equations (3.3), (3.6), we could then use
the relations (1.3) to express them in the form

Py la,)=FL 03" DR 3.7
and thus determine the ¢}*%(y) we are searching for.
Unfortunately, while the most general solution of Egs.
(3. 3) was given in Sec. 3 of I, the further restriction
imposed by (3.6) is very difficult to satisfy. Thus

while we shall make use of the solutions of Eqs. (3. 3)
to introduce some convenient functions of the variable

(3.8)

we shall determine the ¢}*£(y) directly from the form
(2.9) of the states Ixp L} in the traceless particle—hole
picture,

x =cosdy

Returning now to the equations (3. 3) we note from
(3. 28al) that

Py la)= ZA::L{L 2}L-A+2r+ss

7S

X {2, z}A-L /2-33-2r{2’ 0}7{3’ 0}5’ (3n 9)

where AXL are so far arbitrary constants and {1, 2},
{2,2}, {3,0}= are the epd (2.4) in which a,, replaces a},.
Finally

{2,0}=2 (=)0, =4 (3.10)

We note furthermore that as in the {3.0} epd we have
the a,, coupled to zero angular momentum, we can
replace them by the a, of (1.3b) and thus get, as in
(6.21),

{3,0}=- V2B cosdy =~ V2 B. (3.11)
Introducing now the index » by the definition

n=x—L/2-3s-2r (3.12)
we can write

Pyuple,) =n2{1, 2)osTen(2, 2nEIMTALOTE () (3.13)

where for later notational convenience we introduce
the indices ¢, 7 related with a, L, u through (2.5).
The f*(x) is an as yet undetermined polynomial in the
variable x.

In the next sections we shall discuss procedures for
determining f°"#(x), but here we will continue the
analysis of the P,, (&) to relate through (3.7), (3.13)
the ¢}¥'L(y) with the f7™ (x).

We note from the definition of {1,2}, {2, 2} and the
relations (1.3), (3.10cI) that

BN1,2}=a,/8
= (1/V2)LD2¥ (8,) + D¥{s ) | siny

+ D23 (8,) cosy, (3.14)
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822, 2}= VT2 D3N3 )8 (aXal,

=(-v2) { Vli' (D2 (s,) + D2%,(#,)] sin(-2y)

25 (8,) cos (- 27)}, (3.15)

where [aXa]?, indicates the coupling of two a,, of (1.3)
to total angular momentum 2 and projection m. As we

have
DX =exp(iM9,) d5,(8,) exp(iKs,), (3.16)

with a well-known'* expression for d5.(#,), we imme-
diately obtain from (3, 14) that

({1, 2} =2 D3 (¢ )SY ), (3.17)

where the function $¥{y) takes the form

Sriy)= [(Zr +I§ll‘r()211'— K) l] ”2;(2‘1—71{/2) (Zq -qK/Z)

1 \2ek/2
(VB (2 {3-) (cosy)™* /2-2e(giny)?e- /2

7l (mr(l/zml(lz

=[<2r+K)1(2r-m1]1/2

(4n)1 &/2)! (r - K/
- . r K 7
° (cosy)¥ /2 (siny)X /2 F, (_ sYT -3
+ zlli + -;—; g—{ +1; %tan2y), (3.18)

where ,F, is an hypergeometric function and X is re-
stricted to even values. We note also that if we replace
Kby - Kand 2¢ by 2¢g- K in (3.18) we get an identical
expression and thus we have the property
SE ) =S%W). (3.19)

From the above results and (3, 15) we then imme-
diately see that

[g2{2, 2} = (- v2) Z}{}Dg;f,{(a,)s}"(_ 2y). (3.20)
Thus we have that the product
[6"{1,2}]L’2'"[ﬁ'2{2,2}]"=§G;}”(y)D£§(Ji), (s,zlj

where
GEy)= (- VIV 20 (L -2n,2n,K,K"|LK)

K Kv

X SE;2n(y)S%, (- 2y). (3.22)

In (3.22) { | ) is an ordinary Clebsch—Gordan coeffi-
cient of O(3) and in deriving the result we made only
use of the well known decomposition of products’® of
the DL, (#,).

Remembering that we are discussing the case when
L is even we see, from (3.19) and the symmetry prop-
erties of Clebsch—Gordan coefficients, ' that

G (y)=GrEly). (3.23)

Introducing now (3.21) into (3. 13) and comparing with
(3.7), we obtain

Y L) =L GF O ), (3.24)

where GJ*(y) is the completely defined function of ¥
of (3.22) while f*™*(x) has as yet to be determined. The
o, 7, are related to A, L, through (2.5).

In the following sections we indicate procedures for
determining the £77*(x).

4. THE SYSTEM OF COUPLED ORDINARY
DIFFERENTIAL EQUATIONS FOR THE f37# (x)

We indicated in the previous section that the poly-
nomial P,,, (a,) given by (3.13) must also satisfy
Eq. (3.8), i.e., the five dimensional Laplacian applied
to it gives zero. This immediately allows us to obtain
a set of coupled ordinary differential equations for
f7™(x). We only require the knowledge that

e =t Mol oarrapsovTas,
m m

=0,
-2V3a,6,,,
(4.1
B _am i 33“3{3 0p __ 1 23,0}
a, B’ o P da,,
_ 3am™
E ’

where 3{3,0}/3a, can be obtained immediately from
(2. 4c) if we replace there o}, by «,. A straightforward
calculation gives then

E( )m gu-L 2{1 2}L/2-n{2 z}nﬁx-le-n-z{ggx (1-x?) %n X f (x) 12\/*2-("_,_1) dfmx( x)

-3V2 o +T7-n+1) Fo=t 2 df ey (x) (x)

+[(T 43 ~n)(T +3u —n+3) + Q0 +27 +2n)(r +3p -n)]fn"“(x)} =0,

where » is restricted to the interval

Osns<L/2. 4.3)

Thus the set of coupled ordinary differential equations
for the f7™*(x) is obtained when we set the expression
inside the large curly bracket equal to zero for all inte-
ger »n in the interval (4. 3). This set of equations gives,
for any given even L and arbitrary A, results equivalent
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~3(Q20 + 27 +2n)xy L2 == f

(x) +8(n+1)n+2) 5% x)

4.2)

[to those that Bes® was able to write explicitly only for

L up to 6. He later used them!” to evaluate particular
matrix elements of interest in the collective model.

The set of coupled ordinary differential equations
obtained from (4. 2) is very difficult to solve in general
and in fact Bes® for L <86 solves them only for small
A’s. Thus in our search for the general f°™(x) we shall
follow a different procedure,
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We shall first in the next section obtain the states
{Au L} of (2.9) as polynomials in the epd of the normal
creation operators 1, of (2.3a). Then by arguments
similar to those indicated at the beginning of Sec. 3
we show that these polynomials are proportional to
the P, (a,) of (3.9) if we replace a, by n,. Thus we
have the coefficients A}4% appearing in (3.9) and we
can determine in Sec. 7 JI™ explicitly as a polynomial
in x.

5. THE EXPRESSION OF THE STATES [AuL}
IN TERMS OF POLYNOMIALS IN THE EPD'S OF
CREATION OPERATORS

The state Iap L} of (2.9) is given as a product of
elementary permissible diagrams (epd) in traceless
boson creation and annihilation operators. In this
section we wish to express them as a polynomial in the
epd of the ordinary creation operator 7, acting on
the ground state. To achieve this purpose we start from
the state with L =0 which from (3.28al) must have the
form

|3u,1,0}=13,0]*|0y=20B*(2,0)*(3,0)“-2|0).
’ (5.1)

The coefficients B! were obtained by Cowan and Sharp*®
by applying 3, (-)"¢ ,£_, to (5.1), which must then van-
ish, and getting a recursion relation for the B, which
they solved. Another procedure consists in remember-
ing that the P, (a,) of Sec. 3 for L=0 has, from

(2. 261), the form

Py, u,ola,) =8P, (x)

y @p-27-1!t e

—pir G

{2 0}37{3 0}“ 2r
(5.2)

() s ) @p - 27 =1
- 2_“’.2%‘ iy =2¥)!

where we made use of (3.10), (3.11).

Comparing now (5.1) and (5.2), where the polynomials
satisfy the same equations, only that in the first case
they are functions of the 5, and in the second of the a,
we conclude that we can take

e (=V@p -2r -1

" T =271 (5.3)

as the states |au L} are not normalized and thus have
an arbitrary multiplicative constant.

We want now to extend the development (5.1) to
states with arbitrary even L. We shall indicate in Sec.
8 how to extend all the results obtained so far to odd
angular momentum,

As the states |xpL} can be written in the form

[ApL}=(a)°es| 30, 1, O} (5.4)
we see that the application of operator &, to (5.1) is
simple as £, =9/9n_,. On the other hand, from the

form (2.2) of a}, we see that application of powers aj,

to polynomials in the ’s is more complicated. As
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a first step we must put (})° in a convenient form.
The expression (2.2) suggests that we can write

(@)= Zngn(2, 0rRIES, (5.5)
n=0
where RJ(N) is some function of the number operator
alone. In fact for 0 =1 we get from (2, 2) that
RYNY =1, RMN)=-(N+5), (5.6)

We shall prove (5.5) by induction, getting a recursion
relation for the RZ(N) which we can solve and thus deter-
mining it explicitly. We note that

(a;)otl — lnz _ (2, 0)(2N + 5)-152]

X Zm3™(2, OV RI(N)S. (5.7)

Developing this result and making use repeatedly of the
relations

£,RO(N)=RI(N +1)t,, n,RIN)=RIN-1)n, (5.8a)
for arbitrary functions of the number operator N we
obtain that

[
(@)* = Lngi™@, 0" RS W)

n=90

a

+1
Z__‘m ol-n(g )"

=1

X{1 =« 2n(2N +20 +2n + 3) g1

3

X (2N +20 +2n+3) RI_ (N + 1), (5.8b)
which leads to the recursion relation
(2N +20 +2n + 3)R%1(N)
=(2N+20 +3)RIN) - RE_ (N +1), (5.8¢)
satisfied by
BN = (- )"( ) (21&1252;252;13‘1‘)1 ‘ (5.9)

As RL(N), n=0,1 gives precisely (5.6) we have the
R?(N) we require.

We can now write the state (5.4) in the form

|AuL}= Zmz' (2, O)R(N)£S™ |, 1, O} (5.10)

Applying £, as the derivative 38/3n_, and noting that

o (2,0=2(,2), 57-(3,0=3(2,2),
2(1,2) _2(2,2) ¢ 6.11)
.2 m.e
we obtain finally that
[AuL}= Zc"“(l 2)e+T (2, 2)"
X (2’ 0)31-1’4-1:(3, Q)¥+7-2r-n ‘0>’ (5.12)
E. Chacdn and M. Moshinsky 876



where the constants CJ;* have the form

T = BoT2T 3"

(W +7=27-n)1 7 n

3o Int(=)27(2u + 27 - 27) 1 (37)!

B +7=27) 5 (T +S\ RSBy +27 - 5)
Z}Z( )(37—‘r+n—s)l

(=)45(T +8)1 (21 +1 ~ 25)!

22“’"n[(2h+1)lrl(u+T—T)1(H'+T-”“2'r)l R s[(a‘..s)l(’r—n+$)l(3‘r’—T+n—S)l(A—S)]

as BJ*", R%(3u +27 ~s) are in turn given by (5.3), (5.9).

We have thus obtained [xuL} for L even as the poly-
nomial (5.12) in the elementary permissible polynomials
(epd) of the nn’s. We note that by construction this state
satisfies the equations

N{xpL}=x|apL}, (5.14a)
L, |auL}=0, (5. 14b)
Ly|auL}=L|apL}, (5.14c)
?(—)”smg_mle}zo, (5.15)

which are similar to Eqs. (3.3), (3.6) satisfied by
P,..(a,). In the following section we shall prove that
P,,(a,) is in fact given by (5.12) if we replace the
round epd (v, L) of n, by the curly ones {v, L} which are
functions of «,,.

6. RELATIONS BETWEEN THE POLYNOMIALS IN
Nm AND «,, FOR STATES OF DEFINITE SENIORITY

For the eventual determination of the /% *(x) we
require to prove that for an r-dimensional harmonic
oscillator (and thus in particular for »=5), the states
of given seniority, i.e., those satisfying the equation

?sisz(n,)lO>=0, NP@ )|0)=xP{,)[0)  (6.1a,b)

can be written as
P@m,)|0)=n""/422/2p(a ) exp(- §*/2),

where as before

ny=0/VEWa,-inr), t;=01/VO)la,+in), j=1,2,...,r

though now the generalized coordinates, momenta,
creation, and annihilation operators are given in
Cartesian and not spherical components so that the
number operator and 52 become

(6.2)

=Eng, ﬁ2=:25a?. 6.3)
=1 2l

We note that in (6.2) we are assuming the same poly-
nomial P on the left and right hand sides.

The proof of (6.2) was given by Dragt'® and because
of its shortness and importance for our analysis we
reproduce it here.

We remember that for the one-dimensional oscillator

n*|0)=71"1/42""?H (o) exp(~ a?/2) (6.4)
where H, is an Hermite polynomial whose leading
terms are®

H,,(a)=2"a"—2"'1(g)a"‘2+°“., (6.5)
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(5.13)

r'IIus for the »-dimensional oscillator the state

2iAnin e oy |0)

ni

=wTINALA, o Hy (@) - H, (@) exp(- 8/2)
"

=1r"/42)‘/2§’;A r(a:‘agz cera) + 0o ) exp(- B2/2),
i

(6.6)

Ylluvcﬂ

where
6.7

and the last dots in the bracket in (6.6) stand for mono-
mials in a; of degree smaller than x,

Vll +n2+-'-+nr=)\

In the state (6.6) is of given seniority, i.e., if it
also satisfies Eq. (6.1a), then the polynomial in the
a’s is homogeneous of degree X and it satisfies the »-
dimensional Laplace equation in the o;. Thus the
A, . ..... in (6.6) must then be such that all the dotted

172 A .
terms Jlsappear and Eq. (6.2) is proved.

The relation (6.2) holds also when the polynomials
are given in terms of,, @, in spherical components
as these variables are in turn linear combinations of
the Cartesiann,, a,, i=1,...,5. Thus we immediately
have that

AuL}=P,,, (a,)exp(- £2/2)

—g-5/491/2 E{C;’:"{I , 2}001-’1{2, 2}"{2, 0}3'--1'0"

Ten

X {3, 0}#+7-2r"n] exp(~ B%/2) (6.8)

satisfies Eqs. (3.3), (3.6} when the C3I* are given by
(5.13) and x, L are related to o, T, u through (2.5).

Making use of (6.8) we give in the next section the
explicit expression of £7™"(x).
7. THE EXPLICIT EXPRESSION OF THE FUNCTIONS
a7  (x)

Turning now our attention to the polynomial P,, (a )
of (6.8) and making use of the expression (3.10), (3.11)
of the epd {2, 0}, {3,0}in terms of 8 and x we obtain that

P, up(a,)=73/122/2 {1, 207 n{2 2Jngousten
n

X [;C::uxuo‘r-n-zr](_ muor-zr-nw (7. 1)

Thus comparing this expression with P,,;(a,) of (3.13)
we obtain

f:'ru (x) — g5 /4(_)u+f-n2 (A iaTan) (2

XD Coearrphermen, (7.2)

where the CT* are given by (5.13).
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The f7"*{x) is a polynomial as 7 cannot exceed
3 + T -#n) and from (4. 3) in turn » is limited to the
interval 0 <n < L/2, The polynomial f¢"*(x) is even
(0odd) when y + 7~ n is even (odd).

Having obtained the f7™*(x) and knowing the G3¥{y)
of (3.22) we then get an explicit expression for the
O L(y) given by (3.24).

All of the previous results were obtained for L even,
In the next section we proceed to extend them to odd
angular momentum,

8. EXTENSION OF THE ANALYSIS TO ODD ANGULAR
MOMENTA

In the previous sections we restricted ourselves to
even angular momentum and we shall now generalize
our results to the odd case. It is convenient to designate
systematically in this section with a bar above the mag-
nitude related with the problem when the angular mo-
mentum is odd. Thus when we write L we mean even and
L odd values of the angular momenta. We designate also
by A the seniority for even L and by X that for odd L
states. The analysis in Sec. 4 of I indicates then that
we can write our states for odd L as

[AuL)=[1,2P[2,2]3,3](3,0]*|0), 8.1)
where from (3, 11bI)
[3, 31=2a%,(a)* ~ VBatalal + (a})° (8.2)

and the other epd are given in (2.4). We note further-
more that

L=2(+7)+3=L+3, (8.3a)

A=0+2T+3u +3=2 +3, (8. 3b)

where we introduce an auxiliary even L and a corre-
sponding X by the definitions in (8.3).

The discussion in Sec. 2 of the present paper indicates
immediately that we can have for L odd a traceless

“particle—hole” state
[xuL}= @p)resls, 313,004 |0).
Turning now to Sec. 3 and using (3. 28bI) we see that

we can also write the state (8.4) in terms of a poly-
nomial a, to obtain

(8.4)

[AuL}={3,3}P,,.(a,) exp(- 6%/ 2), (8.5)
where
Prusle,) =241, 202, 2ot (o) (8.6)

and 0, 7, p continue to be related with the unbarred
L, x defined in (8.3) by (2.5). In (8.5), {3,3}is given
by (8.2) when we replace a’, by a,.

The barved f™ (x) satisfy now a set of ordinary
coupled differential equations that come from the
equation

Z( ym aa [{3, 3}, (@ )]
{3, 3|1 2P s g%x “;;”L]
+1{3, 3}2( ym aa =0, (8.7a)

where we made use of the explicit form of the epd and
of the fact that V2{3,3}=0 and from (4.1) we have

. 8{3,3} 29
Z:m—ai

{0 for Q={1,2}, {212}v {3,0}’
~ 16{3,3} for @={2,0}

-n

(8. ™)

From (4.2), (8.7) we see then immediately that the
set of coupled ordinary linear differential equations
that the f™*(x) satisfy becomes

J
Q;x( )f (X) =12V2(n +1) Fnt— f‘l(x) —3WTo+T—n+1) Fel f {x) 3(20+27+2n)xd—nf°-—;:(x)

+8(n+1)(n+ 27" () + (1 +3p = n)(T +3p —n +3) + (20 +27 + 2n)(1 + 3 - )] FTH(x)

+6(3u +7 = n)fTH (x) - 6x Lo a7 (x) (x) =0,

As in (3.7) we can now write

{3 3}P>.u1.(a )= 3@‘1";{“'(7) (8.9)

¥ (35

and thus from the discussion in Sec. 3 we immediately
obtain

oI0) =L G¥F 0)fe™ ), (8.10)

where

(v) E(Lsxk | LEYGH tr)gt® ), (8.11)

in which ( | ) is a Clebsch—Gordan coefficient of O(3),
G (y) is given by (3.22), and from (3. 10bI), (1.3) we
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(8.8)

r
have

g0 =v18738 M axalxal

=(1/V3) sin3y(6,, ~ 5,,.,)- (8.12)

From (8.12) and the properties of Clebsch—Gordan
coefficients we conclude that

G ()= - G"L@y).

We now turn our attention to the development for odd
angular momentum of the states |ApL}in terms of
polynomials in the epd of the creation operators alone.
As a first step we require the development of the state
of lowest odd angular momentum, i.e., L=3 in terms

8.13)
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of epd in the 77, and from (3. 28bl) it takes the form

|3y +3,u,3}=(, 3)@1’35(2,0)3f(3,0)“-2'|o>. (8. 14)
To determine the coefficient B* we recall that the
polynomial Py, s . s(a,) is, from (2.31), given by
Pipus,usl@y,)
=8P, (LD (3)) - D% (4)]
=~ B3(1 — x*) [ DIX(8,) - DI%(8))]
@Cu+1-2m11 .
xZ; (_)r Ao T2 matii o ueer
" (u =212
=@*35in3y[DI¥(3,) - DI%(8,)](=)#*12% /2
xy EV@UAL=20)L 6y oty gru-er (8.15)

(4 =27} 7!

r

where we made use of the expansion of the associated
Legendre polynomial P, (x) and Eqs. (3.10), (3.11).
From the discussion in section 6 that relates polynomials
in the a,, of the type (8.15) with those in the 7, of the
form (8. 14) and using (8.12) we conclude that we can
take for BY the value

2u +1-2n11

By =(-y rlu - 27)!

{8.186)

Now, to calculate Iip.lj}, the procedure is exactly
the same as in Sec, 5, and noting in particular that

[‘525 (3, 3)]=0 (8.17)
we obtain immediately that
[Au L}
=(3,3) ZCIH(1,2)™"(2, 2)"
ryn
x(3,O)un-zr-n(Z,o)Sy-nn'o% (8.18)
where
— — rop (31 (4 + T = 27))
gTH __ R HeTOT=n
Cr" =B, w+7-2r-nl
T+8\gs RI(Bu +27+3—-s)
X?( n )2 Br=T+n-s)!
3ol +3)1(=)2m(2p +27 +1 = 2)1(37)]
T2EMI A+ DI u T - FT =0 =271
x5 (=4)3(T+s) (2N +7 =25)!
o Slo =) (T—n+s)1Br-T+n-s)IA +3-35)1 °
(8.18)

Obviously the polynomial {3,3}P,, (@) of (8.5) has
the same form as (8. 18) but with the curly epd’s func-
tion of «,, replacing the round ones depending on 5,
that appear in the latter. Considering the relation (8. 6)
that defines f7"“(x) we conclude that

n ’

(8.20)

ITH () 5 14(_)BeTeng (iaToned) /2 Z COTHQ Ty BeT-n-2r
n
r
where C”7* is given by (8.19).
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Thus all the results we have derived for even angular
momentum can also be obtained in the odd case.

9. THE REDUCED WIGNER COEFFICIENTS IN THE
CHAIN O(s) D 0(3)

In Sec. 1 we indicated that the matrix elements we
are interested in for the collective model of the nucleus
are of the type (1.18) where the operator T}*¥(a ) is a
polynomial in the a, that satisfies Eqs. (3.3), (3.6} and
thus is identical to the polynomial P,,,(a,). Thus we
are justified in writing the relation

T (a,) =6*§ PR EIDYE(S,) 9.1)
and the matrix element (1, 18) requires then for its full
determination the reduced Wigner coefficient (RWC) in
the O(5) > 0O(3) chain given by (1.20), i.e., a single
integral in v of the product of three ¢}*¥(¥) functions with
an ordinary 3j symbol, Making use of the expression

(3. 24) we can also write it as

(A‘J’L; X’“IL’; AIIH’IILII)

- 2 B (i i) v e waro ]

nt n*
XFETH RV G () sindy dy. ©.2)

In (9.2) (; & £V) stands for a 3j-symbol while the

Gl (y), fMx) are given by (3.22), (7.2), respectively.
Note that the RWC are symmetric, except for a phase,
under exchange of the triplets Ay L and thus they corre-
spond to a kind of 3j symbol for the chain O(5) 2> O(3)
rather than the RWC proper for which certain orthonor-
malization conditions are required which (9. 2) does not
satisfy. We shall continue though to call them RWC.

To evaluate (9.2) we note that the square bracket
appearing there must be a function of x =cos3y only
because of the symmetry properties of the functions
G (y) which follow from those of ¢3*L(y) discussed in
Refs. 2 and 15. We can then write

LLr , "
z (L 2) epmegroregse)

=2 M, (nL,W’ L', n" L")P,(x), 9.3)
;

where the coefficients M, (nL,n’ L', n" L") will be dis-

cussed in another publication and P (x) are Legendre

polynomials of order », Thus we can finally write for

the RWC in the O(5) D> O(3) chain the expression

(huL; h’u.ILI;XIIu'IILII)

— Z ZM,(”L, nILI’ nl/L//)
a7

X f P T (F ST (0) . (9.4)

If we put in the explicit form of the polynomial func-
tions appearing in (9. 4) all integrals reduce to the

trivial one
f_ix"dx =[1+(=1P)p+1)7, (9.5)

and thus we obtain the RWC in the O(5)> O(3) chain as an
explicit summation of products of factorials.
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Programs are being developed for the evaluation of
(9.3), (9.4) and they will be published together with
pertinent tables in the book mentioned in the introduc-
tion. We wish to stress that for the problem of potential
energy surfaces discussed in Sec. 1 we make use only of
the RWC

(Bp, p, 050w Lix" " L), (9.6)
while for the quadrupole transitions we require only

(1,0, 2; 0"/ L2 u" L"), (9.7a)

(2,0’ Z;AIM'L’;)\”}L”L”). (9,7b)

We are also interested in the particular case of
RWC (9.6) corresponding to p =0, i.e.,

(000; Ap' Ly apn” L), (9.8)
This is not as simple as the 3j symbol
0L L\ _ 1)z "
(OM_M)_(2L+1) (-1 (9.9)

of the O(3) group. We require its evaluation in compact
form for the discussion of the linear independence of
the states |ApL} with fixed A, L, but different u as
mentioned in Sec. 2. Furthermore, programs for it
allow us to pass from the complete though not orthonor-
mal set of states |Ap L} to an orthonormal one.

While some of the problems mentioned in this paper
require further mathematical analysis, we hope to have
established to the satisfaction of the reader that many
problems in the collective model of the nucleus are
essentially of a group theoretical nature.
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A systematic investigation of the Petrov G, types
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In order to investigate exact solutions in general relativistic cosmology, one usually assumes the spacetime

possesses symmetry. Here, we study exact solutions for the Petrov four-parameter Lie groups G,, acting on
nonnull hypersurfaces where the energy-momentum tensor is that of a pressureless perfect fluid (a so-
called “dust”). We find that the preponderance of solutions are for a spacelike dust and, in several cases,
are able to give their explicit forms. Among these are spacelike versions of previously known timelike

matter cosmological models.

1. INTRODUCTION

In recent years, there has been an increasing interest
in anisotropic and partially anisotropic cosmological
models on the part of general relativity theorists. This
new attention paid to an area once considered purely
as a study of the mathematical properties of the Einstein
field equations has been stimulated for several reasons:
the search for a method of particle creation in the had-
ron era, the possible presence of a primordial magnetic
field, the affects of shear in the early evolution of the
universe, and as a means of explaining the presently ob-
served isotropy of the 2.7 K background radiation,
galaxy counts, and the distribution of cosmic ray
particles.

To find an exact solution of the field equations of
general relativity,

Ru-éguwa\g”:T”. (1)

where R, is the Ricci tensor, g, the metric tensor
with signature (+ ++ -), A the cosmological constant
(possibly nonzero),! and T,, the energy—~momentum
tensor, one may assume that the spacetime possesses
some type of symmetry. Such an assumption gives us,
for example, the well-known Schwarzschild solution,
In cosmology, the same approach may also be employed
where the symmetries are assoicated with the homo-
geneity and isotropy of the model. The assumption that
a Bianchi three-parameter group acts on a three-
dimensional spacelike hypersurface (homogeneity) has
been made by numerous authors, beginning with Taub®
and Heckmann and Schucking® (who investigated anis-
tropic cosmological models).

In this paper, we will search for exact solutions to
cosmologies where the spacetime admits a four-param-
eter group of isometries acting on three-dimensional
nonnull hypersurfaces in which the matter is described
by a pressureless perfect fluid energy —momentum ten-
sor (“dust”) and where the cosmological constant may be
nonzero,

In Sec. 2, we will give the general form of the metric
based on the above assumption, as well as the sym-
metries of U'(x'), the four-velocity of the dust source.
Section 3 will contain the itemized results of our study,
while in Sec. 4 we discuss the consequences of these
findings: In particular, since in all but one case a
spacelike dust is allowed if not, in fact, required, some
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thought must be given to the place of such solutions in
general relativity,

2. THE FORM OF THE METRIC AND THE
CONDITIONS ON Ui(x/)

Our cosmological solutions will be based on only
three assumptions, the first of which is the validity of
the description of the gravitational field by Eq. (1). We
next require that the spacetime admit a four-parameter
Lie group of continuous transformations where the in-
finitesimal generators of these mappings are written

0 .
Xy=g'am (=1,2,5,4 4=1,2,3,4), @)
where
[XA; XB]=CﬁBXD (3)

and where CZ, are the structure constants of the group.
The generators satisfy Killing’s equation

dyr =0, @
which implies that they form a four-parameter group
of isometries (the semicolon denotes a covariant deriva-
tive). The group (in Petrov’s* notation a G,) will act on
a three-dimensional nonnull invariant variety v, (or
“orbit”), and thereby possess a one-dimensional iso-
tropy group, /,.5~® The groups G,I—G,VII have three-
parameter subgroups which act on a V,, while the sub-
group of G,VIII acts on a ¥, and is therefore the maxi-
mal group on the V,.° In group theoretic terms, G I-G,V
have a subalgebra composed of the Killing vectors X,
and X,, G,VI, have an Abelian subalgebra of (X,, X,,
X,;), while G,VII and G,VIII have three-parameter
semisimple subalgebras formed by (X, X,, X,).

Now, let us find the general form for the metric
from our second assumption. Since the order of G, is
four, the dimension of spacetime is four, and the rank
g of the matrix M, where

=gl ®

is three, the group acts transitively on a V, (see Refs.
10 and 11 for a G, on a null V). Choosing coordinates
so that these hypersurfaces are described by x*=const,
the definition of an absolute invariant implies that
£4=0, and consideration of Killing’s equation demon-
strates that g,, =0.'? Then the metric is written as

ds® =hya(x')dxdx? + e (dx*)? (a, B=1, 2, 3), (6)
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where e,==+1 is determined from the condition that the
determinant of the metric must be negative, i.e.,
principle of equivalance is satisfied.

Our third assumption is that the source of the gravi-
tational field is a pressureless perfect fluid, so that

T, =pU,U,, M

where p is the invariant density of the dust. The motion
of the dust in spacetime is restricted by four conditions:

i_
(1) Ld)U =0, (8)

where L . is the Lie derivative with respect to the
7
Killing vectors. For a proof of Eq. (8) see Ref. 13

(9)

+1—spacelike dust
i 2
@) v ‘{_ 1—timelike dust.

The choice of this sign is not arbitrary, as it will be
dictated by the signature (+ ++ -), condition (1), and
the fact that the determinant of the metric be negative.
This is a significant comment in view of our results.

(3) Ui”Ufzo, (10)
which is the geodesic equation,

4 Utgl = t. 11

(4) gy é) cons (11)

These four conditions will give us the form for Ut(x?)
even if we are unable to solve the field equations in a
closed form. See Ref. 14 for a brief summary of our
results.

3. THE PETROV G, TYPES
(i) G,I

The metric and Killing vectors are correctly listed in
the English edition of Ref. 4 where ¢ =0 in the commuta-
tion relations when the group is assumed to act on a V,.
The line element may be written

ds? =2A(x*)dx dx® + B(aM)[dx® + x'd* P+ (dx*P,  (12)

where x! is a null coordinate and (x?, x°, x%) are space-
like. Here e, must be chosen to be + 1 to make the
determinant negative. We find, by utilizing the condi-
tions on the four-velocity, that

Ui =06, (13)

Thus, even though neither exact vacuum nor dust solu-
tions are known, any such solutions with a pressureless
perfect fluid would represent a spacelike dust.

(ii) G,II

This algebra, when applied to a V,, does not allow a
gravitational field since all of the metric coefficients
vanish.

(iii) GIII

The Russian edition of Petrov’s book!® contains an
error in X,, whereas Ref. 4 has the correct form for
both the metric and the Killing vectors. The 4-velocity

is purely timelike with U! = 6. There are no known
exact vacuum or dust solutions,

(iv) G,IV
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This metric has been extensively investigated by Ray
and Foster,® They found that

Ut = alx®)ot + p(x®)68 , (14)

where a(x®), B(x*) are unknown functions and (x!, %, x°)
are spacelike coordinates. One may perform a trans-
formation to align Ui(x?) along either the x! or »® axis,
which facilitates solving Eq. (1),

(v) GV

This G, contains a Bianchi G,V subgroup acting simply
transitively on the V,; which is a spacelike hypersurface
of negative curvature. This metric may also be obtained
by a noncentral extension of G,VIII, in the Bianchi—Behr
classification, !” In general, Ut(x/) has both spacelike
and timelike components

Ut = al(x*)di + B(x*)6Y (15)

(where a, B are arbitrary functions of x*, the timelike
coordinate) and thus is often referred to as a “tilted”
cosmological model,'® which is of considerable interest
in connection with a whimper singularity.!%2° It is the
only such titled dust model among the G, on V, metrics.
The timelike dust solution was found by Farnsworth, 2

It should be noted that a transformation may be per-
formed resulting in Uf =58}, and a spacelike dust solution
analogous to Farnsworth’s may be obtained.

(vi) G,VI,

By assuming a four-parameter group G, which con-
tains a three-parameter Abelian subgroup acting simply
transitively on a V;, one can alter the form of the fourth
Killing vector X, and change the entire cosmological
model. This has been done by Petrov but, unfortunately,
a considerable amount of confusion has ensued as re-
flected in a comparison of the group structures as
listed in the English,® German,® and Russian®® editions
of his book. Because of this difficulty, in this and each
of the following three subsections, we will not only
present new solutions, but endeavor to establish a uni-
form notation of G,VI; by listing both the metric and
X,. The first three Killing vectors remain unchanged:
They are

3
Xi=gp N=3a X=-gx (16)
For GVI,,
ds? = A2(x")dx')? + 2B*(x*)dx?dx® + (dx* ), (17)
3 3
X4=x2—a-;2-—x35-;§, (18)

which is denoted by G,VI, (with p=~-1,1=0, e=1) in
Ref. 15, G,VI, [with case (v) plus e=0, ¢=-1] in
Ref. 22, and does not appear in the English edition.*
The metric may be easily diagonalized to demonstrate
that it represents a static spacetime where

ds® = A*(x*)(ax')? + B*(x*)(dx®)?
+(d@x®)? - B*(x*)(dx*)?,

1 /2 .3 WA Y
= = m— (2 - 19
Y=7F (5?+ax*)’ = H(axz ax“) 19)
2 2 2
Xo=-ga X=rpatana
LR, Ray and J.C. Zimmerman 882.



and
Ut = a(x®)6t + B(x°)64, (20)

admitting a spacelike dust only (after the transformation,
x? is timelike, x', x*, x* are spacelike coordinates, and
a, B are arbitrary functions). From Eq. (1), G,,
=paB=0, so we have two possible cases: a=0or g=0.

a=0: For A=0and U'=6},
A(2)=C 227+ C,z74 /%,  B(z)=(32)*/%,
pl2)=$C,(C,2* + C,2)* =4C,3'/*[AB]?,

where C, are constants and x*=z. If C;=0 and C,#0,
then we have a Kasner vacuum solution with a spacelike
variable.?-% For C,#0 and C,=0, then

A~g213, B~g213 pez?) (22)

(21)

which is an Einstein—deSitter model for spacelike dust.

B8=0: If we allow for the possibility that A may be
nonzero and negative then we find

A=const#0, B=exp[-(-A)''%z], p==-2A
and R=6A,

(23)

There also exist solutions for =0 (A#0) and =0
(A =0), but they are either not easily integrable or
represent flat vacuum solutions., The existence of these
latter solutions will be found in most of the cases which
we consider, but they will not be explicitly indicated.

(vii) G, VI,

Here

X4:ex‘5~% +lexza—z2 + (x2+kx3)5f?
which, when substituted into Killing’s equation, shows
that this group does not admit a gravitational field be-
cause this forces the determinant of the metric to be
zero. This conclusion is correctly attributed to G, VI,
in Ref. 22, but is listed as G,VI; in Ref. 15, and in the
English edition,* the correct commutators are given
for G,VI,, but the group is later mislabeled as G,VI,.

(viii) GV,

As in the previous subsections, we first need to
establish a uniform notation. What we will denote by
G,VI, is similarly marked in Ref. 22, labeled as G, VI,
in Ref. 15, whereas Ref. 4 has the G, VI, commutators
mixed with the G,VI, metric. In all cases, k=¢=0.
Following the German edition, G,VI, is the group with

(k,e=const) (24)

ds*=A(xM)[2dx'dx® + (dx* )+ Blx*)dx?V + dx')?, (25)
] 3
Xa=rga g (26)
where the conditions on U*(x?) yield
Ut = alx*)6! + 65, 2n

The field equations (1) require a(x*)=0, so U'= 6} which
is a spacelike 4-velocity.

For A=0, x'=r,
A(T)=(kyT+ k)13,
B(T)=C (b, T+ k) 3+ Cylle, 7+ )Y /3,
p=2kk, T+ k)2,

(28)
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where C, and &, are constants,

For A#0, we find two sets of solutions,
A(7)=C, exp| - 2(30)/27],
B(T)=C,exp(3(3A)/27]+ C, exp[- 3(3A)'/27], (29)
p=0,

and
A(T)=C, exp[2(3A)/27],
B(7)=C,exp[3(3A)'/27] + Cyexp[ - 3(3A)/27],
p=0,

(30)

both of which represent curved vacuum solutions,
(ix) G,VI,
Here,

ds® = A%(x*)(dx')? + B () [ (dx®) + (dx®)?] - (ax*)?, (31)

X =-x3-ag + x2 (32)
4

ox’ FYi
which is listed at G,VI, in Ref. 22, G,VI, in Ref. 15,
and the G,VI, commutators are with the G, V], , metric
in Ref. 4. Besides having a Bianchi type I subgroup,
the Killing vectors (X,, X,, X,) form the group G,VII
which, when it acts on a V,, represents the case of
planes symmetry, "2 We find that U!(x’) has both a
spacelike and timelike component,

Ut = a(x)8! + B(x")61, (33)
where a(x®) and 8{(x*) are arbitrary functions of the
timelike coordinate x*. However, Eq. (1) leads to

G =pA*(x)aB=0, (34)

so that we have two possible cases: ¢=0or 3=0,.

a=0: This case represents a timelike dust. For A
=0, x= t,

A@) =K, (C ¢+ C,) 2+ K, (Cyt + C,)?/8,
B(t) = (Cyt+ C,)%/3,
ngcz;Kz[ABz]-ly

(35)

where C, and K, are constants and which, for K,=0,
leads to the Kasner vacuum solution with a timelike
variable. This solution has been studied extensively by
Thorne,* Zel’dovich, ?® Jacobs,” and Vajk and
Eltgroth,3°
For A#0,
Alt) =Ky exp[3(30) /2] - K, exp[ - 2(3A)!/%],
B(t) =K, exp[5(30)' /2], p=20K [AB], 8

As far as the authors are aware, the existence of this
solution has been discussed, %3!+%2 but never explicity
stated. For K,=0, we have a conformally flat deSitter
vacuum solution,

B=0: For A#0, we find the following spacelike dust
solution where U* = 6i:
A(t)=const#0, B(t)=Fkexp[- (A)/?%],
p=-24,

(37)
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which is similar to a static solution found for G, VI,,
(x) GVII

This case, and the following one, are the well-known

Kantowski~—Sachs models, *° where
Ut = a(x*)5t + 8(x*)81, (38)

where (x!, x*, x°) are spacelike and x*=1¢ is timelike
and o, B are arbitrary functions. The field equations
lead to the possibility of two cases: a=0or 8=0. The
a=0 (U =5}) case has been investigated. For §=0,
A+0, we find

A=const#0,
B(t) =012 sinn(AY/2(¢ + ¢,),
p=-2Acoth(AY/2(t+ 1),

(39)

as an expanding spacelike dust solution (f,= const).

(xi) G, VIII

Proceeding as in the previous section, we again obtain
(38) for the four-velocity. The a =0 solutions have been
studied by Kantowski and Sachs., For =0, A =0 there
do not exist any real solutions, while for 3=0, A+#0 we
find

A=const#0,

B(t)=4{exp[(A)/2(1 ~ 1,)]+ At exp] - (AN/2(¢ - 1)1},
(40)

p o= - 2A

which represents an expanding spacelike dust with Ut
=6} and x*=¢ being a timelike coordinate. For A=1,
B(#)=cosh(¢ - ¢,).

4. CONCLUSIONS

What we have done is to analyze, in a systematic way,
all of the Petrov four-parameter Lie isometry groups
which act on a nonnull V, and have a dust source, i.e.,
to solve

Gy + gy, =pU,U,, (41)

by having made the physically reasonable assumptions
that (1) spacetime has an intrinsic symmetry and, (2)
the matter in the model universe may be represented
by a pressureless perfect fluid. Our approach has en-
countered solutions which have been previously investi-
gated, as well as demonstrated the existence of space-
like dust versions of the Einstein—deSitter and Farns-
worth models.

For a nonzero A, and assuming that machine calcula-
tions would yield solutions in G,I and G,III, we find that
spacelike dust models occur for all groups with the ex-
ception of G,III. Whether the affects of A are physically
observable or it has arisen purely from a mathematical
motivation, it should be noted that for a vanishing A,
we only have spacelike dust solutions in G,IV, G,V,
G,V1,, and G,VI,.

The results of our research raise an important
question: What is the place of the spacelike dust solu-
tions (sometimes referred to as “tachyons”) in general
relativistic cosmology? The existence of such tachyon
cosmologies is beyond doubt when one considers the
work of this paper and those of Gott®*® and Davies.* In
much of the previous research, one initially proposes
a tachyon model and then proceeds to analyze the con-
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sequences. Here, we never intended to hunt for such
solutions —they just naturally sprang from our assump-
tions. Also, the tachyons in these models generate the
metric and are not solely a test field. It appears that
tachyon solutions permeate the set of exact solutions
with dust sources especially in the Petrov G, on V, type
gravitational fields. It is interesting that the only homo-
geneous spacelike dust solutions known are (37), (39),
and (40). From one point of view the existence of solely
spacelike dust solutions, e.g., G,IV, for a given metric
might imply that the metric is unphysical and should be
disregarded. It has been the purpose of this paper to
discover in a systematic manner what types of dust
solutions arise in gravitational fields having certain
symmetries. Whether the suggestion of so many tachyon
solutions has physical significance must await future
results of experimental physics,
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Investigations of space-times with four-parameter groups
of motions acting on null hypersurfaces
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An investigation of all metrics having a four-parameter group of symmetries with null three-dimensional
orbits is made. An attempt to solve the Einstein field equations using various simple energy—momentum
tensors, with one exception, gives incompatible sets of equations. The exception is a solution for a null fluid

possessing the G,I, group of symmetries.

. INTRODUCTION

In a previous paper! we investigated space—times
having a particular four-parameter group of motions
(G4VIL,) acting on null three-dimensional hypersurfaces.
In that work we attempted to solve the Einstein field
equations using a number of simple energy—momentum
tensors. We obtained the result that no gravitational
field was compatible with the symmetry under consid-
eration. We have since investigated all metrics ob-
tained by allowing a four-parameter group to act on
null three-dimensional hypersurfaces in an attempt to
determine whether this unusual behavior, which we
found in space—~times with one group of symmetries,
was characteristic of spacetimes with other symmetries
of the same class.

Briefly, the investigation involved obtaining the form
of the Killing vectors from the equations of structure
of the group and the assumption that the orbits of the
group were null hypersurfaces. Killing’s equations,

£yt £, =0,

were then used to obtain the general form of the metric.
We then calculated the components of the Einstein tensor

and attempted to solve the Einstein field equations,
Gyy=Tyye

Actually Kruchkovich? and Petrov® have obtained the
Killing vectors and general metrics for all four-param-
eter groups whose orbits are three-dimensional null
hypersurfaces. Thus it was only necessary to calculate
the Einstein tensor and attempt to solve the fluid
equations.

The results of this work are discussed in Sec. II and
tabulated in Table I. In Sec. III we present an example
which illustrates how the results in Table I were ob-
tained. We have chosen the GyI; symmetry as our ex-
ample since of all the cases studied (54 in total) this
symmetry contains the only case for which a solution
was found. Other examples for the G,VII; symmetry
have previously been discussed. !

Il. REVIEW OF RESULTS

Table I presents a tabulation of the results of this
work. Listed in the left hand column are all symmetry
groups of the type under consideration. The notation is
that of Kruchkovich? and Petrov.® G,I, for example,
means the group has four parameters and is the first

TABLE I. The results of attempting to solve the Einstein equations for various four-parameter groups which generate three-di-
mensional null surfaces are tabulated below, The crosses imply that a consistent set of equations does not exist. A solution was

found for the G,J; symmetry with a perfect fluid as the source.

| Massless Massive Massive Dust E & M and Dust and
Traceless Perfect Scalar Scalar Vector and Massless Massless
Fields Dust Fluid Field Field Field E&M S.F. S.F,
GyIy X X soln. X X X X X X
Gyl, unphysical g>0
G, II does not generate null hypresurfaces
G, III incomplete group
G, IV unphysical g> 0
G,V X X X X X X X X X
A%
Gy & incomplete group
vy,
Gy VI X X X X X X X X X
G, VI, X X X X X X X X X
Gy VI, X X X X X X X X X
G, VI, l X k X X X X X X X X
——— ]
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one listed in the classification of such groups. The top
row indicates the various energy—momentum tensors
that were used as sources in the Einstein field equations
(e.g., dust, perfect fluid). We also tried massive fer-
mions in a few cases but found no solutions.

One notes that in a number of cases there are two
metrics and two sets of Killing vectors corresponding
to one set of structure equations, for example G,VII;
and G,VII,. These different cases arise depending on
whether or not a subgroup of the group contains a null
Killing vector.?

In two cases, Gyl, and G,IV, the metrices obtained
are unphysical since their determinants are positive
and hence they are not Minkowskian,

There is no group with the G,II equations of structure
whose operators have null three-dimensional hypersur-
faces as their orbits. The structure equations, when
solved with the restriction that the Killing vectors act
in the null hypersurface, in one case lead to a contra-
diction and in a second case give Killing vectors which
produce a metric with determinant zero.

In three cases, those with the GJIII, G,V1;, and G,VI,
symmetry, the four-parameter group corresponding to
the metric obtained by solving Killing’s equations is not
the complete group. Upon solving Killing’s equations
for the Killing vectors, using the obtained metric, we
find that the metric actually admits more than the origi-
nal four Killing vectors. Thus we say the group is not
complete,

The crosses (X) in the blocks indicate that a compati-
ble set of Einstein field equations does not exist for
those cases. We do not mean that the field equations
could not be solved, rather that an attempt to solve the
equations resulted in a contradiction, As we mentioned
earlier, in only one case, that of a perfect fluid in
a space~—time with the G;I; symmetry, was a solution
found.

1H. EXAMPLE

In this section we give an example which illustrates
the results tabulated in Table I. We have chosen the
Gy symmetry for this purpose.

The null hypersurface generated by the Killing
vectors, in the coordinate system used by Kruchkovich
and Petrov, is given by x*= const. The metric for
the G,1; case is

ds? = y* exp(- 22°)[2dx® da + (dxP)] + 2 (dx®)?, (3.1)
where the functions y and z depend only on x?,
The Killing vectors are
Xi=py, (3.2a)
Xy =py, (3. 2b)
Xy =2"py = ¥'py, (3. 2¢c)
X, =22y + 2Py + P, (3.24d)

where p; =9/9x'. Note that X, is a null Killing vector
and that none of the Killing vectors have a component
in the x? direction since they all must lie in the null
hypersurface x! =const.
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We diagonalize the metric and obtain
ds? =y* exp(- 22°) [ (dx*} + (dx?) - (dx*)*] + 2%(dx®) (3. 3)
where now the functions y and z depend on %% — &,
The transformed Killing vectors are

Xx=—é (py+b4), (3.4a)
Xy =y, (3. 4b)
X3=%x2(pl+p4)—%(xl—x4)pz, (3. 4c)
Xy = (! +28)(py +py) + 52py + D3 (3.44)

The Einstein tensor in the coordinate basis of the
metric (3. 3) has components

_ 2y12 yl 2! Zy'z’ 3y2 3
Gy = i + o + 5 exp(-2x ), (3.5a)
6132—22'/2, (3.5b)
-2y y" 2" 2y'z!
G“‘*T + v " ye (3.5¢)
3y 3
G = Z7 exp(~2¢), (3.5d)
Gy =3, (3.5€)
G34—22'/Z, (3.5f)
3 297 y” 2" 292’ 35* 3
(;44._—3;2- -5 + e Tz exp(~ 2x°), (3.5g)

where the prime indicates differentiation with respect
to ! — x4, All other components are zero. All calcula-
tions of the Einstein tensor have been checked by com-
puter calculations.

The scalar curvature is

R=-12/7% (3.6)
The Einstein field equations are
G{j__—Tij’ (3-7)

where Ty, is the energy—momentum tensor.

It is immediately clear that there are no solutions
for traceless fields (e.g., vacuum, electrovac, neu-
trinos, etc.) since by (3. 6) and (3.7) the trace of the
energy--momentum tensor can never be zero.

The next case we try is dust with energy—momentum
tensor
T”=pu¢u,, (3. 8)
where p is the density and u; is the 4-velocity of the
dust.

The Einstein field equations are

Gyy =ply)?, (3.9a)
Gy3 =pugus, (3.9b)
Gy =puquy, (3.9¢)
Gy =plw)’, (3.94)
Gy =p(uy)?, (3. 9e)
Gy = Pugty, (3. 91)
W.T. Lauten, {1l and J.R. Ray 886



Gy =ply). (3.9¢)

From (3.9d) we see that u, cannot be zero. But Gy,
=0 implies puyu, =0 or u; =0, If u; =0, then (3.9a) and
(3.9¢) imply

3(y%/2%) exp(~ 2x°) =0
which is a contradiction.

We now turn to the perfect fluid with energy—momen-
tum tensor given by

Ty =(W+P)uu, +g,P,
where W is the energy density and P is the pressure.

The field equations are

Gyy = (W+ P)(u,)* + y* exp(- 24°) P, (3.10a)
Gy3 = (W+ P) wyus, (3. 10b)
Gya = (W+ P ugu, (3.10¢)
Gyy = (W+ P)(1,)* + y* exp(~ 24°) P, (3.10d)
Gy = (W + P)(u;)? + 2*P, (3. 10e)
Giy = (W+ P)ugu,, (3.101)
Gy = (W+ P)(uy)?* - y* exp(- 24°) P. (3.10g)

From Egs. (3.10a), (3.10c), and (3.10g) we can
easily show
Uy ==, (3.11)
Then subtracting (3. 10g) from (3. 10a) resuilts in
P=3/2"

Now Egs. (3.10d) and (3. 10e) imply

(3.12)
uy =u3 =0, (3.13)
which with (3. 10b) give
z=const and P=const,
The Einstein equations now are reduced to one
equation

2972 /y* — 97 /y =f(x! - #4), (3.14)

where f(x! - 24) = (W+ P)(u,)*.
Making the substitution
y=1/4,
we obtain the equation

A" —fA=0 (3.15)

which may be solved once the function f is specified.

Since the pressure in this solution is constant we may
interpret it as a cosmical constant in the Einstein equa-
tions. Furthermore, the 4-velocity of the fluid is null
as implied by Eqs. (3.11) and (3. 13), hence our solution
describes a null fluid. Null fluid solutions have pre-
viously been studied by Bonnor.* The g,; component of
the metric is constant, however, no additional symme-
try is introduced by this. The solution is not flat as is
clear from (3.86).
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We next attempt to find a solution for the massless
scalar field with energy— momentum tensor

Tyy= ¢,i¢,j - %gu¢,k¢'k

where ¢(x‘) is a scalar function of the coordinates,
and the comma denotes partial differentiation with
respect to the coordinates x*.

The Einstein equations are

Gy =(9,1)" - %2 exp(-2x%) ¢ 9%, (3.16a)
Gi3=9,19,3 (3. 16b)
Gy=9,19,4, (3. 16¢)
Gz =(3,2) — 2 5* exp(- 22°) ¢ 9%, (3. 16d)
2
Gy =(9,3) - % ¢,:9'%, (3. 16e)
Gy =9,39,4
2
G =(9,) + % exp(- 2x°) ¢, 9%, (3.16g)

We can show using Egs. (3.16a), (3.16c), and (3. 16g)
that

$1=—0,4. (3.17)
Then subtracting (3. 16g) from (3. 16a) gives
¢, 2" == 6/2%, (3.18)

but (3.17), (3.18), (3.16d), and (3. 16e) imply ¢',,¢-”=0
which is a contradiction.

The massive scalar field gives a result similar to
the massless scalar field and can easily be worked out
by the interested reader.

We next turn to the massive vector field with energy—
momentum tensor

Ty =ginFy F* = 181y Fy, F* + m*AiA - 5 g1, m*A A%,
where Fy, and A; are related by the equation

F“ :Aj,i—Al,j' (3-19)

In this case we make the reasonable assumption that
the vector potential A; has the G,I; symmetry, that is,
the Lie derivative of A; with respect to the Killing
vectors is zero. This is the first time we have had to
make any extra assumption of this type. A similar
assumption is also made in some other cases, for ex-
ample, the case of the electromagnetic field coupled
with dust. Without such an assumption we cannot make
any progress towards a solution. The assumption that
the Lie derivative vanishes is written

L,A,;=0. (3.20)
Equation (3.20) implies that
Ay =a(s} - 8}) +psl, (3.21)

where a = a(x! - x!) and 8=8(x! - x!). From Eq. (3.19)
we find that the only nonvanishing components of Fy,

are
Fyy=Fy=§, (3.22)

where, again, the prime indicates differentiation with
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respect to 2! — 21, One can show that
Fy FY=*F, F¥ =0,

where the star denotes the duality operation. Hence,
the field is null.

The field equations are

2 b
Gy = %2' +mPal - Ey;z exp(- 2x°) m?g, (3.232)
Gyz=m'ep, (3. 23b)
Gy =-B"/2" ~ ma?, (3. 23c)
232 2

G =~ ln—zi % exp(-247), (3. 23d)
Gy =m*F/2, (3.23¢)
Gu= + P +mtar+ 2 2%y mP g (3. 23¢
m ST tmia ﬂzexp(-xmﬁ. . 23f)

Equations (3. 23d) and (3. 23e) lead to a contradiction,

Finally we attempt to solve the Einstein equations
with a coupled electromagnetic field and dust as the
source. The energy—momentum tensor is

Tiy=Pttgthy + 8y Fyp F*™ — $ 815 Fym F*™.

The assumption we make in this case is that the elec-
tromagnetic field tensor, Fy,;, has the GJ; symmetry,

that is
LF, =0. (3.24)

It has been shown by Wainwright and Yaj'emoviczf' that
for nonnull fields L, Fy, =K*F;,; where K is a scalar.
We assume K=0,

Solving for Fy; in Eq. (3.24) we obtain

0 yexp(-2%) v 0
-y exp(- x%) 0 0 yexp({-x®%
.Fu - 3
-V 0 0 v
0 —7vexp(-x%) ~v 0

{3.25)

when v and ¥ are functions of 2! — ', We find the field
is null, that is,

F i.fF“ *F” =0.
The Einstein equations are

2

2
Gy =ply)® + %2 t2 (3.26a)
Gy3 = pugus, (3. 26b)
¥
Gy =puyuy — Zzz -5, (3.26c)
¥z
Gyy =pl )}, (3. 26d)
Gy3 =p(u3)?, (3. 26¢)
Gy =-maB, (3. 281)
P
Gy =l ) + %; + - (3.26g)
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Equations (3. 26a), (3.26c), and (3.26g) give

ug=—u,. (3.27)

Then subtracting (3. 26g) from (3. 26a) gives

§?
= exp(~2x%) =0

which is not allowed.

The remaining cases of the coupled electromagnetic
and scalar fields and the coupled dust and scalar field
work in a similar way, although there need be no as-
sumption of symmetry in the case of the coupled dust
and scalar field.

V. CONCLUSION

We have investigated all space—time metrics having
a four-parameter group of symmetries whose orbits
are null three-dimensional hypersurfaces, We have
attempted to solve the Einstein equations for each
metric using various simple energy—momentum tensors
as sources. We have found, with one exception, that
each set of Einstein field equations is incompatible.

The one exception is the set of field equations having
the G,1; group of symmetries and a perfect fluid as the
source of the gravitational field. The perfect fluid turns
out to be a null fluid and the constant pressure is inter-
preted as a cosmical constant in the Einstein tensor.

When we began our investigation of gravitational fields
having the four-parameter symmetry on null hyper-
surfaces, we expected to obtain many solutions similar
to the perfect fluid solution, or solutions for plane wave
gravitational radiation in matter. It is still not clear
why so many cases in this class of symmetries give
incompatible field equations. The Bondi—Robinson
plane gravitational waves are of type G,VL, which allows
a fifth Killing vector.

The Einstein theory of gravitation occasionally
presents one with other curious results such as the
existence of closed timelike lines, multiple universes,
tachyons, and “ghost nuetrinos. ®’ It has been shown
that in the Einstein—Cartan theory “ghost neutrino”
solutions are not allowed. **# It might be that the
Einstein—Cartan theory would admit solutions for some
of the symmetries discussed in the paper, This possibil-
ity is being investigated by Kuchowicz.®
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A rank-two tensor is built out of the 4-velocities of two inertial observers, which corresponds precisely to

the most general Lorentz matrix connecting the two Cartesian frames of the observers. The Lorentz tensor
is then factorized as the product of two “complementary” space-time reflections. It is shown that the first
tensorial factor performs the very essential task (i.e., FitzGerald contraction and time dilation) of the
corresponding Lorentz transformation, while the second factor is just an internal reflection performed in
one and the same inertial frame. Thus, in its essential features, a Lorentz transformation between two
different inertial frames obtains upon performing just one space-time reflection. It is also shown that the
(same) Lorentz tensor of two inertial observers can be factorized into “complementary” reflections either
by two hyperplanes with spacelike normals, or else by two hyperplanes with timelike normals, which
geometric meaning is rather simple. An application of the presented formalism to Dirac’s 4-spinor

transformation law is also briefly discussed.

1. INTRODUCTION

In the present communication we discuss the kine-
matics of Lorentz transformations from the point of
view of the Minkowski geometry. Therefore, we shall
adopt from the beginning the absolute 4-geometry stand-
point based on the Lorentz transformation themselves,
while characterizing a proper orthochronous Lorentz
transformation by means of a space—time fensor, i.e.,

L*,=068 — (u* —v*)u,

- Py, + 1) u + 0* ) (8: ~ wtu, )y, . (1.1)

In Appendix A we present some “vierbein” projection
manipulations for'the construction of this tensor. LY is
a rank-two tensor built exclusively out of the 4-velo~
cities #* and v* of two inertial observers,* and it
represents the most general Lorentz transformation
(keeping aside improper and antichronous transforma-
tions) connecting the old v-frame with the new u-frame.
Once found, one may easily check that Eq. (1.1) indeed
corresponds to a Lorentz matrix. Moreover, with the
aim of properly interpreting the Lorentz tensor L),

let us briefly consider the active transformation of
events

x' = L* % (1.2)

from the v-frame standpoint; namely, we define x*
=(,%), x™ =(,x’), v*=(1,0), and u* =1 V)(1,V),
where V is the 3-velocity of the u-observer relative to
the v-frame, and ®(V)=(1 - V?)-'/2 ag usual. Thus,
from Eqs. (1.1) and (1.2), we get

v=AV)(t-V-x),
x =61 - V(1L - VIV, J(x! = V1),

(1.3)

that is, a proper orthochronous Lorentz transformation.
The transformed event x’* has precisely the same
space—time coordinates in the old v-frame as the object
event x* would have once transformed to the new u-
frame. This is the well-known feature relating active
and passive transformations. 2

The algebraic form of Eq. (1.1) is perhaps unneces-
sarily cumbersome; we keep it as it stands, however,
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for the explicit appearance of the vectors u* —¢* and

u* +v*. The orthogonal projector 8% —u*u,, helps
clarify the space—time geometry involved in the LY
tensor. Indeed, this note aims to show that the aboveo
Lorentz tensor can be factorized into two very special
“complementary” space—time reflections (along two
spacelike directions, or else, for that matter, along
two timelike directions), and the rather simple geo-
metric meaning of the involved reflections are exhibited.
The group theoretic features related to this work are
somewhat well known today, after algebraic investiga-
tions on orthogonal® and pseudo-orthogonal®* groups in
n-dimensional spaces.® In this sense, it should be men-
tioned here that, in their formal content, our results
are special cases of much more general results which
hold good for noncompact groups. Our emphasis in this
communication, however, is not the group theoretic
aspects, instead, it lies in the explicit absolute space—
time characterization, of the issues involved.

Going back to Eq. (1.1) we observe that

L*u* =v", (1.4)
as expected, while
L 0¥ =[v*v, - (62 - vhv,) . (1.5)

We see that L,‘,‘ produces the same hyperrotation on the
4-velocities «* and ¢v*. This hyperrotation lies in the 2-
flat defined by «* and v*. In other words, only the
hyperplane spanned by «* and v* is to be “turned” by
the right “angle”, while the two-dimensional subspace
orthogonal to that hyperplane remains fixed. This pic-
ture characterizes the uniqueness of the result obtained.
Furthermore, we see that L“LY4" corresponds to a re-
flection of #* in the hyperplane orthogonal to the (u,v)-
flat. Incidentally, as for infinitesimal Lorentz trans-
formations, we write
u* =o* + ewH (1.6)
(with ¢> 0 a parameter of smallness, and v*w, =0),
and we readily obtain, from Eq. (1.1),

L¥, =8 +e( w, - w*v,), (1.7
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to the first order of approximation. Clearly, in the
limit u* —«¢*, we have L} =6, as it should be. Equation
(1.7) neatly shows the well known fact that the skews-
symmetric infinitesimal generators of the proper ortho-
chronous Lorentz transformations of a v-frame are
necessarily the Fermi-—Walker “propagators” along the

v* world line.®

Finally, we wish to mention here that an equivalent
representation of a proper orthochronous Lorentz trans-
formation by means of a space—time tensor has been
discussed some years ago by Basanski,” in the context
of the null tetrad formalism.® Moreover, a decomposi-
tion of the Lorentz transformation matrix into skew-
symmetric tensors was attained by Basanski, while
showing that any matrix describing a finite proper
orthochronous Lorentz transformation of the null tetrad
in Minkowski-space —t{ime may be written as a polyno-
mial of the second order in skew-symmetric tensors.
Of course, both tensor representations (Basanski’s and
ours) of the Lorentz matrix are equivalent for they
just correspond to a change of the space—time basis
used therefor,? i.e., instead of null tetrads, we use
orthonormal tetrads in this note, However, when one
comes to the decomposition of the Lorentz tensor L%,
substantial differences appear between both geometric
approaches. First, Basanski’s decomposition obtains
in terms of skew-symmetric tensors (i.e., space—time
rotations), while ours, as we shall see presently, is
attained in terms of symmetric tensors (i.e., space—
time reflections). Hence, the geometric meaning of
these decompositions is quite different. Next, while
Basanski’s approach is able to produce a decomposition
of a null rotation transformation!® as the product of two
second-rank tensor factors,! it fails to produce such a
factorization for the most general proper orthochronous
Lorentz transformation; namely, Basanski’s second
order polynomial expression for the L¥ tensor'? may not
in general be factorized into the product of two trans-
formations, each represented by a second rank tensor.
The orthonormal tetrad approach (see Appendix A), on
the other hand, gives us a representation of the L}
Lorentz tensor [Eq. (1.1)] which can be factorized quite
generally into the product of two “complementary”
space—time symmetric reflection tensors with a rather
simple geometric meaning.

We end up this note with a brief Appendix B whose
only purpose is to show the handiness of the covariant
tool presented here, while reviewing the transformation
law of Dirac spinors.'3

2. SPACE-TIME REFLECTIONS

In order to clarify the geometric content of the tensor
defined in Eq. (1.1), we are going to show that L¥ can
be factorized as the product of two very special and
simple space —time reflections. Let N* be a space—
time reflection tensor by a hyperplane with spacelike
normal; say

NE = 6¢ + 2n#n,,, (2.1)

with n*n, = — 1. It is immediate that N defines a Lorentz
matrix. Let us next define the spacelike unit vector
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n* =20y, - D] 3w — o), (2.2)
and consider the corresponding reflection tensor,

NE =088 + (v, — 1) u® — o), —v,). 2.3)
If we explicitly analyze the reflection

X7 = NEg?, (2.4)

from the v-frame standpoint, we readily obtain " =¢’,
as in Eq. (1.3), and we also get

x" =8} - V21 + ViV, (! - Vi), (2.5)

The meaning of Eq. (2.5) is easy to grasp. Indeed, if we
decompose the second equation in (1. 3) into longitudinal
and transverse components relative to the velocity V,
we obtain the well known result

x;=HV)Nx, = V8, xXiL=X%Xp, (2.86)

while if we decompose (2.5) in the same manner, we
get, instead,

2.7

Hence we conclude that, besides a space reflection in
the plane orthogonal to V, the essential features of the
Lorentz transformation (between the y-frame and the
u-frame) are already contained in the space—time re-
flection (2.4), whose manifestly covariant tensor N*
has the simple geometric structure presented in Eq.
(2.3). Figure 1 is a sketchy space—time diagram re-
presenting this reflection.

xp=-y(V)(x, - V1), x;=x%_.

Finally, then, let us write the longitudinal reflection

{f’:t”, Xi:—-xz, X,’I.:X; (2,8)

in a manifestly covariant manner, in order to recover
the Lorentz transformation tensor L, presented in Eq.
(1.1). For that matter we define in the v-frame the
spacelike vector V* =(0,V). This means that we intro-
duce, in space—time, the projection

VE = (oo, ) HEE - vt e, e, (2.9)
such that V*V, = - V? is given by the 4-scalar

V, V4=, o)1 = (w0 )?) (2.10)
Let M} be the reflection tensor

MY =8+ 2m*m,, (2.11)

FIG. 1. Space~time diagram
of the first reflection: x ##
=Nt x¥.
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n+
VH
FIG. 2. Space—time diagram
of the complementary reflec-
N\ tion: x # =M¥* x""V=L* x¥,
xll xl}‘ :X: »
m}*

with m* = (- V,V*)"1/2y# | that is

m# =[P = 111368 ~ vt Ju”, (2.12)
In this manner, if we now work out explicitly the
space—time reflection

xll‘ =M,‘,‘x"", (2. 13)

in the v-frame, we clearly obtain the longitudinal space-
reflection stated in Eq. (2.8). Figure 2 is a space—time
diagram representing the reflection (2, 13).

3. CONCLUDING REMARKS

Thus we have shown in terms of absolute flat space—
time geometry that the Lorentz transformation tensor
L} can be factorized as the product of two very special
space—time reflections; namely

L», = (8%+ 2m*m, )(B) + 2n*n,), (3.1)

by two hyperplanes whose spacelike normals, »* and m*,
are given in Eqs. (2.2) and (2. 12), respectively. In
effect, the first factor N¥ is a reflection by the hyper-
plane orthogonal to the “relative 4-velocity” u* —o#,
while the second factor M% corresponds to a reflection
by the hyperplane orthogonal to the V* 4-vector. The
noncommutative product of these two special reflections
simply characterizes the proper orthochronous trans-
formation between the v-frame and the u-frame, i.e.,
Eq. (1.1). Furthermore, we observe that the second
reflection M% plays a very secondary role, for it cor-
responds to a longitudinal reflection of the space coor-
dinates performed in one and the same inertial frame.
Hence, essentially, up to this second space reflection,
a Lorentz transformation between two diffevent frames
is already performed by the very simple (first) space—
time reflection, i.e.,

" =[08 + (w0t = 1) Mu* — 0¥, - v,)]x*, (3.2)

in the hyperplane orthogonal to u* —»* (as shown in Fig.
1). The expected FitzGerald contraction and time dila-
tion are correctly performed by reflection (3.2). The
second reflection factor in L¥ merely corresponds to an
internal “correction” (say) of the space coordinates tak-
ing place within the new inertial frame; i.e., M* per-
forms an internal transformation of coordinates (in
Mgller’s sense®) within the u-frame.

It must be borne in mind that the two reflections into
which we factorize a proper orthochronous Lorentz
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transformation are not independent. Indeed, it is clear
that, given the 4-velocity v* and a spacelike unit vector
n*, which is future-pointing in the v-frame (that is,
v,n* > 0), we have one and only one 4-velocity vector
u* satisfying Eq. (2.2); namely

ut =2, I + ot 3.3)

Therefore, it can be shown that the m* unit vector
complementary to the set {v*,n*}, i.e., able to produce
a proper orthochronous Lorentz transformation as in
Eq. (3.1), is given by

m* (v, n) = [(v,)? + 1] /2(8% —vho, .

Thus we project #* orthogonal to ¢v* and normalize for
a spacelike unit vector. Hence, every set {v*,n*}, with
v,n* = 0, defines one and only one proper orthochronous
Lorentz transformation tensor, as expected. This fact
obviously corresponds to the six degrees of freedom of
the Lorentz matrix. Clearly, the limit v »* =0 affords
the identity.

(3.4)

Finally, let us briefly comment on the fact that the
Lorentz tensor presented in Eq. (1.1) can also be
factorized into two complementary space—time reflec-
tions by two hyperplanes with timelike normals. It is
a matter of straightforward calculation (we leave the
details to the reader) to show that

L*, =8¢ - 2v",)]

x[62 ~ (1+u,0°) @ + o), + 0, )], 3.5)

where, clearly, the first performed reflection is along
the direction of the “mean 4-velocity” u* + ¢* of the two
inertial observers. Figure 3 sketchily represents these
reflections. Since the second timelike reflection just
corresponds to an inversion of the time coordinate tak-
ing place within the v-frame, we again conclude that
the essential features of the Lorentz transformation
(between the y-frame and the u-frame) are already
presented as a consequence of performing one simple
reflection by the hyperplane orthogonal to the “mean
4-velocity” of the observers,

APPENDIX A: COVARIANT FORMULATION OF
LORENTZ TRANSFORMATIONS

In absolute flat space—time let us consider two in-
ertial observers, with given 4-velocities u* and v*, and
their attached orthonormal tetrads, say {o¥,} and {84},

v ut FIG. 3. Space—time diagram
of the two timelike reflection
factorization stated in

xX* Eq. (3.5).
x“p
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respectively.'® These tetrads satisfy the orthogonality
conditions, as well as the relations of completeness.
Furthermore, we assume these tetrads to be such that,
by construction,

R —
Aoy =07, t(to)_uu’

1 —_— g {3 — R
afyy=a*, B,=0b",

(Al
agy=p*, Bh,=p",

afy, =0, Bly,=0",

where ¢* and b* are spacelike unit vectors belonging

in the 2-flat defined by u* and v* (and, clearly, ortho-
gonal to v* and u#, respectively), while the spacelike
unit vectors p* and o* are introduced to simultaneously
complete both orthonormal sets. This clarifies the task
we set ourselves; namely, to construct the one space—
time mapping that turns a given timelike future-pointing
unit vector u#* into another given timelike future-point-
ing unit vector v*, i.e., L4u”=v*, while the tensor L}
must be a covariant function of the vectors u* and v*,
exclusively, which preserves the Minkowskian norm

of these vectors, This problem has but one solution

([cf. Eq. (1.1)].

It is a well known feature of the “vierbein” tool that
these orthonormal bases are related by means of a
Lorentz transformation. Indeed, we have that

L, = a8 (A2)
is a Lorentz matrix. Therefore, we immediately re-
cognize in these absolute scaffoldings a Lorentz co-
variant specification of a special Lorentz transforma-
tion, while interpreting the triads {af,,} and {8} as the
rectangular Cartesian basis used by the inertial ob-
servers in their respective 3-spaces. Hence, according
to Eq. (A2), the corresponding special Lorentz trans-
formation is performed by a Lorentz covariant matrix
(i.e., a rank-two 4-tensor) of the form

L#, =v*u, -a*b, ~ (p*p,+ 040, ). (A3)
Since, by construction, ¢* and b* are linear combin-
ations of #* and »* (which shall be worked out presently),
in order to get rid of p*p, + 0*0, terms in (A3) we use
the fact that L” leaves the Minkowski metric invariant.

At once we get

L¥, =68 - (" —v* ), ~(a* —b*)b,. (Ad)
Let us then write, ex hypothesis,
a* =Av* + Bu*, b*=Ce¢"+ Du". (AB)

After some calculations, using the facts v, a* =0 and

a,a" = -1, the following projection obtains

a* =k (8) ~v o 0, (AB)
where we define

E=[(w P -1]*/2>0. (AT)

(Clearly, k*> 0 because of the Schwarz inequality for
timelike vectors.) By the same token, mutatis mutandis,
we get the projection

b =~ k708 —utu, . (A8)
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Therefore,

(@* = b*)b, = (u, v° + 1) Mu* + v )(8} — utv, v, . (a9)

So we have the final answer to our problem in the mani-
festly Lorentz covariant formula (1.1) for the L* tensor
connecting both tetrads. Hence, this tensor represents
the most general Lorentz transformation (keeping aside
improper and antichronous transformations) between
two inertial frames with given 4-velocities »* and v*.

In effect, the spatial orientations of the triads {a%,} and
{,8;‘”} have been completely eliminated from the
formalism.

APPENDIX B: DIRAC FOUR-SPINOR
TRANSFORMATION LAW REVISITED

As a simple application of the covariant reflection
factorization of proper orthochronous Lorentz transfor-
mations presented in this paper, let us consider the
well know instance of the Lorentz covariance of the
Dirac equation. The usefulness of the proposed com-
plementary factorization of the Lorentz tensor will
become apparent through the compactness of the method
afforded for handling Dirac spinors, In particular, it
seems interesting to remark that we shall arrive at the
finite transformation law for 4-spinors (under proper
orthochronous Lorentz transformations) without re-
course to the infinitesimal transformations and the
ensuing rather lengthy iterative integration process,!” as
is usually done in Lie group theory and its applications.
Indeed, we first tacklie the task for a space-time re-
flection, as in Eq. (2.1), and then we are ready to solve
the problem by just two finite steps, one for each com-
plementary reflection, as in Eq. (3.1).

As is well known, the Dirac equation will be form
invariant under Lorentz transformations provided

v =L* S(L)S L), (B1)

i.e., the Dirac matrices *, u=0,1,2,3, remain un-
altered under Lorentz transformation L}. Let us exa-
mine invariance under space—time reflection by an
hyperplane with spacelike unit normal »n*, Eq. (2.1),
say. We have

7 = (62 + 2ntn, )S(1*S™H n), (B2)
hence S(n) must be such that
(S(n}, )= -2n*Snit, (B3)

where, as usual, ﬁ:nu}/“. In order to solve condition
(B3) for S{n), we consider the Dirac algebra

Y+ Y =2n"Y, (B4)
Thus, we immediately get the anticommutation relation
(7, v].=-2n"4hzn (B5)

(since ## = ~ 1) which resembles (B3). We next trans-
form the anticommutator into a commutator using a
well known trick. We define

¥ =Prry, (B6)

so we have
P, »1.=0r%, 1 (B7)
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Therefore, upon left multiplication by *, Eq. (B5) be-
comes

[P#, ™]=-2n* (¥,

which is precisely of the form (B3). This determines
S(n) up to a scalar factor. But since for a reflection we
obviously require §*(n)=S(-»), the scalar factor must
be +1 (recall ¥*y*=-1), Hence we take

S(n) = 4.

This elemental result answers our first problem: For a
spacelike reflection we project the Dirac 4-vector-
spinor ¥* on the reflection vector »*, and then we mul-
tiply (to the left) this projection scalar by 7® in order to
have a pseudoscalar spinor matrix.

(B8)

(B9)

Incidentally, for a reflection by an hyperplane with
timelike normal,

u,u =1,
i.e.,

U2 = 8% —2u*y,. (B10)
Say, we get, instead of (B3), the commutator

[SG), v]=2u*Slu. (B11)

If we define »n* = iu*, we formally arrive at (B3) again.
Therefore, we have, for a timelike reflection,

Sy =iYn.

One may easily check that the transformation spinor
matrices (B9) and (B12) correspond to the usual ones
for special reflections. '®

(B12)

As for the Lorentz transformation (B1), we simply
observe that, by the same token, for the complementary
reflection M*, cf. Eq. (2.11), we must have

Slm)= v, (B13)
and thus, to the Lorentz tensor L! in Eq. {3.1), we
associate the spinor matrix

S(LY=8m)Sn)=mA=m, n, V. (B14)

This formula answers our problem in a compact fashion:

We project the Dirac 4-vector-spinor ¥ upon the
complementary reflection vectors »* and m*, and take
the ordered product of these projections.

Finally, using Egs. (2.2) and (2. 12) for »n* and m*,
respectively, after a straightforward calculations, we
may write Eq. (B14) more explicitly in the form

S(L)= - [2(1 + 2, ") /2(1 + 44b). (B15)
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The reader may easily convince himself that this 4-
scalar matrix corresponds to the usual result by con-
sidering some special cases.® The manifest covariance
of the whole procedure leading to Eq. (B14) should be
observed, for it is essentially on this geometric forma-
lity that the presented tool’s power is resting.

IIn this article we let Greek indices run over the range 0, 1,
2, 3, and Latin indices over 1, 2, 3. We adopt signature (—2)
for the Minkowski metric, i.e., n,,=7*={+---). We set ¢
=1, throughout,

!Cf. J.L. Synge, Relativity: The Special Theory (North-
Holland, Amsterdam, 1965), 2nd ed., p. 75.

*H. Weyl, The Classical Groups (Princeton U, P,, Princeton,
New Jersey, 1946).

4v. Bargmann, Ann. Math. 59, 1 (1954).

5As a good general reference see, for instance, M.
Hamermesh, Group Theory (Addison-Wesley, Reading,
Mass., 1962).

fSee J. L. Synge, Relativity: The Geneval Theory (North-
Holland, Amsterdam, 1966). See also J. Krause, Int. J.
Theor. Phys. 12, 35 (1975), for some remarks concerning
the Fermi~Walker “propagator.”’

'S, L. Basanski, J, Math. Phys. 6, 1201 (1965).

8R.K. Sachs, Proc. R. Soc. London A 264, 309 (1961).

Cf. S.L. Basanski, Ref. 7, e.g., Eq. (2.2) of that paper.
10Null tetrad rotations are well discussed by H. Bondi, F.A.E,
Pirani, and I. Robinson, Proc. R. Soc. London A 251, 519

(1959), and also by R.K. Sachs, Ref. 2,

H1gee 8. L. Basanski, Ref. 7, Eqs. (2.7}, (3.1), and (3.2).

12Cf, S.L. Basanski, Ref, 7, Eq, (3.7) of that article,

130ther physical applications of the presented formalism will
be published elsewhere.

l4perhaps we need to remark that the problem we tackle in this
section is nof to obtain this (proper orthochronous) Lorentz
tensor L*, as merely the product of two tensors, each of
which corresponds to an improper but orthochronous Lorentz
transformation. That this can be done, and that the choice of
factors is far from unique, is obvious, Hence, we stress the
very special geometric character of our decomposition.

15C. Mgller, The Theory of Relativity (Oxford U.P., New
York, 1969).

16Although the orthonormal tetrad approach is clearly not the
only way of arriving at the desired result, i,e., Eq. (1.1},
we choose this method for it is geometrically neat and ap-~
pealing. We denote an orthonormal tetrad by {ag,}, say,
where U is a tensor index, while (v} stands for a label of the
components of the tetrad. Thus, we denote with (0) the time~
like component, and with ) the spacelike components, of the
tetrad. Let also recall that we can raise and lower the labels
by means of the Minkowski matrix n%#% =5 ., =diag
(+--=}, as if they were true tensorial indices.

178, 5. Schweber, An Introduction to Relativistic Quantum Field
Theory (Harper and Row, New York, 1962), p. 74.

183ee, for instance, N.N. Bogolioubov and D.V. Chirkov, In-
troduction a la théovie quantique des champs (Dunod, Paris,
1960), p. 55.
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Construction of the Yukawa, field theory with a large
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We consider the Yukawa, model with (relativistic) interaction density A"y + pd, where I' =1 or ;. For
sufficiently large p, we apply the Glimm-Jaffe-Spencer cluster expansion to construct the infinite volume
theory satisfying the Wightman and Osterwalder-Schrader axioms including a positive mass gap,

Much of the recent progress in the study of the
Yukawa model (Y,) has been based on the Matthews—
Salam—Seiler (MSS) formula! for the Schwinger func-
tions. The virtue of this formula is that the Fermi
fields have been “integrated out,” and thus one can ap-
ply to ¥, The Euclidean @-space techniques which have
proved so successful for the P(¢), model. In particular,
starting with the MSS formula, Magnen and Sénéor?
and Cooper and Rosen® have adapted the Glimm—Jaffe—
Spencer cluster expansion? to the weakly coupled Y,
model. In this note we show that Spencer’s extension® of
the cluster expansion to the P(¢), model with a strong
external field has a particularly simple analog in the
case of Y,.

As in Ref. 5, we consider the theory in a finite ;X1
rectangle A C R? with periodic B, C. on dA, This choice
of B.C. facilitates shifts in the field and in the mass.
With apologies for the notational complexity, we now
write down the MSS formula for the Schwinger function
for n bosons and m fermion—antifermion pairs:

SRy =23 [ o)+~ o)

X detS’(f;,£5;0) pa(e) expludlxa)ldus, (1)

where Lt € IR is the external field, x, is the characteris-
tic function of A, and where:

(a)f:(fi’ e 7fm)9 g=(g1, D ’gm), and h:(hlv ten vhn)
are suitable test functions, e.g., h, in S(A)={re SR?)|

supph C A} and f;,g; in S(A)®S(A).

(b) ¢ is the free boson field and du} :duib.,\ the free
boson measure on §’(A) with mean 0 and covariance

J o(HIe(g)dul = (1, (- A% +miy ) e,

where m;, > 0 is the boson mass and — A} is the Laplaci-
an with periodic B.C. on 9A,

(C) S,(fbgj;d)) = (fh (1 - m)-15g1)07 where (' s " )O de-
notes the inner product on Ay=L*A)® L*(A), Ac R is
the coupling constant, S denotes the integral operator
on A, with kernel given by the two-point Schwinger func-
tion for the fermions with mass m;> 0,

S(x,y)-—-l%-i? exp[ir(x—y)]% T. @)

Here p = (py,p) runs over the appropriate lattice (27/
L)ZXQu/L) 2, #=pe¥y+b7y, and I =a +by, where?
a,beR, v9=1iv;=— vy, and Yq, ¥ are the 2X2 Euclidean
vy matrices. Choosing a concrete representation, we may
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take

7’o=\(? :)>, 7‘:«) _2), ?’z=($ —(1)) @)

The operator K is defined by the kernel

K{x,y)=S(x,y)p(y). (4)
(a)
pald) =dety(1 - AK) expl- A2B(K)], (5)
where
dety(l — A) =exp[Tr(in(1 - A) +4 +A4%/2)] (6)
and
B(K)=3%:TrK? +K'K):, (7

where K' is the adjoint of K as an operator on 7/, and
: : denotes Wick ordering with respect to duf.

(e)
Z,y= [ paexplpob,)ldps.

We refer the reader to Seiler’s paper! for a rigorous
justification of the above formalism (our use of periodic
instead of free B.C. represents only a minor differ-
ence). Seiler’s main result is that the product detS’+p,
occurring in (1) is in L?(du?) for any p <=. Of course,
there are infinite counterterms to be cancelled in the
Y, model {e.g., there is a cancellation between the in-
finite quantities Trk? and TrK'K in (5)]. These cancella-
tions are accomplished in the standard way by introduc-
ing momentum cutoffs, performing the cancellations,
and then removing the cutoffs. In this note, in order not
to obscure the simplicity of the argument, we shall per-
form the cancellations without explicitly going through
this procedure. We can now state our result:

Theorem 1: Let A, m;>0, m;> 0 be given, and con-
sider the Schwinger functions S§(i) defined in (1).
There is a pg = oA, my, n1,) such that for gl = p:

(a) The infinite volume Schwinger functions S{u)
SP(p) exist.

(b) The S(u) satisfy the Osterwalder—Schrader
axioms’ including exponential decoupling and hence the
corresponding relativistic theory satisfies the Wightman
axioms including a positive mass gap.

Is it possible to use this large p result to establish
the existence of the infinite volume limit for arbitrary
1 ? This question is especially interesting in view of
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Frohlich’s result® that psendoscalar ¥, exhibits sym-
metry breaking at yu =0 {provided it exists!). In the
case of P(¢),, Frohlich and Simon® have shown how to
go from large u to small p by means of the FKG in-
equalities. Unfortunately, according to some elementary
calculations we have made, FKG inequalitites do not
seem to hold for Y,.

Given the machinery of Ref, 2 and 3, the idea of the
proof of Theorem 1 is very simple: Starting with the
theory with parameters (\, m,, m,, ), we shift the field
¢ and mass m, in order to express the Schwinger func-
tions in terms of a theory with parameters (X, 77z, 1y, 0),
where 7,(i) and #,(11) become arbitrarily large as iy |
—~ o, But we know®? that the cluster expansion applies
to this latter theory in the “weak coupling” region
{0, g, ) | IN/T2y ) <€y, IN/H241 <es}, where €,>0 and ¢
>0, and this yields the theorem. Actually the above
description is an oversimplification for two reasons:

(i) Because of the use of periodic B.C. we can only
shift to a theory whose parameters approach

(A, 71y, 7, 0) as A—R?; (ii) as is clear from the
Lagrangian, the new “mass” 7, is in fact a 2X2 matrix
except in the special case of scalar Y,. Fortunately,
neither of these complications seriously affects the
proof,

We begin by noting the following elementary formulas
for the change in measure under the shifts ¢ =~ ¢ - ¢ and
mi—~m} (see, e.g., Ref. 10):

dug(¢ -~ c)=const+ explemio (Xa)1du(), @)
dugbm = const > exp[~ & (W} ~ m}) : ¢*: (x))dbp, 4. (9)

In (9), : : denotes Wick ordering with respect to du‘,:b,A
(or, if we wish, with respect to du.; , . since changing
the Wick ordering only introduces a constant). We apply
(8) to the MSS formula (1), where the constant ¢ is to be
determined below:

Salw)= fl;l[¢(h¢) +c¢ [ h] detS'(fi, 8550 +c) pald +c)
x expl(p - em?) ¢lxy)du s/
J palé +c) expl(u ~ emb)oxa)ldul, (10)
Now by the definition of S’ [see (c) above; we set x=1]
S'(f1,855 0 +c)=(fi,[1 - S(¢ +¢)]" Sg;)
=(f,[1- (1 - cS) 'S¢ (1 - cS)5g,)
=(f, [1 -B}'Sg))

=5"(f1,£59) (11)
where 8§ = (1 - ¢S)"!S and B =8§¢. Using the formula
(“i’/‘*‘mf)(#‘*'mf):Pz +m}s (12)

we calculate § in momentum space
g+mf "L B +m
(1 Cp +my I") P +my r
=(1= (= +m )" T Y= f + m,)-IT
=(-#+7’;lf)4r‘y

where m;=m; - cT'. In analogy to (12) we easily check
that, for I'=a + by,,

~ ok

(=B + g} (B + 7)) =p* + mpmy (13)
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with
Mgty = (my = ca— cbyy)(my ~ ca + cby,)
= (my = ca)? + (cb)= |my |2, (14)

a multiple of the identity. Thus

~ 1 , +my

St 9) =117 ?exp[zp (x-y)]-i;%;j;fmzf‘, (15)
where for large Icl, lingl=lcl+ ITI, where IT'|=(a?
+53)!/2, This will provide the large fermion mass ;.

More interesting, perhaps, is the manner in which
the renormalization prescription provides the large
boson mass n,: We (formally) rewrite (5) as

pa (@) =const-det(l - K) exp(TrK - 5 : TrK'K:), (16)

where, as we warned above, each factor in (16) is
actually infinite, so that the worried reader may wish
to supply and then remove appropriate cutoffs. Under
¢~ ¢ +¢, K is replaced by K +¢S so that

pal¢ +¢) =const-det[(1 - cS)(1 - K)]
X exp[TrK - (c/2) Tr(K'S +S'K) ~ 3 : TrK'K:]
=const - det(l - K) exp[aPp(xa) = B7: 9% : (xa)],
(1m
where the (infinite) constants a® and 8% are given by
a® =2(am; - c|T|Y|A ]~ Z,> (Pt +mh™,

87 = [TA|" 2 (p* +mp)t.
By similar calculat;ons using (13) we find that

TrK - 5 TrR'E = &P (x) - B®: ¢*: (xa), (18)
where

&P =2(amy - c|T|D]A]N D (02 + | |9,

5= TP [A [ Z (57 + [y 7,
Combining (17) and’(18), we obtain, for the interaction
factor in (10),
pale +c) expl(u = cmilp(xa)]

=const* pA(¢) exp[y”d(x,) - 67 2 (xa)], (19)

where as in (5)
pa(¢) =const - det(l ~ K) exp(TrK -  : TrK'R:)
=dety(1 - K) expl- B(K)],
and where the constants

P =p—cmi+aP-3F, P =pP-pPF, (20)

are finite. (19) is the desired identity involving finite
(a. e.) quantities.

We now explain our choice of the constant ¢. Since we
have used periodic B.C. the constants ¥* and 5° are A
dependent. In order that the new boson mass m, not de-
pend on A, we consider instead the corresponding con-
stants »* and 67 for free B.C. These are defined as in
(20) but with a?, &P, 87, BF replaced by the correspond-
ing af, &%, B¥, B” defined in the obvious way, e.g., B*
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= |T12@2m)? fdp(p* +m)™. By Lemma IIL 3 of Ref. 10,
@02 dp(p? +md)™t - |A| T (P2 +m
b4

=lim{(= & +m})Hx,y) - (= 8% +m)x, )]

yex

=0(exp[~ m, min{ly, [,}]).

c;(A) =O(exp[- min(my, |y |) * min(,, ,)]). (21)

We choose ¢ (independently of A) so that ¥ =p ~ cm?

+af - &% =0. By (21) this 1eaves a small linear term in
(19). Since, for large ¢, a¥ - @~ {c| loglim, |

~ el loglcl we have_ Ici~ {p{/loglp | for large p.
Therefore, §° =pF~ 37 ~loglcl~log!p| for large p,
and this gives the large boson mass m,. That is, we
combine the identity (19) with the mass shift formula

Hence c;(A)=vF =" and c,(A) =" - 67 satisy 1 (9), setting m?~ m} =267, to rewrite (10) as
SP([J') fn[qs(hi) +c fh‘ ]dets'(ft;gis¢)PA(¢) exp[QA((b)]dp‘mb_.A (22)
A [Ba(®) explQa(®)idps o
where ’and the expectation
Q@) =c1{A)d(xa) +calA) 1 ¢F 1 (xa). (23) IR eXP[QA(gfl))]du?};n,A

We summarize the discussion to this point in:

Lemma 2: The Schwinger functions (1) for the ¥,
theory with parameters (X, m,, my, L) can be expressed
as in (22) as a linear combination of the Schwinger func-
tions for a theory with parameters (A, m, (1), ms(p), 0)
and with an additional interaction term (23), where now
my(u) is a 2X2 matrix of the form my, - c(p)T' [see (15)]
and where

(i) as |p|~ =, M) and [ ()|~ =,
(ii) for fixed p, c¢;(A)~— 0 exponentially as A — R?
[see (21)].
We are now in a position to prove our main result:

Sketch of the proof of Theovem 1: As in Spencer’s
case,® the proof follows from Lemma 2 and from the
convergence of the cluster expansion for the weakly
coupled theory (Refs. 2 and 3). Owing to our greater
familiarity with the second of these references, we
shall base our discussion on the version of the cluster
expansion to be found there. We work with the “trans-
formed theory” {i.e., in the form (22)] and we consider
only rectangles A sufficiently large so that Ic,(A)] <1,
For purposes of establishing Euclidean covariance we
also introduce an additional spatial cutoff function g(x)
into (1) or (22) by replacing each ¢(x) by g{x)¢(x) except
for the ¢(h,;)’s. Here g(x) is a measurable function of
compact support satisfying 0 <g(x)<1.

The steps in the argument are:

1. Given any a > 0 we choose py=pola, X, m,, my) s0
that if (p1= p,, then the transformed theory satisfies
the cluster property with rate exp(- ad). More precise~
ly,'' if A, BcR? and if F, is a trace-class operator on

/\""7‘/ which is a function of ¢ localized in A, and similar-

ly for Fp, then
<TmA+mB(FA/\FB)>i.¢.Q" (TmA(FA»i.K.Q(TmB(FB»{.R.Q
< Bexpl- ad(4, B)], (24)

where B is a constant independent of A,g and of trans-
lations of A and B, d(A, B) is the distance between A
and B, T, is the functional of trace-class operators on
A™Y defined by

TwlF)=m! Trymy(A"(1 - K(g)]"' - F)
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NP -
e =T5,(¢0) expl@aledaul -,
The proof of (24) is based on the cluster expansion as in
Sec. V of Ref. 3. However, several new features of the
present situation deserve to be mentioned: The addition-
al cutoff function g causes no change in the proof nor
does the additional boson self-interaction (23) since the
coefficients lc,(A)}] <1. The fact that the fermion mass
#y has become a 2X2 matrix is also not a serious com-
plication since the denominator p® + I7it, 12 in (15) has the
same form as before. As for the use of periodic B.C.,
we can still obtain the needed L%, estimates on deriva-
tives of the covariance as in Sec. VI of Ref. 3 by using
the method of images. In particular we use the follow-
ing formula: If C5'2*(x,y) denotes the Green’s function
for — A +m? with periodic B.C. on 3A and Dirichlet
B.C. onaset yCA, then

P'BA(x y) Ecb.r(xayn)s

where the sum takes place over all translations y, of ¥
in the sides of A and Cp r is the Green’s function with

Dirichlet B.C. on I'=Uvy,, the union of all translations
of v. We omit further details.

2. We next take A — R? with g fixed. From the cluster-
ing (24) and the decay (21) it follows by a standard proof’
that (for suitable arguments)

0P ey, oL DlEd)dud,
< >A,:.Q ( >g— fﬁ(g(ﬁ)dﬂmb s (25)

the expectation for the theory with free B.C., spatial
cutoff g, and no boson self-interaction terms, In par-
ticular we have convergence of the Schwinger functions
for the (X, m,, my, p) theory: Sf-'S,, where S, is the
Schwinger function with free B.C. and spatial cutoff g.

3. Obviously the expectation {+ ), in (25) also satisfies
the cluster property (24) and so we may take the limit
g~ 1 with the convergence of S, and (- Je to infinite
volume quantities S and {(+). This establishes part {a)
of Theorem 1.

4. Since we are at liberty to choose g spherically
symmetric, it is clear that the infinite volume theory
is Euclidean covariant; and the cluster property of the
form (24) goes over to the infinite volume. In this way
we verify the Osterwalder—Schrader and Wightman
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axioms including a positive mass gap @ (where the mass
gap can be made arbitrarily large by taking p large).

Note, incidentally, that we have shown that the limits
of the finite volume theories with both free and periodic
B.C. exist and are the same.
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We examine a class of two-dimensional Lorentz manifolds which are “singular” in a certain sense. It is
shown that, for such a manifold (M,g), the bundle boundary is a single point whose only neighborhood is
all of M [the bundle completion of M; see B. G. Schmidt, Gen. Rel. Grav. 1, 269-80 (1971)]. The four-
dimensional Schwarzschild and Friedmann-Robertson~Walker solutions are then investigated. We show

that the bundle completions of these spaces are not Hausdorff.

1. PRELIMINARIES

We first review some standard definitions and results
concerning the bundle boundary.

Let M be an n-dimensional C* manifold with C~
Lorentz metric g. Let L(M) be the bundle of Lorentz-
orthonormal frames on M, 7:L(M)—~ M the projection.
The Lorentz group O(1,7n - 1) acts on L(M) on the right;
we use ¥ ~u-g or R, to denote the right translation by
£c0(1,n~1). The metric g induces a torsion-free con-
nection on L(M). Define vector fields (B,)7., on L(M) by
(1) m4(B;(u)) =e;, and (i) B;(x) is horizontal, if u
={ey,..., €y, ..., 2,); the B, are the standard hovrizontal
vector fields. Choose a basis (E;)}, [I=(n-1)(n-2)-3]
of the Lie algebra o(1,n-1), and let (E;)}, be the cor-
responding vertical vector fields on L(M) [thus E;(u)
=(d/dt)(R,, w0, Where a(t) is the one-parameter
subgroup generated by E|].

1.1. Definition': Let uc L(M), and let X =%74X;B;(w)
+2;=1Xj¢nEj(u)y Y='Z’I=1YgB,(u)+Z§=1Y,-*,,E,(u). Define
Y{X,Y) :Z’;ZIX{Y!.

It is easily seen that ¥ is a C” Riemannian metric on
L{M). It induces a topological metric d on L(M) such
that the metric topology and the original topology
coincide.

1.2, Lemma: Let KC O(1,n~ 1) be compact. There
are constants @ >0, B> 0 such that ad(u, v) <sd(u-g,
v-g) <Bdu,v) [ge K, u,ve L(M)].

Proof: Fix uc L{M). Let S be the y-unit sphere in
T.(L(M)). The map 0: (g, X) —~ V(ResX, Re s X) : KXS~IR
is jointly continuous; hence, if

a= min ofg X), B=
eck ,xc s
then (x) 0 < @ < Y(Re, X, Rey X) < B<»(gc K). The defini-
tion of ¥ and the transformation properties of the B;
and E,; may be used to show that (x) holds for every X
in the tangent bundle to L{M) which satisfies ¥(X,X) =1
(see Ref. 2). The lemma follows.

Let L(M) be the completion of L(M) with respect to
the metric d, and let L(M)=L(M)\L(M). Using 1.2, it
may be shown that each R, extends to a homeomorphism
of L(M), and that u-{g-h)=(u-g) -h[uc L(M), g, h
€ 0(1,n~1)] (see Ref. 2). Observe that Lemma 1.2
applies if » and/or v is in L(M).

max o(g, X),
gk ., Xc S
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1.3. Proposition: The object (L(M), O(1,n~1)) is a
transformation group; that is, the map L(M)X0(1,n~1)
~L{M) : (u, g) = u- g is jointly continuous.

Proof: Let u,~u in L(M), g, ~gin O(1,7n-1), and let
€>0 be given. We assume < L(M), since otherwise
the conclusion follows from the definition of the topology
on L(M). By the triangle inequality, d(u,g,, ug)
< d(u,g,, ug) +dug,, ug). Let K be a compact neighbor-
hood of g. Choose Ny such that n>N; =>g,€ K. By 1.2,
there exists N,> N; such that n= N, = d(u,g,, ug,)
<€/2,

We complete the proof by showing that, for » large,
alug,, ug) < €/2. Choose a sequence (#,) in L{M) such
that u, —u. Then d(ug,, ug) < dlug,, u,g,) + du,g,, 1,8
+d(u,g, ug), If n=N,, then 1,2 implies that the first
and third terms are < const-d(u, »,), where the constant
does not depend on n. Choose 7, so that const - d(u, «, )
<€/6, then choose Ny> N, so that n> Ny =>d(u,g,, u,2)
<€/6. If n=N,, then d(ug,, ug) <€/2.

1.4. Definition: Let M=L{M)/O(1, n - 1) with the
quotient topology; M is the Schmidt or bundle or 4-
completion of M. The b-boundary of M is M=M\M.
Let 7;: L(M) - M be the projection.

The next result states that any point of M is deter-
mined by the horizontal lift of some curve in M. It is
easily seen that any Cauchy sequence (u,) in L(M) such
that lim, . <u, € L(M) may be assumed to lie on some
C” curve in L(M) of finite bundle length (i.e., of finite
length as defined by 7). Call a C™ curve 7:{s,, s,

- L(M) b-incomplete if its bundle length is finite and
lims-szn(s) e L(M).

1.5. Proposition: Let 1:[sy, s,) ~ L(M) be a b-incom-
plete curve with lims-SZT](s) =uec L(M), Let N be the
horizontal lift of 7 o 7. Then there exists gy= O(1,7~1)
such that lim,.g,7(s) =u - gq.

Proof: The argument given on pp. 278—80 of Ref. 1
shows that 7 has finite bundle length and that n(s)
=1n(s) - g(s), where {g(s):s, <s<s,} has compact closure
in O(1, 7~ 1) (the argument is given for dimension 4,
but applies also in dimension n). Choose a sequence
S,— S, such that g(s,) converges to some gi'. Then (1.3)
u:[lims-szﬁ)] g7}, proving 1.5.

2. MORE PRELIMINARIES

We restrict attention to the following class of Lorentz
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2-manifolds (M, g) : M is a cylinder with coordinates

(r, #), where ¢ is taken mod 27 and 0 <# <R <<; and

g is given by ds?= - b*(r) dv® + a®(v) d¢?, where a, b are
positive C” functions of » on 0 < <R, Particular cases
are the “Schwarzschild” metric (a(») =7, b(»)=(2/r
-1)"'/2 R =1) and the FRW metrics (5(») =1; a(») =0,
a’(r) == as r-0). Note that, in all of these examples,
the metric is “singular” at »=0. Our interest is in pre-
cisely this situation. We will show that, under assump-
tions which are satisfied by Schwarzschild and many of
the FRW’s, the b-boundary M of M is (essentially) a
single point, the only neighborhood of which is M itself.

Fix a Lorentz manifold (M, g) as above. Such an M
is orientable and time-orientable. Hence, L(M) has
four connected components, corresponding to the four
components of O(1,1). Any component L of L(M) is
acted on by the subgroup G of O(1, 1) consisting of iso-
chronous matrices of determinant + 1 [thus

coshA ginhA
:{ (sinhx coshh)' re R} ] )
Restrict 7,d to L, and let L be the b-completion of
L. It is easily seen that 1.2, 1.3, and 1.5 hold if L(M),
L(M), and O(1,n—-1) are replaced by L, L, G, and that
L(M)/0(1,1)=L/G. [Regarding 1.5, observe that any
curve in L(M) which intersects L is contained in L. ]

2.1: From what has just been said, we may restrict
attention to one component L of L(M). We let L be that
component containing all the frames (e,(m), e,(m))

(me M), where

1 @ 1 3
e, (m) =53 5, (m), ey(m) =20 a_d?(’")'

Clearly e, and ¢, are C” vector fields on M, Letting
m:L~L/G=M be the projection, we observe that each
element of () may be written {coshX ¢, (m)
+sinhXey(m), sinhXe,(m)+ coshhey(m)} for some Ae R
(mec M). Give L the coordinates (7, ¢, }). Note that
(r,$, N -g=(r, ¢, A+ %), where

cosh?; sinh)y

&= (sinhM cosh}y ) )

Now consider the curves 7(s) = (s, ¢y (0<s <R) and
M(s) =7y, ¢y +5) (- ©<s <) in M, where »,, ¢, are
fixed, Their horizontal lifts through (7, ¢, X)) € L are

7_71(8) = (81 ¢07 A0)9 (1)
Eg(s) = (7’0: d’o +s, )‘0 - [a,(yo)/b(ro)]s)- (2)

From (1) and (2), we can compute the distribution «
-~ H, of horizontal subspaces correponding to the torsion-
free connection defined by g. We obtain

. el ] ! )
H, is spanned by 3y and 55_ %%70)5.; (3

if u= (7, ¢y, A)). K we think of e, and e, as vector fields
on L, the spanning vector are

14

a
e and e;--—e,,

pr where e =i 4)

or’

We may define the bundle metric 7 using e, as the ver-
tical vector field; then

v, v) = (coshAg, ~ sinhAgv,)?
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+ (sinhAgy + coshAw,)? + {vg + a’v,/ab)?,  (5)
where v=3},v,e, is a tangent vector at (ry, ¢, Ay).

2.2: We now state the (five) assumptions referred to
at the beginning of the section:

db
(A1) 52 0 on (0, R);

. b(r) d { b\ :
(A2) rl}gl m: 0, and I (ZI—'(T)) >0 on (0, R);

(A3) E%(%; C v on (0, R), where C >0 is a constant;

(A4) For each r,< (0, R), there are positive C” func-
tions a(r), b(v) defined on ~ © <7 < such that al, &,
=a, bl ry=b, and a(r)=1=5b(r) except on a compact
set;

©
(A5) For some sequence 7,~0, 2 b(»)dr <o
n=l 0
- [Tmb(7)
— = 00
and E}‘ Y

2.3. Remarks: (a) Condition (A2) says that there is
a singularity at »=0.

(b) Using condition (A2) (and perhaps decreasing R),
we may assume a’ >0 on (0, R).

(c) We will only use condition (A5) in 3.9.

(d) Condition (A4) is meant to ensure that the only
“interesting” elements of L\ L occur at ¥ =0. Consider
the metric ds?=5%dr? + a*d¢? on the cylinder M : — =
<7<, ¢ taken mod 27, Define L over M just as L was
defined over M. Let ¥ be the corresponding bundle
metric on L, and let ¥, be the metric induced on L by
the flat connection. Using (3), one can show that ¥ and
Y are equivalent, i.e., there are constants ¢;,c; >0
such that ¢, ¥ < ¥, < ¢,7. This implies that (£, ) is com-
plete. Now if n(s) = (r(s), ¢(s), A(s)) is a b-incomplete
curve in L such that »(s) = »,>0 on 7, then clearly »(s)
~R, ¢(s)~¢q A(s)— X Thus the points of L defined by
such curves are uninteresting. We therefore make the
following conventions.

2.4. Definition: Let L={pec L:p= lim,.,,n(s), where
n:[s,, S,) =~ L is a b-incomplete curve such that » is not
bounded away from zero along 7}.

With this notation, L is a proper subset of Z\ L. It
is the portion of L\ L which is “at »=0.”

2.5. Definition: The essential boundary of M is n(L).
3. RESULTS

We maintain the notation of Sec. 2.

3.1: There is a natural class of incomplete curves in
L, namely the radial curves 7,(s) =(s, ¢, 0), where ¢
is fixed. These curves are the horizontal lifts of their
projections to M (see (1)). Let p(¢) =lim,.(n,(s), and
let P={p(¢):0<¢ <2n}.

We outline what follows. We first show that P ={p},
a point (3.6). It is then shown that L ={F} (3.7); see
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2.3d and 2.4. Finally, it is demonstrated that M is the
only open set containing 7(p) (3. 8),

3.2. Lemma: The map S' ~P: ¢ ~p(6) is continuous
(hence P is compact).

Proof: Let ¢,~¢. Fix €>0, and choose 7 so that
vob(7ry) <€/3 if ¥ < v, (Al). Draw a curve between p(¢,)
and p(4) in three pieces: (i) 17 (s) =(s, ¢,, 0), 0<s <7y;
(1) my(8) = (ry, n+ (¢ = ¢,),0), 0<s<1; (iii) Ny(s)
=(ry=$, ¢, 0), 0<s <7, Using (5), one finds that the
lengths of 7y and 7, are given by [j0b(r) dr, which by
(A1) is < 7b(ry) <€/3. Choose N sothat n=N= ¢, ~ ¢!
<e/3:[1+a'(r)/a(r)blry /2. By (5), n, has length
<€/3. We conclude that d(p(¢,), p(¢)) < €; hence p(¢,)
-pld).

The method of proof used in 3. 2 yields

3.3. Lemma: ¥ 7,~0 and ¢,~ ¢, then (v,, ¢,, 0)

- ().

3.4. Lemma: Each fiber '7(p) (p € P) reduces to a
point. That is, p g=p for allpe P, g G,

Proof. Let

_ {coshiy sinh/\o)
T \sinh}; cosh}y/’

and let p=p(¢). We will find a sequence p,~p such that
pn&—~p; if this is done, 1.3 implies that5-g=p.

For each >0, let (a¢), =Nbd(r)/a’(y). By (A2),
(A¢), =0 as r—0. Assume A,> 0 (the proof is similar
if X, <0) Let ,~0, let 4,=(A¢), , and let p,=(7,,
Eﬁ— By 3. 3 pn—'p NOte.Dn E= (’Vm ¢ Am )\)
Cons1der the curve in M n{s)=(r,, - 4,+8), O0<s
< A, The horizontal lift 7 of this curve through p, - g
satisfies 7(4a,) = (v, &, 0) [see (2)]. Also, the length of
7 is < (V2 coshApa(r,)4,, which -0 as n—~=, Since
(r,, §, 0 ~7 (3.3), we conclude that d{p,-g,p) ~ 0.

We are going to prove that [Pl =1. Consider the two
systems of equations
dp b dx_-d

—; olrp =9,

L= Y =X
dr _a’ dr a (o) =2,

(6)

=1,

drx a'

do =~b

T B Mrd =2

r=1, @lry) = ¢,

(M
Here &' =da/dr; solutions are parametrized by ». If
1) = (r, p(», M) is a solution to (6) [(7)], then me7 is
lightlike with tangent vector field parallel to ¢ +e,(ey
—¢e,). The length of the segment of 7 traced out as 7
ranges from 7, to 0 may be computed from (5):
Wry =[V2/alry))exp(- X)) fo"’ a(n)b{r)dr
<V2exp(- 2 for" b{(r) ar (8
if 17 is a solution to (8) (see 2. 3b for the <});
Uro) < VT exp(ry) [, b(r) dr (9)

if 1 is a solution to (7). The change in angle along 7 is
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a¢=|glry - limp(n) | = [ [b(r)/a(n)] a7, (10)

which may be + =,

3.5. Lemma: If 1 is a solution to (6) or (7), then
lim,.yn(») ¢ P,

Pyoof: We consider only the case when 71 solves (6).
For fixed 7, use (5) to compute the length of the path
going radially inward from 7(r); then apply 3.4 to see
that

d(n(), ple() < [V2 [ b(7) d7]- coshx ().

But
S v < [by (D] b0 < by (9] FERED,

and M#») =X, + In[a{ry))/a(#)]. Using these facts and 2. 3b,
it is easily seen that

d(n(r), ple()) < (V2 /C)alr)[b(r)/a’ ()] coshi,
if r<7, Letv-~0; the lemma follows from compact-
ness of P.

3.6. Theovem: P consists of a single point.

Proof: We show that if €> 0 and @< (0,2m), then
d(p(0), p(¢)) < € (which, of course, implies 3.6).

Suppose first that [T (6()/a(»)]dr == for every v >0,
Choose 7, s0 that (i) the solution 7 to (6) with initial
conditions ¢(ry) =0= Mr,) satisfies I(r;) < €/3 [see (8)];
(ii) if ¥ <%y, then d(n(¥), p(¢(r))) < €/3 (see 3.8). By (6)
and (10}, there exists » <7, such that ¢(*) =¢; clearly,
one has d(p(O),p(¢)) <3-¢/3=¢€,

I [, [6(r)/a(x)]dr <« for some (hence all) »>0, we
use (A5). Choose a sequence 7,—~ 0 such that

"n b(v)

. ) ——dy =

V2 b(r ) dy < Z}
n=1
Let (a¢), = fO' [b(r)/a(af y]dr. Perhaps decreasing some
of the 7,, we may find N> 1 such that }%,(a¢),=¢/2.
Now let py =p(0), p;=p(F i 2(ag) ,) (2 <i<N+ 1)

=(n, (8¢)1, 0), qy=(ry, (A¢)1 + Ej=1 2(89)y, 0); py
and g; may be joined by the solution 7; of (9) satisfying
7;(r;) =¢q,, while g; and p,,; may be joined by the solution
0; of (10) satisfying 0,(v;) =¢;. By Eq. (A.1) [or (A.2)),
the length of each n,(0;) is bounded by V2 f;"* b(7) dr.
Since p(¢) =py, we have

_ 1A
d(P(O),P(Q))) Sizdd(lﬁ:, q{> +%=/1 d(q{yphl)
< 2%} V2 for’ b(rdr<e,
14
Let P={p}.

8.7, Theovem: L ={p} (see 2.4 for the definition of
L). Thus the essential boundary of M (2.5) is a point.

Proof: Let 1(s) = (r(s), ¢(s), Ms)) (0ss<s, s=arc
length) be any b-incoraplete curve in L for which there
is a sequence s,—~3 with 7(s,) = 0. We can assume that
limg.z 1A(s) | = (see 1.3). Assume A—+=, Let 7,
=7(s,); for fixed n, consider the solution n(») (0<7»
<7,) of (6) satisfying ¢(r,) = $(r,), MT) =X(I,). We may
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assume X(,) = 0. From (8), then, the length of 7 is
<2 [;"b(r)dr ~0. But lim,.qn(r) =p(3.5, 3.6), which
means d(%(s,), p) —~ 0.

3.8. Theorem: The only open set in M containing
7(P) is M itself.

Thus 7(p) can be Hausdorff separated from no other
point in M,

Proof: Let (ry, ¢,) € M. It suffices to show that the
constant sequence (m,), all of whose terms are (vy, ¢,),
converges to m(p). Consider the sequence in L whose
nth term is (v, ¢, n) (#>1). Let 7,(») be the solution
of (6) satistying ¢(v() = ¢y, Mrg) =n. By (8), the length
of 7, is <2e™ [{°b(r) dv~ 0. Hence d(u,, p)~0, i.e.,
Uy~ S0 (vy, po) =7(u,) ~ 7).

4. FOUR-DIMENSIONAL SOLUTIONS

In this section, the Schwarzschild and closed FRW
solutions are considered. It is shown that, in both cases
the bundle completion is not Hausdorff,

4.1: We take the Schwarzschild metric in the form
ds® = = b¥(r) dv? + b-¥(») dt? + v*(d6* + s8in®0 d¢?), where
b(#) =(2/7 - 1)/2, Put the restriction 0<» <1 on the
manifold M. Define vector fields

512 5 ;2 5 12 o 1 9
1oy’ 727 €=%36° “4=rsinb ao"

These vector fields form an orthonormal frame u(m) at
each point me M={mc M(6+#0, 8#7 at m}. Let &be

the bundle metric [Riemannian, not topological] on L(M),

We may assume that the element

o oo
(== =R = B ove]
(=2 BN o B o]
(== =

of the Lie algebra o{1, 3) is used to construct one of the
six vertical vector fields on L(M) which enter into the
definition of 6 (see 1.1).

4.2: Consider the submanifold M, of M defined by
6=17/2, t=t,=const. This submanifold is a cylinder of
the type considered in Secs. 2 and 3. The metric is
given by ds?=- b%dr* + »®d¢?, which, it may be checked,
satisfies (A1)—(A5) of 2.2. Let LC L(M,) be the space
defined in Sec. 2, with ¥ the b-metric. Define a map
i:L—~L(M):{r, ¢, ) =u(m)-A,, where m={(r, ¢, 1/2, ¢},
u(m) is the frame (e;, ,, &, &,)(m), and A,< O(}, 3) is
the matrix

coshA 0 0 sinha
0 10 0
0 01 0

sinhA 0 0 cosha

4.3. Proposition: The map i is an isometry of (L, 7)
into (L(M), 6).

Proof: Let ey =(1/b)3/37, ey={1/7)3/3¢, and 3/3x
be vector fields on L, and let E be the vertical vector
field on L(M) defined by
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co(l, 3).

(= =R =)
(= =
(= =l ]
o o

1000

Clearly i,(e;) =&, ix(e,) =¢€,. A straightforward com-
putation shows that i, (3/92) =E. Now ey, €, and 3/3x
are y-orthonormal, while €, ¢, and E are 6-ortho-~
normal. Hence ¢ is an isometry.

4.4. Proposition: Let d be the topological metric on
L defined by 7, d the topological metric on L(M) defined
by 8. Then d(i(x),i(y)) <dlx, ).

Proof: Both d and d are defined by an infimum of a
iength functional over a class of curves. By 4. 3, the
class for d contains (essentially) the class for d. The
proposition follows.

In analegy with the two-dimensional situation, there
is a natural subset P of L{M)\ L(M) defined by horizon-
tally lifting curves f =const, 6=const, ¢ =const. Con-
sider the subset P, of P defined by those curves lying
in i(L), By 3.7, 4.3, and 4.4, P,={p}, a single point.
Write 7 for the projection L{M) - M.

4.5. Proposition: Every neighborhood of 7(p) contains
Mou

Proof: Let (m,) be the constant sequence all of whose
terms are (7, t, 7/2, ¢o) € M. By 4.3,4.4, and the
proof of 3.8, the sequence {i(vy, ¢, n)} (2> 1) converges
top. This proves 4.5.

4,6, Theovem: Let mc M. Then there exists g M
such that m is in every neighborhood of ¢.

Proof: Since SO(3) acts on M by isometries, we may
assume that §=7/2 at g. Apply 4.5.

4.7: Consider the FRW metric in the form (see Refs.
1 or 3) ds?=dt* + S8%(t) do?, where (i) do? is the metric
on a standard 3-sphere, and (ii) S=a(1 - cosT), t=a(7
- 5inT). We may write do? =d{? + sin®y(d6? + sin®0 d¢?).
Consider the submanifold ¥ = 8 =17/2. The induced
metric is ds®= - dt? + $%(t) d¢?; conditions (A1)—(A5) of
2.2 are satisfied. The various steps of 4. 1—4. 6 may
now be carried out to yield results analogous to 4. 3,
4.4, 4.5, and 4.6 [in 4.6, SO(3) should be replaced by
so(4)].

4.8. Remarks: (a) The techniques used in Sec. 4 can-
not be applied to the Reissner—Nordstrom solution, nor
to the Kerr solution.

(b) Presumably non-Hausdorffness, particularly of
the type considered in 4.6, is not a desirable property
of the &-completion. One has a situation in which points
of M, which intuitively are not particularly “close” to
the singularity, nevertheless are in every neighborhood
of some singular point. Perhaps a way around this prob-
lem would be to put something other than the quotient
topology on M. However, see the next remark.

{(c) Refer to Sec. 3 for a moment: One can show that

if
R a’\ d [b
S @) s @) 1<

Russell A. Johnson 901



then ¢ has a limit along any curve 7(s) such that #(s)
<0. It might be argued that, in this case, M should be
a circle, not a point. Thus, even if the topological dif-
ficulties with M could be resolved, questions as to
whether the b-boundary is a “good” boundary would
remain,

(d) Two conjectures concerning the b_-boundary: for
Schwarzchild, M is a line; for FRW, M is a point.
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APPENDIX

As in Sec. 2, we consider a cylinder 0<¥ <R <, ¢
taken mod 27, with metric ds?=— b%(7) d7? + a®(v) de®.
Let 1 be a horizontal, b-incomplete curve in L, and
let s =arclength along 7. Suppose that n “goes directly
to »=0" in the sense that #(s) < 0 for all s (observe that
a C’, timelike curve satisfying inf (s} =0 must also
satisfy #(s) < 0 for some choice of arclength parameter
s). We will prove a theorem which gives a bound on the
growth of Ms) along 7. The theorem is included here
because it is felt that bundle techniques will have further
application in the study of singularities. For, the bundle
length may be thought of as generalized affine param-
eter.! Hence, if a “singularity” is thought of as an
equivalence class of curves in M which are “incomplete”
in some sense, then the class of b-incomplete curves
is a natural object to consider.

Let 1(s) = (v(s), ¢(s), Ms)) be horizontal and b-incom-
plete, s=arclength. Write ¥, ¢, X for dv/ds, dg/ds,
d)/ds (as before, let a’ =da/dr, b’ =db/dy).

By (2),

A=[- a’(r(s))/b(T(S))]¢_ (A1)

The square of the length of 7(s) is [see (5)]
In(s)|1? =[coshX - b(¥)¥ ~ sinhX - a(r)p]2. (A2)

The proof of the following lemma is omitted.

A.1, Lemma: (a) (@ - b¥)2sinh®A(s) < [In(s)|I? if x> 0,

(b} b2+ (coshA(s) -~ sinhM{(s)? < [I7(s)1?
it 2> 0,
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(¢) (@@ +b¥)2sinh®M(s) < lIs)II? if A< 0,

(d) b2i2(coshX(s) + sinhA(s))? < [|n(s)|I?
if A<0,

A.2. Remark: Note that 5.1 really states a fact about
lengths of horizontal vectors; hence it holds for any
horizontal curve 1 with any parametrization s.

A.3. Theorem: Let 1:[0,s) ~ L be horizontal and b-
incomplete with #(s) <0 (s =arclength). Let A(s)
=b(r(s))a(r(s))/a’(¥(s)) coshX(s). Then lim, (A(s) =0.

Proof: Let I(s) = [ f(u) du, where

(ag - b¥) sinhA(s) if A(s)= 0,

A= (26 + b¥) sinhA(s) if A(s) <0,

Then f is continuous; we will write (abusing notation)
f(s) = (a@ # b¥) sinhX(s). By 5.1a and 5. 1c, lim,.3 I(s)
exists. From Eq. (A.1), I(s) = [y ¥ bisinhA(u) du

- [,%(ab/a")[AsinhMu)du, 0<s <s. Integrate by parts

in the second integral to obtain I(s) = [y b¥(coshx

#ginh)\) du — ab/a’ coshA)+ [f[at//a’ — aba” /a"]r coshAdu.
Let J(s) = [ b¥(coshA FsinhA) du. By 5.1b and 5. 1d,
lim,_ 5 J(s) exists. We have

(x) I(s) = J(s) = ={A(s) = A(0) + fos [a"/a
- b'/blrA(u) du}.

Now a”/a’ - b'/b=(d/dr) In(a’/b) <0 (A2), and ¥<0.
Hence the integrand in (x) is (for 0 < s < s) positive,
Suppose that A(s) = € >0 for some €. Then I(s) - J(s)
< ~{e-A(0) + e In[a’(r(s))/b(¥(s))] + € In[6(+(0)) /
a’(r(o) ]}

By 2.3d and the assumption ¥ <0, #(s)~0as s=s.
By (A2), the quantity in brackets tends to =, This con-
tradicts the existence of limits for 7 and J as s—s.
Returning to (*) and using A(s,) ~ 0 together with the
fact that the integrand is positive shows that A(s) - 0.

*This research was supported by NSF Grant No. MCS876-07195.
s, w, Hawking and G.F.R, Ellis, The Large-Scale Structure
of Space Time (Cambridge, London, 1973).

2B.G. Schmidt, J. Gen. Rel. Gravitation 1, 269—80 (1971).
3R.P. Geroch, J. Math, Phys. 9, 450—65 (1968).
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Phase-integral calculation of quantal matrix elements

without the use of wavefunctions
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Simple phase-integral formulas for the calculation, without the use of wavefunctions, of quantal matrix
elements of multiplicative and differential operators are given for the case of bound states in a single-well
potential. The matrix elements are obtained to within the accuracy corresponding to any conveniently

chosen order of the kind of phase-integral approximations used.

1. MATRIX ELEMENTS OF AN UNSPECIFIED
OPERATOR A

Consider the Schrodinger equation

2
% +Q%z,E)p=0, 1)

where, with obvious notations,

Q*(z, E) =(@m/®*)(E - V(2)]. @)

The function V(z) may be the actual physical potential
or an effective potential. Thus, if we are concerned
with the radial Schrodinger equation, V(z) is assumed
to include also the centrifugal term.

When the differential equation (1) is solved approxi-
mately by means of the (2N +1)th order of the kind of
phase-integral approximations considered in Refs. 1-3
and on pp. 126—31 in Ref. 4, there appears a function
q(z, E) defined by

N
q(Z,E)=Qmod(Z,E)§J Y, N=0,1,2,.--, (3)

the explicit expressions for Y,, up to Y, being given in
Ref. 5 and up to Y,, in Ref. 6. The function @4z, E) is
either identical to @(z, E) (unmodified case) or is another
function (modified case) chosen such that the first-order
phase-integral approximation becomes good at certain
points where it would fail, if the function Q(z, E) were
used (cf. Ref. 3 and pp. 126—31 in Ref. 4).

Let us now assume that we have a single-well poten-
tial and are concerned with a bound-state problem, for
the solution of which we can use the above-mentioned
“symmetric” (cf. the terminology introduced by McHugh
on p. 280 in his review article”) phase-integral approxi-
mations of the order 2N +1, The complex z plane is
assumed to be cut along the real axis between the two
generalized classical turning points, i.e., the two real
zeros of Q2 ,(z,E). 1t has recently been shown by
N. Froman® that the expectation value of an analytic
function f(z) with respect to a bound state with an energy
E, of a given single-well potential V(z) can be obtained
by means of the approximate formula

n| A2)|n) = fﬂz)q(z E) //q(z E)’ @)
r, Tp

where I, is a closed contour of integration encircling
the two generalized classical turning points, i.e., the
two real zeros of @2 _.(z,E,), as well as the zeros of
q(z, E,) associated with these two generalized classical
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turning points, but encircling no other zeros of

2z, E,) and ¢(z,E,). The formula (4), in which the
analytic function f(z) is assumed to be regular on and
within the contour of integration I',, is very accurate
for important classes of physical problems,

According to (2) the function @*(z,E) is real on the
real axis, and therefore it is no restriction to assume
the solutions of the differential equation (1} to be real on
the real axis. If ¥(z, E,) and ¥(z, E, ) are two normalized
eigenfunctions (real on the real axis) corresponding to
the eigenvalues E, and E_,, respectively, the matrix
element, with respect to those states, of an operator
A is defined by

(n|A|n)= fd)(z,E,,)A Wz, E,)dz, (5)

where the integration is to be performed along the part
of the real z axis which is appropriate to the range of
the physical variable z.

For the sake of simplicity, and for didactic reasons,
we shall now for 2 moment assume that the bound state
with the energy E, is the ground state. In this particular
case the wavefunction (z, E,) is different from zero
everywhere on the appropriate part of the real axis, and
therefore we can write (5) as follows:

, Azp z,E,)
nl|Aln)= fl)(z E,) e E) ¥(z,E,)dz
_ Alz
=¢S5 (®)
Using (4), we obtain from (6) the approximate formula
N AII)(Z,E":) dz
el l_fwz,ZT q(z,E)/fq(e AR

where Az, E,/) is assumed to be a regular analytic
function on and within the contour of integration I',. This
formula can be proved quite generally, i.e., without

the use of the simplifying assumption that the state »n is
the ground state. We shall, however, not dwell on this
question in the present paper, since a general proof

will be given in a forthcoming publication by the present
authors.

When @,.4(2, E) is chosen to be positive on the upper
lip of the cut between the two real zeros of @, (z, E),
and z lies sufficiently far away from the classically
allowed region, the normalized eigenfunctions (z,E,)
and ¥(z, E,), which are real on the real axis, are given
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by the approximate formulas (cf. Eqs. (30a,c) in tion that all wavefunctions are chosen to have the same

Ref. 9; cf. also Ref. 10) sign in the classically forbidden region to the right of
1 1)z . that turning point. The contours I', and T',; in (7) and
Wz, E,) = exp(4m2fq dz( /Z&I‘?);X)I;[i /;W(z’ E)l (8a)  (8a), (8b) can be replaced by a single contour (1‘ which
Tn > encircles (in the negative sense) the two real zeros of
and %w(2, E,) and the associated zeros of ¢(z, E,), as well
Lo 172 as the two real zeros of Q2 _(z, E,.) and the associated
Wz, E, )= exp(.,m()fq dz(jz’](z );x)[))l[nzw(z Ey )] (8b)  zeros of ¢q(z,E,), but doesm;ﬂ)t ,en'(':ircle any other zero
Tn’ of the functions @2 (z,E,), q(2,E,), @%.(2,E,), and
where the contours of integration ', and T, encircle, q(z,E,;). The contour T shall thus enclose the general-
in the negative sense, the generalized classical turning ized classical turning points, as well as the associated
points and the associated zeros of ¢(z, E) and where zeros of ¢(z, E), corresponding to both of the bound
w(z, E) =14 f g(z, E)dz ©) state_s'under considt?ration. We can al.so impose the
condition that all points z on I shall lie far away from
with the path of integration in (9) defined either as a the classically allowed regions corresponding to the
nonclosed loop around the left-hand generalized classi- energies E, and E,.. We can then use (8a), (8b) for ob-
cal turning point (cf. in Ref. 1 Eq. (11a) and Fig. 1b), taining an approximate explicit expression for the
which corresponds to the situation that all wavefunctions  quotient Ay(z, E,)/i(z,E,) in (7). The use of this
are chosen to have the same sign in the classically for-  approximate expression in the integrand of (7) is allowed
bidden region to the left of that turning point, or as a only when Ay(z, E,.)/¥(z, E,) is not a too large and too
nonclosed loop around the right-hand generalized rapidly varying function of z on the contour of integra-
classical turning point, which corresponds to the situa- tion I,

2. THE CASE WHEN A = g(z)

Letting A be a multiplicative operator g(z), which is a regular analytic function on and within the contour of inte-
gration I, we obtain, in the way just described, the approximate formula

1/2

expli[w(z,E,) —w(z,E, )]} dz /2 dz
st - f st 2Bl B e L rm:r) (rm) ’ (102)

which is valid provided that the function g(z) exp{i[w(z,E,) —w(z, E,)]} is not too large and too rapidly varying on the
contour I'. The larger and more rapidly varying this function is on T, the less accurate formula (10a) is expected
to be for a fixed order 2N +1 of the phase-integral approximations.

Interchanging the indices » and »’, and noting that the matrix element (nlgin’) is symmetric in these indices, we
obtain from (10a) the alternative approximate formula

et~ e SB[ Y ([

which is valid if the function g(z) exp{- i[w(z, E,) —w(z, E,.)]} is not too large and too rapidly varying on the contour
I'. The larger and more rapidly varying this function is on TI', the less accurate formula (10b) is expected to be for
a fixed order 2N +1 of the phase-integral approximations.

Formula (10a) is expected to be more accurate than (10b) when, on the contour of integration I', the function
g(z) exp{+i{w(z, E,) -w(z,E,.)]} is smaller than and less rapidly varying than the function g{(z) exp{~ i[w(z, E,)
-w(z,E,)]}, which is the case when E, >E,. if g(z) is slowly varying on I'. The accuracy of both (10a) and (10b) is
expected to increase when the quantum numbers # and »’ increase, while |n-#»’l is kept fixed. On the other hand,
the accuracy can be expected to decrease when In —#n’| increases, which is, however, not a serious disadvantage,
since the matrix elements then, in general, decrease and become small.

The importance of choosing the appropriate sign in the function exp{:i[w(z, E,) ~w(z, E,)]}, occurring in an inte-
grand in the matrix element formula ({10a) or (10b)], has been clearly illustrated by calculations on the harmonic
oscillator. ' The integrand in question is not large and has few oscillations when the appropriate sign is chosen in
the exponential, but becomes very large and has many oscillations when the other sign is chosen. For the same
relative error of the integrand, i.e., for a given order 2N +1 of the phase-integral approximations, one therefore
obtains a much more accurate value of the integral when the appropriate sign is chosen in the exponential.

For operators such as g(z)= 2" and g(z) =exp(¢k2), which may become large and rapidly varying on I" when p or
k|, respectively, becomes large, the accuracy is, in accordance with what has just been said, expected to de~
crease when p or ikl increases. Test calculations on the harmonic oscillator'* confirm this assertion.

When (10a) and (10b) are of comparable accuracy, it is reasonable to combine these two formulas to give the
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following alternative approximate formula:
1/2

172
cosfw(z,E,_) —w(z,E)] dz dz
<"lgl"’>=./g(2) 7 7%(z,E,)q" *(z,E ;) dz/(./q(z,E")) (fq(z,En')) ) (10c)
T T r

Test calculations on the harmonic oscillator and on a hydrogenlike ion!* show that when » and n’ are large, while
In~n’l is small, (10c) may be considerably more accurate than (10a) or (10b). In more general cases (10¢} is,
however, not as accurate as the appropriate one of the formulas (10a) or (10b).

If we specialize formula {10c) to the case of the first-order JWKB approximation and assume » and »n’ to be large
but only slightly different, formula (10c) can be transformed into the matrix element formulas obtained in the early
days of quantum mechanics with the aid of arguments closely connected with the classical limit and the correspon-
dence principle (cf., e.g., pp. 172—"73 in Ref. 12, pp. 173—74 in the Geiger—Scheel edition of Ref, 13, p. 85 in the
Flugge edition of Ref. 13, Refs. 14, 15, and pp. 178—83 in Ref, 16). However, such arguments are very unsatis-
factory when the quantum numbers are small, and furthermore there occur ambiguities in the resulting matrix ele-
ment formulas due to the fact that one is concerned with four classical turning points (cf. the discussion of Debye’s
matrix element formula below). The arguments in question would, by the way, fail completely when one uses the
higher-order phase-integral approximations with their strong singularities at the classical turning points and their
extremely great accuracy when these points are not approached.

To illuminate what has just been said, we refer, for instance, to Debye’s formula for the matrix element of a
variable x (corresponding to z in our notations). In Debye’s matrix element formula (12) in Ref. 12 the interval
(x,, %,) is not well defined, since the classically allowed region is different for each one of the two quantal states
involved. If one chooses x, and x, to be the interior turning points, Debye’s formula should be correct to the order
of magnitude. If, however, one choses x; and x, to be the outer turning points, Debye’s formula may be unreliable,
and it turns out that the matrix element of a power of x may be wrong by several orders of magnitude, if one of the
states is excited and the other is low-lying. This has been checked by calculations on the harmonic oscillator,

One can draw quite wrong conclusions when one tries to calculate quantal matrix elements by means of phase-
integral approximations without sufficient mathematical rigor and understanding of the delicate properties of those
approximations. To demonstrate this, we shall consider the diagonal matrix element, i.e., the expectation value,
of an analytic function g(z) with respect to a quantal state in) of a single-well potential. By definition this expecta-
tion value is

(n]g|ny = [gla)lWlz, E)} dz, (11)

where ¥(z,E,) is the exact, normalized wavefunction (real on the real axis), and the path of integration in (11) is the
interval of the real axis appropriate to the physical problem in question. Since the exact wavefunction is analytic,
and the same is assumed to be true for the function g{z), one can without any approximation replace the original
path of integration in (11) by a contour which lies everywhere far away from the classically allowed region, i.e. s
which lies in the region where the normalized wavefunction ¥(z, E,) is approximately given by (8a). On this new con-
tour of integration the relative error of the approximate wavefunction (8a) is very small (especially for large quan-
tum numbers #), and therefore one might be tempted to substitute the approximation (8a) for the exact, normalized
wavefunction directly in the integrand of (11), after the path of integration has been deformed as just described. In
this way one would conclude that the expectation value {(n!gln) were approximately equal to the expression

. dz _\* . dz
([ hey) " Jroemt-aint s s @2

One can, however, realize that this conclusion is erroneous by arguing as follows, Let us, in particular, choose
g(2) to be equal to @*(z, E,) and use the first-order JWKB approximation, which means that dw(z,E,)/dz=@(z,E,),
The expression (12) can then be written as follows:

. dz_ \* _1 d . d .
z(rn m) fQ (z,E,) exp[- 2iw(z, E )]Q(z AN ( / WZ,ZE?) fdzd exp{—-2iw(z,E,)]=0, (13)

the last member of (13) being obtained as a consequence of the assumption that exp[-iw(z, E )} tends to zero as z
approaches the end points of the contour of integration and the fact that [ r, dz/Q(z,E ) is different from zero. One
would thus, in this way, obtain the value zero for {(n|Q*(z,E,)|n) when the Tirst- order JWKB approximation is used.
By considering the harmonic oscillator we can in the followmg way see that this result is not correct. With a con-
veniently chosen dimensionless linear coordinate z for the harmonic oscillator we have Q*2,E J=02n+1)~2%, and
the exact expression for the expectation value of Q*(z, E,) is found to be equal to » +%, This value of {(n| ¥z, E D
is also obtained for all orders of the phase-integral approximations from the correct formula (4). The reason why
an incorrect result was obtained in the above way of arguing is that, in a large part of the region, in which (8a) is
valid with a very small relative error, the wavefunction is oscillating with a very large amplitude, and when one
calculates the integral in (11) by integrating in such a region, it is very dangerous to introduce any approximation
in the integrand.
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3. THE CASE WHEN A = g(z) d/dz

Letting now A be the operator g(z)d/dz, where g(z) is an analytic function which is regular on and within the con-
tour of integration I"', we obtain, in the way described at the end of Section 1, the approximate formula

<n n’>=[(— iq(z,E,) - 2q(zl,E",) dq(z,zEzg))g( )expl{;ng;(zEb;; w(z E ) } (/‘q(z 3 ))1/2(r ;]Tj_’%j)l/z

(14)

which is valid provided that the function ¢(z, E, ) g(2) exp{i{w(z, E,) - w(z, E, )]} is not too large and too rapidly varying
on the contour of integration. For the validity of (14) it is therefore in general required that E, > E,., unless one

uses phase-integral approximations of sufficiently high orders. This prescription has been confirmed by calcula-
tions on the harmonic oscillator,

g(z)fz—

Starting from the definition (5) with A =g(2)d/dz, and using partial integration, one easily obtains the exact
relation
<n n>:-—<n n>-<n g5 n>, (15)

which, in combination with (14) with the indices » and »’ interchanged, is often useful for the calculation of
(nlg{z)d/dzin’) when E, <E, ..

dag
dz

a
gdz

To illuminate the consistency of (14), we shall now consider the particular case of this approximate formula
obtained when n’'=n:

(et 1) - flen-sg et - [Leoes [ratR)ed [ %

Since g{z) is a regular analytic function within and on the closed contour T, and since ¢(z, E) is single-valued on
this contour, we can, after a partial integration, write the approximate formula (16) as follows:

(leotly [-3isse /e

This approximate formula can also be obtained directly by using the exact relation (15) with #»'=# and the approxi-
mate expectation value formula (4).

d
g(Z)EE

g2

4. GENERALIZATION

For the sake of simplicity we have in the present paper assumed E, and E,. to be energy levels in the same single-
well potential. Our results are, however, applicable also when E, and E,_. are energy levels in different, neighboring
single-well potentials. Thus, to mention a particular application, when we consider bound states in different, but
neighboring, single-well potentials and put g(z) =1, the formulas (10a), (10b), or {10c) can be used for calculating
Franck —-Condon factors.
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We study the Hamiltonians for nonrelativistic quantum mechanics—and for the heat equation—in terms
of energy forms [<7 A7 fdp, where dp is a positive, not necessarily finite measure on R". We cover the
cases of very singular interactions (e.g., N particles in R * interacting by two-body "8 potentials”). We also
exhibit, on the other hand, regularity conditions for pu in order that H be realized as a perturbation of the
Laplacian by a measurable or generalized function. The Hamiltonians defined by energy forms always
generate Markov semigroups, and the associated processes are symmetric homogeneous strong Markov
diffusion Hunt processes with continuous paths realizations. Ergodicity, transiency, and recurrency are also
discussed. The associated stochastic differential equation is discussed in the situation where p is finite but
the drift coefficient is only restricted to be in L,(R",dp). These results provide a large class of examples
where solutions of the heat equation can be expressed by averages with respect to the constructed Hunt
processes, rather than with respect to Brownian motion. This is discussed in relation to recent work of

Ezawa, Klauder, and Shepp, as well as of Hida and Streit.

1. INTRODUCTION

There is a well-known relation between the theory of
diffusion processes, Markov semigroups, second order
elliptic and parabolic partial differential equations, and
potential theory on the Euclidean space R", see, e.g.,
Refs. 1-7. New momentum to this study, especially
for the case of symmetric Markov processes, was
given more recently by Fukushima, see Refs. 8—10
and references therein. This approach, continued
particularly by Silverstein,'*''? is of the analytic poten-
tial theoretic nature, based on the study of general
Dirichlet forms, by methods extended from the previous
classical work of Beurling and Deny.'®'* In Refs. 15—18
two of us have adapted this approach to perform a
detailed study of the energy forms on infinite dimen-
sional spaces, with a view to applications in quantum
field theory.

The results and methods also have new implications
in the finite dimensional case, as remarked in Refs.
15, 16, and 19, however a systematic and detailed
study of this case is only undertaken in the present
paper. It turns out that the approach permits us, in
particular, to define positive self-adjoint energy
operators, Hamiltonians from the point of view of
quantum mechanics, for very singular perturbations of
the Laplacian (e.g., sums of two-body “5-interactions”
in three dimensions), and, on the other hand, to give a
natural incorporation of boundary conditions. More-
over, all Hamiltonians constructed generate Hunt diffu-
sion processes with continuous path realizations, having
the strong properties studied in the quoted work of
Fukushima and Silverstein. The finite dimensionality
of the space, as opposed to the infinite dimensionality
of the cases discussed in the preceding work (Refs.
15—18) allows for stronger results and in particular we
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can deal with forms which are given by nonfinite mea-
sures (i.e., nonnormalizable ground states).

Let us mention that a very detailed study of the case
where n =1, the measures are finite and smooth and the
potentials are lower bounded polynomials, is contained
in Refs. 20 and 21. We also refer the reader to these
references for many questions which can be profitably
discussed in that case and are not treated in our more
general situation. From another point of view, stimulus
for this work also has its roots in the discussions on
the relations between stochastic processes and quantum
mechanics, see, e.g., Refs, 22—-24, and more particu-
larly in the recent work of Ezawa, Klauder, and
Shepp. ?® The latter authors consider the stochastic
equation corresponding to the heat equation, under the
usual smoothness and growth conditions on the drift
coefficient. They emphasize and discuss particularly
the replacement of averages with respect to the
Brownian motion by averages with respect to the pro-
cess given by the solution of the stochastic equation
(“distorted Brownian path” picture). One of us, in
collaboration with Hida,'® has already given a detailed
mathematical analysis of this interpretation in the case
of Gaussian processes, in relation both to quantum
mechanics and quantum field theory. In this work it was
shown in particular that the transformation which
realizes the distorted Brownian path picture is the
canonical one in the usual technical sense of Gaussian
processes. Moreover, the advantages of the distorted
Brownian paths picture as a formulation of the dynamics
were emphasized and illustrated by examples. One of
the results of the present paper in relation of the
“distorted Brownian path” picture of Ref. 25 is a pre-
cise formulation of this picture for cases where the
drift coefficient is not restricted by the usual Holder
and growth conditions of the theory of stochastic equa-
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tions (in particular it may have singularities and at
infinity can grow faster than linearily). In terms of the
associated potential V, entering in the Hamiltonian as
a perturbation of the Laplacian, we allow singularities
(in fact, V need not even be a measurable function, it
can be a distribution) and more than quadratic growth at
infinity. This illustrates the usefulness of considering
the ground state —rather than the potential —as dynami-
cal input, This point of view has its historical roots in
Ref, 26, Let us now go briefly through the content of
the different sections in the present paper.

In Sec. 2 we study the energy forms in R" given by
{9fvgdy, where V is the gradient, f and g are C*(R")
functions of compact support, and u is a positive regu-
lar o finite Borel measure on R*. When the form is
closable in L,(R", dp), then it defines a self-adjoint
positive operator H, the energy operator. Theorems
2.1-2.4 contain sufficient conditions for the measure
i in order that the energy form be closable, hence H
well defined, and in fact equal, on a dense domain in
Ly(R", dp), to =V =B(x)+ Y, where A is the Laplacian
and B(x) is related to the measure u by B(x)=2Vd(x)/
¢(x), with du(x) = ¢(x)®dx. Sufficient conditions on the
measure u in order that H be realizable in the form
- v+ Vwith Va generalized respectively measurable
function are in Theorem 2.3, resp. Theorems 2.2 and
2.4, Theorem 2,5 provides a relation between the
growth at infinity of ¢(x) and the location of the lower
end of the spectrum of H. Essential self-adjointness of
H on a natural domain is examined in Theorem 2. 6.
Finally Theorem 2.7 extends the preceding results to
the case of operators of the form —o(x)A - 8(x) - ¥,
where o(x) is a positive function, and to arbitrary open
domains instead of R". A considerable part of Sec. 2
is devoted to the discussion of several examples which
illustrate the results and the range of application, such
as boundary conditions (Examples 1, 2, 8), “5 poten-
tials” (Examples 3 and 4 and Lemma 2. 6) and other
singular perturbations (Examples 5, 7, 9) (Example 9
is related to Ref. 27).

In Sec., 3 we show that the energy forms defined in
Sec. 2 fall, from the potential theoretic point of view,
into the class covered by the Beurling—Deny and
Fukushima methods, ®~1%:!3:14 and therefore generate,
in particular, Markov semigroups exp(-tH), {= 0,
Moreover we show that the energy forms are regular
local Dirichlet forms in the sense of Fukushima and
Silverstein,?®'** hence there exist Hunt® processes ¢,
which are properly associated with them and have con-
tinuous trajectories outside a set of capacity zero. The
results of Silverstein'! are then applied to discuss
ergodicity, transiency, and recurrency of the energy
forms and the associated processes.

In Sec. 4 we derive the stochastic differential equa-
tion satisfied by the process £, associated, by the con-
struction of Sec. 3, with the energy form. In the case
where du(x) = ¢(x)?dx, with ¢ such that ¢, Vo€ L,
€ Ly(R",dx), &, satisfies the stochastic differential
equation

dgg = B(gg)dt +dw¢s

where w, is the Brownian motion in R” with unit coeffi-
cient of diffusion, and 8=24"'Vv¢p. We also show unique-
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ness of the solutions within the class of Markov pro-
cesses with invariant distribution ., We end with a re-
mark concerning the “distorted Brownian path” picture
discussed in Refs, 25 and 19.

2. ENERGY FORMS IN R”

Let u be a positive regular o finite Borel measure on
R". Let L,(du) be the Hilbert space of real square inte-
grable functions and consider R" as a real Hilbert space
with its natural Hilbert structure. For f in the space
C(R") of continuously differentiable functions of com~
pact support we define the linear operator V from
L,(dp) to the Hilbert space L,(du)®R" by V=1{3f/

3%y, + -+, 8f/3x,}. We define the energy form E given by
u by
L (o 2

2
22 J 5x; 3x, du, 2.1)

E(f,g):(Vf, Vg):‘
for f and g in D(V).

We shall say that y is admissible if E is a closable
form in L,{du), which is equivalent to V being a closable
operator from L,(du) to Ly(dp)® R". In this case we
shall denote the respective closures of E and Vv
again by E and V. From now on we shall assume that
i is admissible and E and V are both closed.

Let E,(f,2)=E(f,g) +(f, g), where (f,g) is the inner
product in Ly(du), and set |fI2=E,(f, ). Then Ifl, is
the graph norm of ¥V and it organizes D(V) to a complete
Hilbert space. Since E is a symmetric nonnegative
closed form it defines uniquely a nonnegative self-
adjoint operator H on L,(du), and we shall call H the
energy operator given by the admissible measure .
Since V is closed it has an adjoint V* which is densely
defined and cone has H=V*V,

Theorem 2.1:If u is absolutely continuous with
respect to the Lebesgue measure such that the density
plx) =du/dx has a logarithm Inp(x) in D(V), then p is
admissible. On the other hand, if y is admissible and
the coordinate functions are in D(H), then lnp(x)< D(V).

Proof: Let 8(x) = vinp(x). Then one observes that
~ v — A(x) is a densely defined adjoint of v, from which
it follows that ¥ is closable. If, on the other hand, u
is admissible, then H=Vv*V and Hx,
=v*{0,0,...,1,0,...,0}. Hence for fc C5(R") we have
(f,Hx)=I[(3f/3ax)du, since C5(R")CD(V). Since u is
o finite, it defines a distribution u and in fact we have
Hx,;=~ (3/3x)u€ L,(dp), in the sense of distributions.
1t is well known from the theory of distributions that
this implies that p is absolutely continuous with respect
to the Lebesgue measure so that dj = pdx and moreover
ap/ox,=(9/2x,)p in the sense of distributions. Hence
(f, Hx,)= ~(f, 9p/3x,), where the left-hand side is the
L,{dp) inner product. Thus we have Hx,du=-293p/0x,
as distributions, i.e., Hx,p(x)=-3p/3x,(x), and there-
fore Vp/pe Ly(du). This proves the theorem. "

Let us now assume that u is absolutely continuous
with respect to the Lebesgue measure, i.e., du(x)
=plx)dx and set &(x)=p(x)*/2. Then ¢ < LI°*(dx). Lnp(x)
e D(V) is equivalent to In¢(x) € D(V) and in fact
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8=2V1n¢. Now

2
”/3”2:4“V1n¢”2:4f|V{Zﬁ; d“:4/lv¢‘2dx.
(2.2)

So we see that 8¢ L, {du) iff Vo & L,(dx).

We observe now that if we only have V¢ < LI°%(R")
then, with A(x}=2vIn¢(x}, we still have that — V- 8(x}
is defined on C}(R") and is a formal adjoint of V. Since
Cy(R") is dense in L,(R"), V is closable and thus pu is
admissible. Moreover, in this case we also have that
v maps C3(R") into CA(R") T D(V*), since V*=~ v ~B(x).
Therefore, we have that C(R") C D(H) and, for fe Ci(R"),

Hf = - 8f - B(x) - Vf(x), @.3)

where Af=Y 7 8%/ax%. If, in addition, we have ¢
€ L,(dx), then p is bounded and 1 € L,{du) and obviously
H1=0.

On the other hand, if ¢, V¢, Vo/P, and Ad/¢ are all
in L]°(R"), where the derivatives have to be understood
in the sense of distributions, then for fe C3(R"} we have
that ¢™' fc D(H), because

U = vf - ¢ %fb-f (2.4)

is in L,(du), so that ¢ fe D(V) and

E(¢7f, o) = [onfl)(= A+ V() AX) dx,
with

(2.5)

V) = =L ()= 18l - ) + 39 - L), (2.6)
Since V=24¢/¢ € L}**(R"), it follows that CZ(R")
CD(—A+V), so that by (2.5) and the definition H we
have ¢ fc D(H). Hence f —~ ¢™'f is an isometry be-
tween Ly(dx) and L,(dp) which takes H into a self-adjoint
extension of ~ A + V(x) as defined on C3(R"). In fact the
form

S o )= &+ V() flx) dx 2.7

restricted to f= ¢g with g C}(R") is a closable non-
negative form and the operator defined by its closure is
the image of & under the isometry f . ¢ f between
L,(dx) and L,(du). If, in addition, V(x)> —¢|x/? for
some constant ¢, then — A +V is essentially self-adjoint
on C(R") # so that in this case the image of H in L,{dx)
is the closure of — A +V, Other conditions for —=A+V
to be essentially self-adjoint on C(R") are well known,
e.8., VEL,(R") +L.(R") for n<3 or Ve L, (R") +L.(R")
for some p >n/2 for n > 4,% We formulate these results
in the following theorem.

Theovem 2.2: 1. Let u be absolutely continuous with
respect to the Lebesgue measure and set d u(x)
= ¢3(x)dx.

If V¢ is in L}°°(R"), where the derivative is taken in
the sense of distributions, then p is admissible. More-
over, C5(R")CD(H), and for fe C}R") we have

Hf=~ Af - 8- Vf,
where 8(x) =2¢7"(x) vé(x). If, in addition, ¢ < L,(dx),
then 1 €« L,(du) and H+1=0,
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2, Let u be equivalent with the Lebesgue measure
and let V¢, »'ve, and ¢*A¢ be all in L}*(R"), where
the derivatives are taken in the sense of distributions,
Then ¢ C3(R") C D(H) and for f< C{R")

Hp f=¢p =2 +V),
where V{(x)=(A¢/¢)(x)=58(x)- Blx) +5V - Kx).

Moreover the isometry f —. ¢ f between L,(dx) and
L,(du) takes H into a self-adjoint extension of - A + V{x)
on C4R"). If, in addition, V{x)> -¢|x|? for some con-
stant ¢ then - A +V is essentially self-adjoint and hence
¢Ho™ is the closure of —A + V. -

We shall now consider in more detail the case where
u is equivalent with the Lebesgue measure, and we
assume in addition that V¢ and ¢™*v¢ are in L1°%R").
In this case it follows from (2. 4) that ¢ *Ci(R")C D(V),
and for fin C3(R") we have
2
B, 67 ) = [Vf' w2597 +(Z) s ax

Rn

= f Vf+ Vfdx
R’]

-3 f V(7% Blx)dx +3 [ B2 f*dx, (2.57)
RrR"

which is to say that for fe C3(R")
E($7f, 07 = [V Vfdx + [, GV B+587) f2ax,

(2.8)
where the derivative VS8(x) is to be taken in the sense of
distributions. So introducing the distribution V(x)
=3VB+38% we have that, for fe C3(R"),

E(¢7'f, ¢ )= fR" Vi vidx + [ f Vidx.
We state these results in the following theorem,
Theorem 2.3: Let u be equivalent with the Lebesgue
measure and set du(x) = ¢*(x)dx, and assume that V¢
and B(x)=2¢"'(x) vo(x) are in LI°(R"), where the
derivatives are taken in the sense of distributions. Then
¢ 'CMR") c D(V)=D(H?). The distribution V{x)
=3VB+:B% is a continuous linear functional on C}(R")
and for fe C;(R") we have
E(¢7 f, 7 = [ a V| 2dx + [0 V2 dx,
where V is here considered as an element in the dual of
Ci(R™). Moreover, the right-hand side in the equation
above is a form defined on Ci(R") xCj(R") which is non-
negative and closable in L,{dx), and this form is the
restriction of the form of the self-adjoint operator
¢HP™ in L,(dx) to Ci(R™) XCL(R"). .
There is another version of the first part of Theorem
2.2 which we shall give, but first we need some nota-
tions. If T is a distribution we shall say that
TeL,°(R"-A), where A is a closed set, iff for any
fe Cy(R" —~ A) we have that the distribution f(x)T(x) is
actually given by a function in L,(R"). We then have
Theorem 2.4: Let du(x) = ¢*(x)dx where ¢ € L}*(R").
If there is a closed set N of Lebesgue measure zero so
that the distributions V¢(x) are in L}°(R" ~ N), then
is admissible and for any f € C3(R" - N) we have
Hf=~Af - 8- Y/,
where B(x) =2V(x)/p(x).

(2.9)
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Proof: Let f€ C{R") and g CHR" ~ N). Then

[ vfgdax=—({f, % g¢?).
Now since ¢ € L1°(R") we get that

V(gd $)=V(go) ¢ +g¢p Vo

=Vg ¢* +2g¢ V¢

in the sense of distributions by utilizing the fact that
the derivatives of distributions are the weak derivatives
with respect to translations, and that the product of two
L ,~convergent sequences converges in L;, which im-

plies distributional convergence. From this it follows
that

[ v gotdx=~ [ f(Vg +Bg)ddx

and obviously B(x):g(x) € L,(du), so that ~ V - (x) de-
fined on Cy(R" = N) is a formal adjoint of V. Since

C3(R" - N) is dense in L,(dp) we have that v is closable,
and therefore u is admissible. That for fe Ci(R" -~ N)
we have that Hf = ~ Af - 8Vf follows from the fact that

Vv maps Ci(R" - N) into C}(R" -~ N) which is in the D(v*)
and where V* takes the form - V - 3, together with the
fact that H=v*v, n

We shall now give some examples to illustrate the
strength of the theorems above. We shall not give all
calculations in connection with the different examples,
but in each case the statements can be easily verified.

Example 1: Let & CR" be compact with 9 piecewise
C'. Then 4, in L,(Q) with Dirichlet boundary conditions
on 9L is well defined as a self-adjoint operator and it
has discrete spectrum. Let A, be its lowest eigenvalue
and ¢, be its lowest eigenvalue and ¢, be its corre-
sponding normalized eigenfunction. It is well known
that ¢, may be chosen nonnegative in which case it is
unique. We define ¢{(x) =0 for x ¢ € and ¢(x)= ¢4(x) for
x €, then ¢(x) is continuous and piecewise C'. We
define d i = ¢p*dx. It follows now from Theorem 2.2 that
u is admissible. And by utilizing that ¢,(x) is in fact
strictly positive in the interior of & we actually find
that

PHO™ = =8y +1,
as a self-adjoint operator in L,(R, dx).

Example 2; Let 2 be as in Example 1 and let A, be
any eigenvalue of 4, and ¢, be its normalized eigenfunc-
tion. Again we extend ¢, to R" by setting it equal to zero
outside Q. Let du = ¢?dx where ¢ = ¢,. Again we have
that i is admissible and in fact we find that in this case

PHG™ = = By +1,

where 4, is the self-adjoint Laplacian with Dirichlet
boundary conditions on the set ¢,(x)=0. This means
that — A, is the operator given by the closure of the
form [, 19g|®dx, where g€ ¢,CH{R").

Example 3: Let n=3 and ¢(x)=(47|x]) " exp(-m|x])
with m 2 0. Then Vo(x)=—=@nlx1®) 2t (x =mx(xl)
xexp(~m|x) which obviously is in L}°(R® ~{0}). Hence
we have by Theorem 2.4 that u is admissible for all
m=0,
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Let fe CL(R®) such that f(0)=0, we then easily find
that ¢ fe Ci(R®)C D(V). By computation we have

E(7f, 7 N= [ L VF|2 +m?| £ %) dx.

Moreover, it follows from this equation that if
F< C4R?) with f(0)=0 we have that ¢~ f< D(H) and

(o HO™)f =(~ & +m°)f,

so that in this case ¢(H —m?)¢™ is a self-adjoint exten-
sion of — A defined on fc C}R®) with f(0)=0. This self-
adjoint extension - A, is actually different for different
values of m since it has (47lx]|) exp(—m!x|) as an
eigenfunction with eigenvalue m? for m >0 and no eigen-
function for m =0, Hence 4, is a one parameter family
of self-adjoint extensions of & on fe Ci(R%) with f(0) =0.
For a complete characterization of all the self adjoint
extensions of this operator see Ref, 31,

Example 4: Let us set n=3N and let us write xe R"
as {x;,..., %y} with x,€ R, Let 4, be 4, so that
A=3", A, Set

1 N
(z)(x):-‘l—;g} ixl—le'lexp(—r}'l'xi—xj\

with m > 0. We then obviously have that ¢ ¢ L}°°(R").
Let D={x|x,=x, for some i #}, then obviously D is a
closed set of measure zero and it follows from the
formula for V¢ in the previous example that vo(x)

€ L1°¢(R" - D), Hence we have by Theorem 2.4 that u
is admissible for all m >0,

We observe now that, for x€ R" ~D, Ad(x)=(1/4n)
XPA A8, +8) X %, —x, 1" exp(-mlx, - x|, so that for
xe R" —D we have A¢p =2m?¢p. Therefore, let
f€ CYR" - D), we then easily find that

E@7f, 07 = [ ol 7 |2 +2m?| £ dx,
or if fe Ci(R" -~ D) we have that ¢ f< D(H) and
(pHP™ ) = (- A +2m?)f.

So in this case ¢(H —2m?)¢™" is a self-adjoint exten-
sion of - & defined on C3(R" —D). These self-adjoint ex-
tensions are actually all different from the usual
Laplacian since any fe C3(R") C D(H) implies that ¢f for
f€ C3R™ is in the domain of ¢H¢™ and ¢f is evidently
not in the domain of A, In fact from Theorem 2.5, to
be proven subsequently, it follows that # has O as a
greatest lower bound for its spectrum, so the extension
d(H ~2m*) ¢! has —2m?® as a greatest lower bound for
its spectrum. Hence the extensions for different values
of m are all unitarily inequivalent and therefore differ-
ent for different values of m. We therefore have:

Let
Am = (‘b(H - 2m2)¢'1n

Then A, is a self-adjoint extension of the restriction of
A to Ci(R" - D) where xe D <= x,=x, for some i#j,
such that —2m? is the greatest lower bound for its
spectrum. So obviously A, =4, =>m;=m; and more-~
over A, for m =0 is still different from 4. Hence &,
i.e., &, for m =0, is an extension different from A
which is nonnegative. Moreover, 4, is obviously in-
variant under arbitrary translations or permutations
and under O(3), since ¢ is invariant under these groups.
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For previous discussions on the self-adjoint extensions
of the restrictions of A to C3(R" - D) in the case of
N=3 see Refs. 32 and 33.

Example 5: Let ¢(x)=1 for |x| <1 and ¢(x) = lx ="
for |x! =1, xe R". Then obviously ¢ < L;°*(R"). More-
over V¢ =0 for {xl <1 and Vo==(n=2) Ix| " Nx/
Ix1) for Ix] =1 is also in L1°*(R"). Also B(x)=0¢"'V$ =0
for Ixl <1 and B(x)==2{(n-2) [x|%x for x>1 is also in
L1°%(R"). We continue now according to Theorem 2.3
and calculate the distribution V(x)=%V-B+3B82%. We find
that 9+ 8=(2n =4)56(x* = 1) = (n = 20 ix| 2 6(x* - 1), 18°
=(n-=2)%x126(Ix)12-1), where 5(x* -1) is the measure
concentrated on the sphere of radius 1 and 6(s)=1 for
s >0 and 0 for s <0, From this we see that V(x)=
=2(n-2)5(x* =1). Hence we get from Theorem 2.3 that
i is admissible, that ¢~*CL(R") < D(H'/?) and

E(¢™f, ¢>"f)=fgn)Vdex+2(n—z)'f'_lf(x)2ds.

If we replace ¢(x) by ¢(x) + a, then 2(n —2) would go to
A=2{r -2)/(1 +a) in the formula above., We easily see
that ¢~'CL(R") is dense in the graph norm in D(#'/?),
from which it follows that the closure of the form above
gives the operator ¢pH¢™.

Example 6: Let ¢(x)=exp(x*/2), then V¢ =xexp(x*/2)
and 8(x)=2x are all in L}°°(R") and also V(x)=x® +n is
in L!°¢(R"). Hence according to Theorem 2.2, part 2
we know that ¢! C3(R") C D(H) and

PHP" =-Aa+5*+n

on CZ(R"). On the other hand, the operator —4& +x% —n
is the harmonic oscillator which is essentially self-
adjoint on C3(R") and has zero as a lowest eigenvalue
with corresponding eigenfunction exp(~x*/2). Hence we
wee that this furnishes us with an example where the
spectrum of H does not go down to zero but in fact A

> 2n. It is also an example of a case where ¢ € L,(R")
but where H still has discrete spectrum.

That the spectrum of H in this case does not start at
zero has to do with the growth of ¢ at infinity. We shall
see this in the next theorem. First we need a
definition.

Let u be absolutely continuous with respect to the
Lebesgue measure with dp = ¢?dx and ¢ € Li°(R"). Let
a, = u({x; 121 <7}). Then for any » >0 we have that
a'a,, -1 is an upper bound for the infimum of the
spectrum of H., We shall say that y has growth of exact
order k iff a,=Cr* +0(v*) for some k> 0. We see that
if @, has growth of exact order %k then a;‘ar,l -1 con-
verges to zero as v — o, This gives us the following
theorem.

Theovem 2.5: Let du = ¢%dx with ¢ € LI°(R"). If o
has growth of exact order % and u is admissible then the
infimum of the spectrum of A is zero. o

Let now

N
¢(x)=é§ [x,=x,| " exp(—m|x, ~x,]| (2.10)
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with x€ R", n=3N and x;€ R*. Then
1
2 o _ -1 - -1
o(x) —"“—lsﬂz{d‘xi xj] EAEN
<1

XexP(‘mlxi‘le exp(_m'xk—le

Then obviously

1 2
/¢(x)2dxzwz_} /,x,—x,f

x| &y
xexp(—2m|x; - x,|)dx +0(r"®)
(2.11)

or after a change of variables y=(1/V2)(x;-x,) and z

=x6yeR™3,
YA

/ N(N=1)
/ i) dx =g
iy12 41212 €p2

Ixl <y

Ix| =r

xexp(-2vVZm|y|)dydz +0(r*), (2.12)
Now set s= |yl and t= |2},

Ly 2exp(~2vam|y|)dyaz (2.13)

iv12e 1212y

=8| |S.| [ [ exp(-~2V2Zms)t"tasat,

52442472

where |S,! is the area of the unit k-sphere. Equation
(2.13) is equal to

IS, | |SH|:;_-_—34/r exp(—Zﬁms)[l —(%)2] " s

=[(n —=)2vEm] ™ |S,]]S,.a| ¥ + 00 ™).

Hence we have proved the following lemma.

(2.14)

Lemma 2.6: If du = ¢p*dx where
1 X 1
¢(x)_—_4—n§j [x,.—xl.l exp(—mlxi—xj[,
then

[ du=NWN-1)[647 (3N -4)2V2 m]™"
Ixf=r
x| S, | 8,47 ¥ +0(r37 %)

so that u has growth of exact order 3(N ~1), hence by
Theorem 2.5 the infimum of the spectrum of H in
Example 4 is zero, .

Example T: Set ¢(x)=1x!"* with xc R", Then for
@ <n/2 we have that ¢ € L1°(R") and V¢ = - ax| x| *?
is also in L1°*(R") for @ <n/2 -1, B{x)=-2ax|x|? is
in Li°(R") for n= 3. In this case we find V=3va+48?
which gives V(x)=-a(2 ~2 -~ @) x| 2. Hence by
Theorem 2.3 we have that, for @ <n/2 -1 and n> 3,
du=¢?dx is admissible. @ <n/2 —1 is equivalent to
A=an -2 - a) <{{n -2)?, so by Theorem 2.3 we have
for fe Cy(R") that

E(¢™f, o7 )= [

o T l2dx o[ 5] 2 | £ |ax

for n= 3 and A <3{n —2)%. Since the form above is the
restriction of E to CyxCj it is bounded below, hence it
is obviously also bounded below for A =3(x —2)?, which
is a classic inequality of Rellich.
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If, however, n/2 —1< o <n/2, then we still have that
¢ € L;>*(R") and V¢ € L1°(R" - {0}). Hence by Theorem
2.4 du = ¢%dx is still admissible, and in this case
-2 < <i(n -2 +n/2 -1, By Theorem 2.4 we
get that the formula above for the energy form still
holds but now only for fe C3(R" -{0}). Hence we find the
rather interesting result that for any » the form

Sl =n [ alx| 2 f[2ax
defined for x» <z(n —2)* +n/2 ~1 and for fe CXR" -{0})
is bounded below and in fact it is the restriction of the
self-adjoint operator ¢ Ho™ to C3(R" - {0}). For other
discussions of the above form see Refs. 30, 34, 35
(Chap. X), 36, 37, and 38.

Example 8: Let DC R" be open and set ¢(x)=1 for
veD and ¢(x)=0 for x¢D. Then ¢ € LI°(R") and V¢
€ L1°(R" - 3D) and since 3D is a closed set of measure
zero we have that du = ¢*dx is admissible and obviously
for any fe Cy(R")

E(f, A= [, |vf|?dx while (f,9)=[,|7|?ax,

from which it follows that H is the Laplacian with
Neumann boundary conditions in L,(D).

Example 9: Consider the measure du{x)= ¢{x)*dx on
the real line, where ¢(x) is the solution of the equation

(—A+gV)¢:O,

with V(x}= Ixl™®, o >0 for x+0, and g a positive con-
stant, As o grows we have interactions of increasing
singularity. We have, for a#2,

2Vg »
(P(x):a,x’1/21'2_0”_1(]_2__g(F | x| 2 )/z)

2Vg -
+b ’x’ 1/zl(lz-ml'l ('2 __ga| le(z nz)/2)

where [ and K are Bessel functions, and for a=2,

¢)(x):a|x11/2+q717'4 +blxl1/2-m_

We list the results of Theorems 2.1-—2. 4 (which all
imply that yu is admissible) and their applicability to
the present example in Table I.

The potentials of Example 9 are standard examples of
singular perturbations, of e.g., Ref. 27. We shall see
that the corresponding dynamics may be expressed
directly in terms of stochastic processes.

Theorem 2, 6: Let du(x) = ¢*(x)dx with ¢(x) bounded
below by a positive constant on each compact, and
assume that V¢ and A¢ are in L}°(R"), where V¢ and
A¢ are the distributional derivatives of ¢. Then u is
admissible and ¢™ C3(R") C D(H) where H is the corre-
sponding energy operator, For any fc ¢ C3(R"), H
has the form

Hf=- Af - B- Vf,
Assume now, in addition, that B=2¢"1v¢ is in LI°°(R")
and satisfies the condition V8= V,(x) + V,(x) with V,
€ L,(R") with p=2 for n<3, p >2 for n=4 and p = n/2
for n=5, and V, € L,°(R") with V,(x)= —cs® —d, for
some constants ¢ and d. Then H is essentially self-
adjoint on ¢ C3(R").

Proof: By the fact that ¢ is bounded below on com-
pacts and V¢ as well as A¢ are in L1°°(R") we have that
Vo le LI°R") and Ap™ = ¢V where V=5VB+5if is
in L}°%(R"). From this we also get that 8=2¢"v¢
€ L1°*(R"). So by Theorem 2.3 u is admissible and
$-1C3(R") is in D(H'/?), moreover we have

E(of, 07 )= [ |V [Pax + [, Vitdx
= [ S=a+V)fax.

Now under the assumptions of the Theorem — A +V is
essentially self-adjoint on C5(R"). This follows from
the Faris—Lavine theorem (Theorem X. 38 3®) and its
corollary. Hence the form above has a unique closure
so that

pHO ' =~A+V

TABLE 1.
Conditions Result on H Example 9
A, du=didx (absolute equivalence)
Theorem 2. 4: H =—A BV a>2 witha=0
¢ Lic, e Lic(R~N) CiR"~N) a=2 with b=0
if g=3%
a<2

Theorem 2.2.1:
pe Loe, Vo Lloc

Theorem 2.1:
¢ S L%OC’ V¢ € L2

B. du~dx (equivalence)

Theorem 2. 3:
¢,Yp, 0”1V € Lioe

Theorem 2., 2.2:
¢, V9,071V, ¢ 1 Vo e Lo

with V=¢"1A¢ =18 B+ V8

HI =—A—B+V
Ci(R™

E@ 1f,071) = [lv 2+ VFidx,
fec}

a>2 witha=0
a=2 7 b=0
a<2 7 b=0

a<l withb=0

Hot ‘Cg=¢"(—/.\+v>

a<i withb=0
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as a self-adjoint operator. However - A +V is essen-
tially self-adjoint on C; so that H is essentially self-
adjoint on ¢™'Cy. Moreover, the identity Hf= - Af -

~ BYf, f= ¢™'g follows from the fact that H¢ g

=¢ (- A+ V)g, together with the definition of V. This
proves the theorem. .

Let 2 C R” be an open sSubset of R”. Let u and v be
positive regular o finite Borel measures on £ and
absolutely continuous with respect to v. For f,g in C()
we define the energy form given by u by

E(f, @)= [ V- Vgdi. {2.15)

We shall say that u is v admissible if the form (2.15) is
closable in L,(8,dv). We then have the following
generalization of Theorem 2.4,

Theorem 2.7: Let u be absolutely continuous with
respect to v, such that du = ¢*dx and dv=9*dx in @,
with ¢, ¥, and ¢y™ in L1°°(Q, dx)=L}*(R), where dx is
the Lebesgue measure in Q, If there is a closed set N
C Q of zero Lebesgue measure and V¢ as well as
¢+ (Vi/p) are in L1°(2 ~ N), then 4 is v admissible,
i.e., the form E(f, g)=/oVf- Vgdu as defined on
CHR)xCLR) is closable in L,(dv). Let H be the operator
associated with the closure of this form. If 8=2¢Ve/
y? is in L1°%(Q -~ N), then for fe C4(Q - N) we have that

Hf= -0 Af ~ B Vf,
where o=1{du/dv)+ (¢*/4*).
Proof: Let fe Ci(©) and ge C{(Q = N), then

£, 0= (% Vf) (% Vf) Fax

so that E(f, f) is the square of the graph norm of the
operator f— ¢ Vf in L,{dv). So E being closable in

L,(dv) is equivalent with ¢y™'V defined on CL(R) being
a closable operator. We find as in Theorem 2. 4 that

S B Phi 4

b P

on CX& - N) is a densely defined adjoint and therefore
1™ 9 must be closable, The formula for H follows by
direct calculation. This proves the theorem, .

%0, $ %)

3. DIFFUSION PROCESSES IN R

As in the final part of Sec. 2, let & be an open subset
of R" and let dyu <dv <dx, i.e., du = ¢?dx, dv=y’dx
with ¢yt € L1°%(R), such that p is v admissible in .
Let exp(~-tH) be the strongly continuous semigroup
generated by H, where H is the self-adjoint operator
associated with the closure of the energy form E(f, g)
=[Vf+Vgdu in L,(R, dv). We know that exp(—tH) is a
strongly continuous contraction semigroup in L,(dv).
Exp(~{H) is called Markov if 0<f<1 implies 0
< exp(-tH)f<1. A nonnegative symmetric bilinear
form € on Ly(dv) is called Markov if for any 6 >0 there
exists a nondecreasing function ¢,(¢), £t € R with ¢,(¢)
=tfor0<t<1, {¢,() < Itl, and -6< P, (t)<1 +6 for
all € R, such that for any function f € D(e), where D(e)
is the domain of ¢, we also have ¢,(f) € D() and

ldy (1), dolMN <elf, 1) 3.1)
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Theovem 3.1 (Fukushima): If € is Markov and closable
then the self-adjoint operator associated with the closed
form is the infinitesimal generator for a semigroup
exp(- ¢tH) which is Markov. Moreover, if a strongly
continuous semigroup exp(—:H) is Markov, then the
closed form defined by its generator is Markov.

For the proof of this theorem see Ref, 9.

Theorem 3.2: Let Q be an open subset of R” and let
dyu <dv <dx, such that p is v admissible. Then the
energy form E(f, f)=[Vf+ Vf diu defined on C4{Q) is a
closable Markov form. So the energy operator H given
by the closure of E in L,(dv) is the infinitesimal genera-
tor of a strongly continuous Markov semigroup
exp(-tH).

Proof: Let ¥, @ CXR) be such that 0< ¥ ;<1 and ¥,{¢)
=1for 0<i¢s1, ¥,(4)=0for te(~5, 1 +8). Note that
for any 0 >0 there exists such a ¥,. Let ¢,(¢)
= [t ¥,(7)dT. We then have for any fe Cj(R") that

E(0s(f)y 0o =[|¥,(N]? |vf|2an

< [|vf *du,
which proves that E is Markov. The rest of the theorem
follows from Theorem 3,1, .

We shall now assume that the measure v is every-
where dense in €, i.e., that y{x) >0 a.e. with respect
to the Lebesgue measure, where dv=y?dx. A regular
Dirichlet form in the sense of Fukushima® is a closed
Markov form such that D(€) N C,() is dense in D(e) in
the €(f, f) +(f, f) norm and also closed in Cy(§?) in the
supremum norm, where C,(Q) are the continuous func-
tions in  which vanish at 9 or at infinity. Since ob-
viously Cy(®) is dense in C,(€) and also by definition
in D{E), the domain of the closed energy form, we have
that the closure E of E is a regular Dirichlet form.

Lemma 3.3: The closure E of E is a regular Dirichlet
form in the sense of Fukushima. ]

Let A be open in 2. We define the capacity of A by

inf Elu,u) +u, u), ifL,+0Q,
Cap(A): u€ L,
oo if LA:¢;

where L,={ueD(E); u>1 v-a.e. onA}.
The capacity of any subset B of  is then defined as
Cap(B) =inf{Cap(4); BC A and A is open}. (3.2)
Cap(B) is a strongly subadditive Choquet capacity.®

We say that a set B in @ is polar if it is a Borel set
and Cap(B) =0.

For any Borel set AC 2, we denote by A(4) the o~
algebra of Borel subsets of A, while B(4) will stand for

the space of all 8(A) measurable bounded functions in
A,

Suppose now that we have a Markov process £;(w) with
state space (Y, 8(Y)) where Y is some Borel subset of
Q. We adjoin a “death” point 3 to ¥ and regard YU 3
as a topological subspace of the one-point compactifi-
cation QU 3 of Q. The transition semigroup given by
the process &, will be denoted by P,: P, fix) =E (f(t,)) for
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x< Y and fe B(Y). Following Fukushima,® the Markov
process &; is then said to be properly associated with
the energy form E if

Cap( - V) =0 (3.3)

and P,f is a quasicontinuous version of exp(- tH)f for
each fe L,(dv)N B(Y) and ¢ >0. A function g is said to
be quasicontinuous if it is defined in the complement of
a set of capacity zero and if for any 6> 0 there is an
open set G of Cap(G) < 6 such that the restriction of g
to Q-G is continuous and continuously extendable to
QU 3 - G by setting g(3)=0.°

We now have the following theorem, as an immediate
consequence of a corresponding theorem of Fukushima.

Theovem 3.4:1f u is v admissible then there exists a
Hunt process &, properly associated with E a

For the definition of a Hunt process see Ref. 3,
Chapter XIV.

A regular Dirichlet form € is said to be local if for
any f; and f, in D(€) N Cy(22) we have that €(f;, f,) =0
whenever f; and f, have disjoint supports. It is easy to
see that the closure of E is local. It follows then from
a theorem of Fukushima and Silverstein (see Refs. 28
and 11, Theorem 11,10, p. 124) that the process £, of
the previous theorem can be so chosen that it has con-
tinuous trajectories on YU 3. We therefore have

Theovem 3.5: If | is v admissible then the process
&, of the previous theorem has continuous trajectories
on YU 3, or equivalently £,(w) is continuous in Y for
almost all @ and for 0<{<¢{, where ¢ is the lifetime of
the trajectory, i.e.,

£(w) = inf{# > 0 such that &(w)=23}. .

It follows from the positivity and symmetry of
exp(~ tH) that it extends to contraction semigroups in
L*(dv) for 1<p <= which are strongly continuous con-
traction semigroups in the cases 1 <p <=, We shall
say that the energy form E is ergodic if the correspond-
ing semigroup exp(-¢H) is ergodic. We now have the
following lemma which is a direct consequence of Ref.
11, corollary 1.5, p. 12,

Lemma 3.6: If E is ergodic and f, g > 0 v-almost
everywhere and in L,(dv), then

{x: (HAP (%) < oo} ={x: (H @) (x) <},

where H is the infinitesimal generator of exp(- {H) in
L1. a

If E is ergodic we say that the energy form £ is
transient if Hf is finite v-almost everywhere for all
£ in L,(dv) and vecurrent if H f== v-a.e. for all f in
Ly(dv) and vecurrent if H*f = v-a.e. for all f> 0 and
nontrivial in L,{dv).

We have the following theorem which follows from
Silverstein (Ref. 11, Theorem 1.6, p. 13).

Theovem 3.7: If E is ergodic and recurrent, then
exp(—tH)1=1for all = 0. a

We introduce now the extended space D°(E) by saying
that fe D*(E) if there exists a sequence f,c D(E)
— D(H*’?) such that f, is Cauchy in E(f, /*/? and f,~f
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v-a.e. on £, and we have the following lemma, a con-
sequence of results of Silverstein (Ref. 11, Lemma
1.7, p. 15).

Lemma 3. 8: Let fc D*(E) and let f, be as above. Then
lim,. .E(f,, f,) exists and is independent of the choice of
Jfa» We may therefore extend E to D?(E) by setting
E(f, /) =lim,..E(f,, f,). We then have that D(E) = D°(E)

N Ly(dv). n

We now have the following theorem (Ref. 11, Lemma
1.8, p. 16, Theorem 8.6, p. 93).

Theorem 3.9: If E is ergodic and recurrent, then
1e D?(E) and E(1,1)=0, and if E is transient, then
lim, . . exp(~ fH) =0 in the strong operator topology in
L,(dv). Moreover if E is transient then D*(E) is a
Hilbert space, and if F is recurrent then D?(E) is not
a Hilbert space. .

From Propositions 4. 16 and 4.5 of Ref. 11, p. 58 and
p. 43, we have the following two theorems.

Theorem 3.10: I E is recurrent, then if M is a Borel
set of positive capacity we have that

Pr{f(w) e M, t=n|Elw) =x}=1

for all x & Q outside a set of capacity zero, and for all
7. .

Theovem 3.11: If M is polar, then
Pr{ £,(w) € M for some finite ¢| £,(w) =x} =0

for all x outside some polar set. -

4, THE STOCHASTIC DIFFERENTIAL EQUATION

Let © be an open subset of R". Let 4 be a probability
measure on §. In relation to Theorem 2.7 we assume,
for simplicity of notation, u=v. Otherwise we assume
the same as in Theorem 2.7, i.e., du=¢2dx with ¢ in
L3°%(, dx) and such that there exists a closed set NC Q
of zero Lebesgue measure such that V¢ is in L@~ N).
Then we know by Theorem 2.7 that u is admissible.

Let H be the energy operator, i.e., the operator asso-

ciated with the closure of the form E(f, g) = [; Vf - Vgdu

as defined on C}(R2) XCL(R) in L,(RQ, dir). We also assume
that B=2V¢/¢ is L,(Q, du).

Since 4 is a probability measure we have 1€ L,(, du)
and exp(~ |t1H;) =1, so that the corresponding process
may be taken as a homogeneous Markov process &,

— o <f{<e  with invariant measure {.

Let L,(dw) be the L, space of all the L, functions
which are measurable with respect to the process, i.e.,
with respect to the functions £;(w). The time translation
£ (w) = &,,4(w) induces a measurable transformation on
the w space which leaves invariant the probability mea-
sure dw. Hence it generates a strongly continuous uni-
tary group U, on L,(dw). Let fe Ly(du), then f(£,)
€ Ly(dw) with [ |f(x)12dp = E((£)) and Ud(&,) =f(£r.s).
Moreover for f< D(H) we have that f(£,) is in the domain
of the infinitesimal generator of U; and we have

d 4.1)
ZA(E) == EN(&), (4.

where the derivative is in the strong L,(dw) sense.
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Now let

Xs=~ [, B&)dr, (4.2)
then X, is strongly L,(dw) differentiable, B(%,) being
strongly L,(dw) continuous. Let X5=Xes— Xs then by
Taylor’s theorem we have, for fe C¥(9),

[ACE + Xoun) = F(E + Xs) = VA +x9XA]
<3 1Aly, <[ X413 (4.3)

where [|fll,, is the norm in C3(Q). We now have that
1'x" converges to — B(¢,), strongly in L,{dw) as 7 ~0,
thus V(£ +x9(1/A)x% converges strongly in Ly(dw) to

~ VAL, +Xs) + B(Ey), as k~0. On the other hand, At|x%|?
converges strongly to zero in Ly(dw), because k)% is
uniformly L,(dw) bounded and X" converges strongly to
zero in L,(dw) as k~0. By (4.3) we then obtain that
f(& + X as a function of s from [0, %) into Ly(dw) is
strongly differentiable, with derivative given by - Vf(§;

+ Xs) * B(gs)-

Now let F, be the conditional expectation with respect
to the past of £. Conditioned with respect to the past
of ¢, f(&.,+xs) is a function of &,,, alone for >0, be-
cause X; is sure if conditioned with respect to the past
of £. From this it easily follows that, for 2 >0,

Folf(Em+x0)] (4.4)

is strongly L,(dw) differentiable with respect to k, with
forward derivative at zero equal to

F - (HN(E, + xp)). (4.5)

Since strong L,(dw) differentiability implies strong
Ly(dw) differentiability, dw being a probability measure,
we have that (4. 4) also has a strong forward L,{dw) de-
rivative at £ =0 given by (4.5). Hence Fylf(£sun + Xeun)]
has a strong L,(dw) forward derivative at 2 =0, by the
results above and Leibnitz’ rule of strong differentia-
tion, with derivative given by

F [~ (Hf) (m,) - B(&,) - (Vf)("?e)L
with n,= &, + x,.

(4.8

Recalling the argument preceding formula (4. 5) we
have that Hf is to be computed by considering f as the
function f(x + x,), with x; sure, so that Hf is actually
given, by the results of the previous section, as - &f
— B(x)Vf, where B is to be evaluated at the point x.
Hence we have that, in (4.6), (HA(n,) =- (af(n,)

- B{&) - VAn,). Thus (4.6) takes the form

Fl(anmy], (4.7
where
M= Et - _!Ot B(‘Es) ds. (4. 8)

Hence we have proven that, if 7,(w) is defined by (4. 8),
the integral being understood in the strong L,(dw) sense,
then for any fc C3(Q) we have that f(7,) has a strong for-
ward derivative in the sense that Fy[f(n;,,)] has a strong
one-sided L,(dw) derivative at #=0, which is equal to
F,[(an(n)]. By (4.8) we have that F, is also the condi-
tional expectation given by the past of the process

Th(w)-
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Let us now assume that 2 =R" and consequently that
u=v is a probability measure which is admissible in
the sense of Sec. 2. Since by assumption B & L,(R") we
easily see that S(R") C D{H), where S(R") is the Schwartz
test function space. It follows then from the argument
above that (4.7) holds also for all fe S(R"), if Be Ly(du).
An obvious extension of Lemma 3,1 of Ref. 16 then
gives us that 7, is the Brownian motion w; with initial
distribution given by ¢. Hence in this case we have that
¢, satisfies the stochastic differential equation

dgg =B(£:) dt + dwta

where w; is the standard Brownian motion in R", We
can now state the following theorem.

Theorvem 4.1: Let du{x) = ¢{(x)*dx be a probability
measure on R" such that ¢ is admissible and such that
B(x) =2V Ing(x) is in L,(du) or equivalently, V¢ is in
L,(dx). Then there exists a solution 7, of the stochastic
differential equation

d&t = B(gt) dt + dwt,

where w, is the standard Brownian motion in R", with
continuous paths, such that £, is a Hunt process. More~
over if ¢(x) satisfies the conditions of Theorem 2.6,
then there is only one nonanticipating solution of the
above stochastic equation, in the class of Markov pro-
cesses with invariant distribution u.

4.9

Proof: We have already proven the first part of the
theorem; we shall now also prove the remaining “more-
over part” of the theorem. Let £ be a Markov process
which solves the stochastic equation with the prescribed
initial distribution du. Then by the fact that £, solves
the stochastic equation we get

E,:fotﬁ(és) ds +wy, (4.10)
where w, is the Brownian motion with initial distribu-~
tion p. Since u is an invariant measure for £, the
above integral can be taken in the strong L,(dw) sense,
as in the proof of the first part of the theorem. For
fe S(R"), by an argument similar to the one preceding
the theorem, we have that f(f,* B(¢,) ds + w,) has a for-
ward derivative in the strong L;{dw) sense, because by
an adaptation of Ito’s results, £, being by assumption a
nonanticipating solution, we have that

FA S BE ds + )] (4.11)

is strongly L,(dw) differentiable with respect to # at
h =0, with derivative

Fl(an([ B ds +duw,),

where F; is the conditional expectation with respect to
the past of £. Then, we get, as in the argument pre-
ceding the theorem, that F,{f(£;,,)] has a right-deriva-
tive given by

Fylaf(8,) +B(&,) - V(&) ] = a7(8) + B(E)VA(E).  (4.12)

Hence the Markov semigroup P,f = E[f(£,)], where E,

is the conditional expectation with respect to £, has

— A~ -V as an infinitesimal generator on S(R"). How-
ever by Theorem 2.6 we have that the only semigroup
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with such a property is the one given by the energy form
and it is constructed in Sec. 2. The process associated
with this semigroup is the one described in Sec. 3.

Thus we have P, = exp(- {H), where H is the energy op-
erator given by u. This completes the proof of the
theorem. ]

Remark: Let us now make some brief comments in
relation with Ref. 25 (alsoc see Ref. 19). Theorem 4.1
implies, in particular, that under the stated general
assumptions the weak L,(R", du) solution ¥(?, x) of the
heat equation

a%w(t, %) = AP(e, x) = Vi(t, x) (4.13)
with initial condition
¥(0, x) =f(x) (4.14)

in L,(R", du) is given in terms of the process £, by
f(E)(-), in the sense that for any g L,(R", du) we have

[ g0, 2) du(x) = E(g(E)F(£)) (4.15)
and
2 (&) () = - E@(&) (1 (&)
=~ [ HDE, %) dux), (4.16)

where E is the expectation in L,(®, dw), The solution

of the heat equation is thus given by integrals over the
sample paths of the process £;, related to the Brownian
motion w, by the stochastic equation

d&, =B(&,) dt + dw;.

In the pictorial language of Ref. 25 we have an expres-
sion of the solutions of the Schrddinger equation as
averages with respect to “distorted Brownian paths.”
Let us recall that our result holds under the only as-
sumptions that the measure du(x) = ¢(x)®dx is admis-
sible (see Theorems 2.1—2. 4 for conditions for this

to happen) and that the drift coefficient 8 is in L,(R", du),
i.e., equivalently that V¢ e L,(R", dx). Thus we need
neither local HOlder continuity nor restriction to linear
growth at infinity for 8 (take, e.g., ¢ =exp{- (x1%),
a>1). In our case the potential V=1p*+ VB=24¢/¢
need not necessarily exist as a measurable function.
On the other hand, also strongly growing potentials
like, e.g., lower bounded polynomials are allowed. In
the cases where the potential V exists as a measurable
function and is such that the Feynman—Kac formula
holds, we have of course that (4. 12) is also given by

E, (exp[- fot V(w,) d7) B, (g(wo)f(w,)

xexpl~ [, V(wr) 7)),

where £, is expectation with respect to the Wiener
process w,. We recall that sufficient conditions for the
Feynman—Kac formula to hold are, e.g., Ve(L,+L.)
x (R", dx) for some p >n/2 if n#3 and p =2 for n=3, or
V=0and Ve L{°(R", dx), see, e.g., Refs. 35 (Chapter
X, p. 279) and 40.
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It is shown that the energy spectrum of the Bloch eclectron in an external field is continuous.
Furthermore, it is shown that all approximations which take into account interband coupling within groups
of finite number of bands (the N-band approximation) lead to a pure-point spectrum of intertwining
Wannier-Stark ladders. This instability of the continuous spectrum under the N-band approximation is
related to a theorem due to Weyl and von Neumann. Approximation methods for dealing with interband

coupling within a group of finite number of bands are given,

1. INTRODUCTION

Weyl and von Neumann pointed out that the continuous
spectrum is very unstable in that arbitrarily small per-
turbations can turn it into a pure point spectrum. On
the contrary, the common belief is that physically mean-
ingful perturbations do not cause such pathologies: They
leave the continuous spectrum continuous and the discrete
spectrum discrete. Instabilities of the continuous spec-
trum have been considered to be of mathematical interest
having little or nothing to do with physics.

We shall show that a natural physical approximation
widely used in solid state physics is of this nature: The
approximation discards a presumably small part of the
Hamiltonian, thereby changing the original continuous
spectrum into a pure point spectrum. The example is
taken from the theory of the one-dimensional Bloch
electron in an external field. In Sec. 2 it is shown that
the spectrum is absolutely continuous from — < to « and
that it has no gaps. The absolute continuity of the spec-
trum follows from a general theorem in Sec. 2. This
theorem generalizes a known result of Dunfold and
Schwartz to potentials that are not necessarily mono-
tonic at infinity.

It is an experimental fact that, even though the band
index is no longer a constant of motion, the electron
leaks out of the band very slowly for external fields that
are not too strong. A natural approximation is to as-
sume that the band index is a true constant of motion
(and then correct perturbatively). This is the “single
band approximation, ” and it leads to the pathological
character described in the Weyl—von Neumann theorem:
The exact continuous spectrum is made a pure point
spectrum by it.

The point spectrum (eigenvalues) of the single band
approximation has been of considerable interest because
it is related to the Wannier—Stark ladder, ! which con-
sists of an infinite set of eigenvalues with spacing Ea.

E is the force field and «a is the lattice spacing. In some
sense, the Stark ladder is the analog of Landau levels
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in external magnetic fields. However, whereas the lat-
ter has at least a sound experimental basis, this is not
the case for the Stark ladder which is more of a problem
than a well-established effect.? The point spectrum is
an artifact of the single band approximation since the
exact spectrum is absolutely continuous. However, this
does not prove that there is no Stark ladder effect in the
sense of a periodic structure in the physical (optical,
say) spectrum. In particular, this does not mean that
the single band approximation is “large” or unphysical.
On the contrary, the lesson of the Weyl—von Neumann
theorem is that the spectrum, in its set theoretic sense,
is a very sensitive object.

In Sec. 4 we discuss the N-band Hamiltonian. We prove
that the spectrum consists of N intertwined Wannier—
Stark ladders. Thus a finite interband interaction pre-
serves the discrete spectrum. We also consider methods
of approximations for the interband coupling. An ana-
logy between the time-dependent Schrédinger equation
and the N-band Hamiltonian is used to apply the adiabatic
approximation to obtain the eigenvalues of the N-band
Hamiltonian. This analogy also leads to a conservation
law of probability in k.

2. THE MODEL

Consider the one-dimensional single particle
Hamiltonian:

H=p%/2m + V(x) + Ex, xcR'. (1)
V(x) is periodic and twice differentiable.

This Hamiltonian describes the motion of a charged
particle in a periodic crystaline field and in an external
constant electric (or gravitational) field. The crystal is
assumed to be infinitely big. H is self-adjoint by stand-
ard arguments,®

The spectrum of H is the real energy axis; i.e., itis
continuous stretching from - «© to . Before proving
this, let us consider the simpler Hamiltonian:

Hy=p?/2m + Ex. (2

Copyright © 1977 American Institute of Physics 918



The unitary transformation
U =explip®/6m] (3)

transforms H, into the multiplication operator Ex. H,
and Ex are thus unitarily equivalent so that in particular
they have the same spectrum. The spectrum of an oper-
ator which is a multiplication by a function is the range
of values this function agssumes. In our case the spec-
trum of Ex, and hence of H;, stretches continuously
from ~® to ©. Note that H, has no eigenvalues embedded
in the continuous spectrum.*

It is perhaps physically obvious that the addition of a
bounded periodic function to H, does not change the na-
ture of the spectrum and in particular that the Hamil-
tonian (1) has no bound states.® Mathematically, a prob-
lem arises because the periodic potential remains finite
at infinity. It may then happen that interference due to
the wiggling of the potential produces bound states. Ex-
amples of such bound states were given by von Neumann
and Wigner.®

The following theorem guarantees the absolute con-
tinuity of the spectrum for potentials that go to -« in
one direction (at least) with no assumption of mono-
tonicity.”

Theorem: Let there be given the second order differ-
ential operator

- gz - q(x) @

on the interval [, «), Assume that:

(a) g(x) is positive for x large enough,
©) [“Ug'/g*'® +1(g"?2q3/?]dx <,
() [=g 2dx=x,

(d) |g(x +ba) [>|g(x)| for a> a,.

Then the spectrum of any self-adjoint extension of the
operator is entirely continuous and covers the whole
real axis, In particular, this is the case for the Hamil-
tonian in Eq. (1).

The above theorem is a standard result in analysis,
except for condition (d), which is customarily replaced
by a much stronger condition of monotonicity of ¢(x)
(monotonicity is equivalent to a;=0). The proof of this
theorem is identical to the proof of Corrolary XIII. 6. 21
in Dunford and Schwartz.® In other words, Dunford and
Schwartz prove a stronger result than the one they state.
We shall only point out that (d), or equivalently the as-
sumption of monotonicity, is used once in the proof, to
show the absence of L? solutions.

To summarize:

(a) H has absolutely continuous spectrum from - to
+ for £+0. In particular it has no gaps of forbidden
energies characteristic to the free (£ =0) Bloch
Hamiltonian.

(b) H has no eigenvalues (bound states), not even eigen-
values embedded in the continuous spectrum, In particu-
lar there is no ladder structure for the eigenvalues.
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3. THE SINGLE BAND APPROXIMATION

Here we shall briefly review the “single band approxi-
mation,” which reflects the idea that bands are meaning-
ful objects even in the presence of external fields of
force.® The approximation involves adding a term to the
Hamiltonian which makes the band index a true constant
of motion. The matrix elements of the position operator
x in the nk representation are®?®
d

(nk|x|mk )=15m,,,dk

8(k = k') + x,,(R)O(E -~ &");  (B)

X,..{k) are continuous functions in the absence of bands
crossing.'! (This is the generic situation in one dimen-
sion.'* Moreover,

il Dlh)
Ymn = 0 € ) - €,07) (6)

3 D Pl < €80 + sup] V) .

Consider the Hermitian operator A with matrix
elements
A, (B) =x,.(k),

A, (k) =0.

m#*n,

(n

In the single band approximation, the Hamiltonian H
in (1) is replaced by

Hgy =H - EA. (8)

One expects that Hgy is an approximation to H if A is in
some sense small. Phenomenologically, A is associated
with tunneling which is a very slow process on atomic
scale for large band gaps'? [see Eq. (6)]. Hyy assumes
the simple form of an infinite number of decoupled,
first-order differential operators, with the operator
corresponding to the nth band being

(B4 €,(0) + Ex (), @)
Hgp is diagonal in the band index » and has pure point
spectrum. The eigenvalues have two quantum numbers—
the band index n» and a ladder index v. The eigenfunctions

and eigenvalues are, respectively,

: &
Yo, (mE) =7§251;%exp (__Ez_:_ f , dr’'[n, - €,(k")

"Exrm(k,)])y (10)

a w/a
Ay =VEa+—— / dk[e (k) + Ex,(B)],
27 -r/a

where v={0,+1,£2, -+ -}, n={1,2, -+ -}. 4,,(k, m) is just
a phase in 2. This is a consequence of a conservation
law which will be discussed in Sec. 4.

For fixed n, the eigenvalues are equally spaced, hence
the name “Stark ladder.” The infinite number of ladders,
corresponding to the infinite number of bands, are in-
tertwined. There is thus an infinite number of eigen-
values within each energy interval Ea.

4. N-BAND HAMILTONIAN
A. A spectral theorem

Consider the N-band Hamiltonian Hyy in E4® L%(B),
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Ey an N-dimensional vector space and B the Brillouin
zone. Hyy is given by

Hyaln, k) =iE S 8n, £} + €008, ¥

N
+E231x,.,,,(k)zp(n, B), n=1,...,N. (11
m=
Hyy describes N bands coupled by the interband inter-
action x,,(k).!® Our purpose is to show that, for any
finite N {(and in the absence of band crossing), Hyy has
a purely discrete spectrum in the form of N Stark lad-
ders. Only for N=% is the continuous spectrum
recovered.

Hyp has discrete spectrum by the following argument:
The N-band Hamiltonian with x,,,(k) set equal to zero has
a compact resolvent [this follows from Eq. (10)]. 1
there is no band crossing, it follows from (6} that the
interband interaction x,,(k) is a bounded operator. By a
basic theorem of Rellich!* H g Das a compact resolvent,
and so Hyyz has a purely discrete spectrum with isolated
eigenvalues accumulating only at infinity.

The pathological behavior of the spectrum under the
perturbation of interband coupling is peculiar to the full
infinite bands Hamiltonian. That is, only in this case
does the interband coupling make a continuous spectrum
discrete or vice versa. In particular, no N-band model
recovers the absolute continuity of the true spectrum.

Let h(k) be the operator

N
hi(n, k) = €,(k)in, k) + E 2, x,, (k) P(m, k) (12)
m=1

and h,,(k) its matrix elements.

Hermiticity and periodicity give two global charac-
teristics of the solutions of N-band Hamiltonians.

{(a) The spectrum of eigenvalues has the form of N
intertwined Stark ladders.

This follows from periodicity in k-space: If {(n, ),
{keB,n=1,...,N} is an eigenvector with eigenenergy
A, then exp(ivka)d,(k, n) is an eigenvector with eigen-
energy A+VvEa. A simple continuity argument shows that
there are N such ladders: Let the interbands coupling
shrink to zero. This shifts the eigenvalues up or down
but it does not annihilate or create eigenvalues. Since
there are N ladders for zero coupling, there are N lad-
ders also for any non-zero interband coupling.

(b) Probability conservation in k-space: If $,(k, n) is an
eigenvector of the N~band Hamiltonian then ¥ (R, )3
is constant, independent of %.

To show this let (¥(k), (k) denote scalar product in
the N-dimensional vector space, i.e.,

N
Wk, p(R)) =25 ¥*(n, R)P(n, k). (13)
=1
The eigenvector ¢, of the N-band Hamiltonian satisfies
iEad—k lk, m) =1 = 1) (R, n). {14)

Since A is real and h(k) self-adjoint, the result follows
by Stone’s theorem.!® This conservation relation is the
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analog of the conservation of probability for the time-
dependent Schriodinger Hamiltonian.

B. Methods of approximation

The N-band Hamiltonian cannot be solved exactly in
general and one must resort to approximations.*® Al-
though perturbation expansion in the interband inter-
action is in principle possible, this is not the most con-
venient method.!® In particular, the perturbation ex-
pansion does not preserve property (b)—conservation of
probability in k. [It does preserve property (a).] A more
natural approximation is the adiabatic method.!” This
approximation is exact either when h(k) is independent of
k or when h(k) is diagonal. The approximation proceeds
from the aforementioned k-¢ analogy.

Let A, (k) and ¢,(m, k), {n, m=1, ..., N} be the eigen-
values and eigenvectors of the matrix h(k) in E,. Fur-
thermore, let
a +v /a

T

2T Jxta

dk N (k).

Then, in the adiabatic approximation, the eigenvalues
and eigenfunctions of the N-band Hamiltonian are
respectively

Am :X" + VEa,
&

B (an, k) = P,(m, k) explivka) exp %f

-r/a

xde[ (k) = 7] ,

wheren=1,...,,Nandv=0,x1,...,+*. The adabatic
approximation satisfies both properties (a) and (b),
i.e., it has the spectrum of N ladders and it conserves
probability in &.

SUMMARY

We have shown that the spectrum of the Bloch electron
in an external field is continuous. Under a perturbation
corresponding to the accounting for interband coupling
within groups consisting of a finite number of bands,
the spectrum has been shown to become discrete, con-
sisting of intertwined Stark ladders. This phenomenon is
related to a theorem of Weyl and von Neumann. !* Final-
ly we have shown that probability in & is conserved by
eigenfunctions of the N-band Hamiltonian, and introduced
a method of approximation for the interband interaction
which preserves this property.
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Synchronized solitons
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We find that, under certain conditions, two solitons of an integrable system can form a synchronized

bound state when the system is perturbed.

1. INTRODUCTION

In this paper we investigate the behavior of certain
solutions to the “double” sine—Gordon equation,

(1.1)

where x = (X +T)/2, t=(X~T)/2, by mapping the solu~
tions u{x, ?) of (1.1) into the scattering functions associ-~
ated with the integrable sine—Gordon equation,

Uyy — Urp = Uy = Sinu + €Xy8infu/2), 0<e«,

(1.2)

This particular investigation is part of a general effort
to develop a singular perturbation theory for the inverse
scattering transform in which one constructs uniform
asymptotic expansions for the scattering functions over
time scales inversely proportioned to the small coupl-
ing coefficient € multiplying the “nonintegrable” terms
in the equation. Of particular importance is the under-
standing of the analog of “resonance” in strongly non-
linear systems.

Uxy ~ Upp =U,, =Sinu.

A weakly nonlinear system is usually analyzed by
calculating the slow changes, due to the weak nonlinear
coupling, which occur in the fixed parameters (ampli-
tudes A;, wave vectors Kk; and frequencies w;, w,=w(k,),
t=1,...,N) associated with the normal modes of the
linear system. A solution is sought in the form of an,
asymptotic expansion in powers of the coupling param-
eter, the leading order term of which is given by a lin-
ear combination of the linear normal modes. In general,
this expansion is nonuniform in time due to resonances
between waves satisfying conservation of momenta
% 3ak; =0 and energy Fjaw; =0, =3,4,...,N, cri-
teria.’ The expansions can be made uniform (renormal-
ized) by allowing the amplitudes (and in some cases the
wave vectors and frequencies as well) to be slowly vary-
ing functions of time.? In this way, one obtains a de-
scription of how the energy in a given normal mode is
affected by the nonlinear coupling with the other normal
modes. It should be noted that the strength with which
the secular terms arise depends on the class of solutions
u{x, ) which are sought; for example, in the ¢* model
of guantum field theory, if u(x,¢) is periodic over a fi-
nite interval, quartet resonances occur on a time scale
€2, ¢ being a perturbation amplitude; on the other hand,
if u(x, t) is a stationary random function of position, the
interaction time for quartet resonances is €*. In both
cases, however, the mechanism for energy transfer is
the same.

In this paper, we will discuss what happens if the
leading approximation is no longer linear but belongs,
instead, to the class of integrable nonlinear partial dif-
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ferential equations. The general solution of equations of
this class consists of two components; one is associated
with a continuum of wavenumbers and has (in most re-
gions) a behavior analogous to that of dispersive waves
in a linear system. The second component has no linear
analog and consists of special isolated pulses known as
solitons. A soliton is a local, permanent, traveling
wave solution of one of the integrable equations and is
distinguished by the remarkable property that when it
interacts with other solution components, it remerges
from the interaction with its identity (speed, shape,
amplitude) intact. It does, however, undergo a phase
shift in position relative to where it would have been had
it travelled unimpeded. In (1. 2), the soliton (kink, 27
pulse) solution is,

ulx, t) =+ 4tan exp(+20), 0=0,- nx-t/4n, (1.3)

with the various plus—minus combinations referring to
227~ 0 or 0~ x 27 transitions as the real space variable
X =x+¢ sweeps from ~ = to +=. The invariance of the
identity of the soliton follows from the fact that each
soliton is associated with a complex wavenumber ¢ =17
{that is, a complex eigenvalue of an appropriate oper-
ator; the real spectrum is associated with the solution
component analogous to dispersive waves), which for
the integrable system (1.2) is a constant of the motion.

What we intend to explore is what happens when we
add to the integrable system (1.2) a perturbation term.,
It is to be expected that the noninteracting normal modes
of the integrable system will now be coupled. It is the
aim of this paper to study the nature of the interaction
between these nonlinear normal modes and in particular
between two solitons which in the nonperturbed system
would simply pass through each other. The mechanism
for a strong interaction (i.e., an order one change in
the parameters describing each soliton, a change which
can be produced even by a weak coupling given a suffi-
ciently long time) cannot be one of simple resonance as
that concept is primarily a linear one. The analog of
resonance in nonlinear systems is synchronization or
phase-locking and, under certain circumstances, this
is exactly what the two solitons do. The two, previously
noninteracting, solitons form a common synchronized
state in which the notion of stability or binding energy
can be precisely defined. The solution we find closely
resembles the “wobbler” solutions of (1.1) observed
numerically by Bullough and Caudrey® and discussed by
them at the University of Arizona Conference held at
Tucson in January 1976.
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2. ANALYSIS

Consider the eigenvalue problem

Uiyt i§111 == %uva!

(2.1)

20 = 180 = %uxvl [

where u(x, t) is a solution of (1.1). The eigenvalue prob-
lem (2. 1) provides a means of mapping the potential
u,(x, t) into the scattering data associated with (2. 1).
The scattering data consists of (a) the spectrum of (2.1),
i.e., the real { axis and a set of discrete imaginary
eigenvalues ¢, =i7, and a set of discrete paired eigen-
values (£, - £¥) in the complex plane and (b) the asymp-
totic behavior {as x — + =) of the oscillatory and bound
state eigenfunctions. We shall not go into details here.
Instead we shall refer the reader to Refs. 4—6 and here
simply write down the time rate of change of the scat-
tering data:

Exe zfﬁj_a,{’ f :u,,(;bf +8), dx, (2.2)
{ (WE + ¥s (wl + zpa),,} (2.3)
(6*/a), =§:;z /: e (V2 + 4) dx, (2.4)

where {£,}¥, are the discrete eigenvalues of (2. 1) and
(t(x, &), ¥,(x, £)) is the solution to (2.1) which is analytic
for Im¢{ >0, and in particular at each &,, and which has
the asymptotic behavior (0, 1) exp(iZx) as x -~ + <, The
scattering function a(Z, ) plays a central role in the
theory (see Ref. 7) and in particular its zeros in the
upper half {-plane are the bound state eigenvalues. It
can be written in terms of its zeros and its behavior for
real ¢,

a(D) = (—i—i—%) expz—}n: -[:é—_l—g-ln[aa*(ﬁ)]dﬁ. 2.5)

The quantity b*/a is the reflection coefficient and de-
fined on the real spectrum. The parameter 8, is given
by (b,a0)”, ai=(3a/3%),, and is related to the asympto-
tic behavior of ¥ (x, £,) as x — — «; in fact, lim,...

Xy (x, &) exp(iZex) =b¥. It is also the residue of the an-
alytic extension of b*/a at ¢,, when this quantity admits
such an extension.

We take as our leading approximation the multisoliton
solution which corresponds to the scattering data,

L=im, L=ilp, B, By,
(2.6)
b=0, §—1'7h §-—l7lg
TTHim LHiny
The corresponding potential is given by
_apant 1= [(m = ) /(m + 1) P exp(26; + 26,)
uba) = 4tan exp(26,) + exp(26,)
(2.7
where

6y == 1%+ 0y
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and

By= (1/21:77_;11;2) exp(~ 28,,), (2.8)

Now, if we were simply solving Eq. (1.2), we would
find

ji=12,

£t =0,

Bkt = (i/zgk) ﬁk,

be(t, 1) =0.
Then the phases in (2. 8) have the structure

8;= 6,0~ npx — (1/47,)t (2.9)
in light cone coordinates and the structure

8, =-3(n +1/4n)(X =X, - V,T),

(2.10)

3,(,:%(1), + 1/47]})Xj

in real space—time coordinates. Here V, is the velocity
of the pulse corresponding to 7, and is given by

V,==1+2/(42+1). (2.11)

In order to understand the motion, let us imagine that
Ty > 7, and that the 7, pulse starts far to the right (in X
space) of the 7, pulse. Then, when 6, =0(1), f,=-
and

u(x, ) =4 tan™ exp(- 24,), (2.12)

which is a kink with a transition from 0 to 27 as X
sweeps from left to right through X,, the center of the
pulse. Similarily, when 6,=0(1), 8, =+ = and in the
neighborhood of

Th="p

XZ—XZ ?—z—lln ™ +172

the center of the 7, pulse,

2
u(x, t) = — 4 tan™! (H) exp(26,),

=-4tan exp (292+21n h-Th ) (2.13)
Th+ 7,

This pulse makes the transition from - 27 as X - X}
~—oto0as X-X;~+,

Now, as T -+ =, the pulses change places since 7,
> 17, implies that V; < V, and so the 7; pulse will even-
tually be to the left of the 7, pulse and the solution local-
ly in its neighborhood is given by

u(x, ) = - 4 tan"! exp (291 +2 mI’_Z:_ : Za||> ,
2

which shows that the 0 - 27 kink has switched to a - 27
~ 0 kink and its center is now at

8n Th =7
X=X, +V;T+ In|-1—=2
1T TRy n?71+17z

Similarly the 7, pulse has become a 0~ 27 transition
with a center at

X=X,+V,T,

and each pulse has undergone a phase shift. After in-
finite time, the pulses will be infinitely far apart.
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Now, we will look at the effect of adding the perturba-
tion term €Xsin(x/2) to (1.2). The right-hand sides of
(2.2) and (2. 3) no longer give simple expressions but
contain the extra terms

X w0
2;ka:5 f . Sin% (Y% + 4B, dx
and
A £ uf@ "
2—;_{2_/; Sln%{gz(lpf + §B), - gf— (V2 + lpg);.}dx @.14)

respectively. We solve the system of equations (2. 2),
(2.3) iteratively by calculating the squared eigenfunc-
tions which correspond to the exact multisoliton solu-
tion (2.7) of (1.2). Following the ideas outlined by
Zakharov and Shabat, ® we define the quantities

m ij(gu) = \/_:/_j Vi =sp,

vy explitx) =%, v,=1/8,a}%, (2.15)
and find the equations
I B Uy 0
ulz 0
uf - A
-~ B* I} ug Y
with
A AX
B:[b,k]:[g—i-’;—*], Jk=1,2. (2.16)
Rl 5

Using these expressions and the leading approximation
(2. for u(x, ), we may calculate the expressions
(2.14). The computations are lengthy but straightfor-
ward and involve integrals of the form

“C + Dy + Ey? + Fy® + Gy* d
0 v +AP@y + B Y

and
®  C+Dy+Ey%+ Fy® +Gy*

'/; Iny O TAN T BF dy. (2.17)
It turns out that the terms (2. 14) lead to secular con-
tributions (namely, the eigenvalues {; and the coeffi-
cients of exp(t/27,) in 8, grow proportional to €f) only
when 7, is close to 7. We, therefore, assume the
parameter

B:(Th— le)/(771+772) (2.18)
to be small and keep only the leading terms in the two
expressions (2.14). These will turn out to be O(1) and
O{B!). We will show how B and € are related when we
analyze these perturbation equations in the next section.
It also turns out that the scattering function connected
with the continuous spectrum remains small.

3. ANALYSIS OF THE PERTURBATION EQUATIONS

With the addition of the perturbation terms €Xysinu/2,
the equations for the evolution of the scattering data
Ths T, B1, By associated with the double soliton solution
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are given by

= __ BB
nlt—_nzt“' 2 B1+B:+O(€a), (3.1)
1 X 1
Bue =g P1— g Pr ~ 75 e + O(€ nB), (3.2)
By =B, +- Mg v Lo 8 4 0 nB) (3.3)
Zt_z.nz 2 277{3 2 77‘3 2t 2 ° .

In these expressions, we have only included the two
leading order terms and have also set 7= (7 + 1)/2.
The first observation of interest is that the total energy
of the two pulses,

[ outdx=16(m +n,),

is a constant of the motion. This may also be verified
directly from (1.1). The second observation is that if
the 7, pulse starts far to the right of the 7, pulse, then

(61—83)/(61 +Bg)=—1 and 771g=’-712¢=€7t0/2. (3.4
Note that this agrees precisely with (1. 1) by integrating
from x =~ *© to between the two pulses and again from
between the two pulses to x =+, We find

d -
2 uldx =16 N =~ 4e), [cosz] usbh, (3.5)

ot Gl 2] y=s
Because the rightmost pulse 7z has a 0— 27 transition
and the leftmost pulse has a - 27~ 0 transition, we find
(in terms of real time 7T)

Tre = — 2Ty = €2¢/2
and

nLt=°2nLT:_€A0/2' (3.6)

Thus, the rightmost (leftmost) pulse decreases (in-
creases) its velocity when A, <0, and in this situation
we expect that the pulses can become phase locked. The
role of the sign of Xy is important, but we note its role
in Eg. (1.1) is small since it can be changed by letting
u—u+2m.

Returning to a perturbation analysis of (3.1)—(3.3),
we see that if 7, and 7, are significantly different, the
velocities are different and the interaction time is so
short that no significant energy exchange occurs. On
the other hand, for small B, a significant interaction
does take place. The relation between $ and € is deter-
mined by balancing the difference in the frequencies
1/2m, and 1/27, with the €/8 term arising from the per-
turbation. The correct choice is clearly 8 =0(€'/?) and
thus it is clear that the relevant interaction time scale
is also T=¢''?%, We introduce the following changes of
variables,

B=¢€2(T), B,=0,(T) exp(t/27) (3.7

and obtain the equations describing the slow changes in
the parameters 7, %, (and ), b,, j=1,2. These equa-

tions are (set Yy=~ )

Ko by~ b,

b*=217 by + by’ 3.8

1 b
b1,=_§1—7<b_—;ﬂ>b1—?’bl, (3.9
Alan C. Newell 924



1l Fa\p, o
Bar _—z—n(b- b)bz <3,

We may integrate this third order system twice. Define

(3.10)

y:bl—bz, x:b1+b2

and find after a little calculation that

x=Aexpl(- 1/2u0%], y=(2n/py)xbd,, (3.11)
and that b* =z satisfies the equation
1 K
Z2en —‘ZTOZ.,?-FWO-(Z— “0):0- (3.12)

Equation (3. 12) may be integrated once,

(g;) 2=L:_r§_z + (C - %) exp[+ (1/#0)(2 - IJ'())], (3.13)

where C may be calculated from the initial data,
z(0) =5%(0)

and
2
(dZ_(fl> — 452(0)b2 (0)

d
L0 (PGS 20N By,

5,(0) +5,(0)) ~ 7 (3.14)

where
v =[5,(0) = b,(0)]/[5,(0) + 5,(0)], -1<w<1.

Hence,

C= Hy_ K b2(0)(1 - v?) exp (— —1-(2(0) - uo)) ,
sz 7 Ko
and
5 = (- 0)
=) =z -b%0)(1-v?exp(—[z-0%0 3.15
2\ (01 -+ exp ([ - 6%0)]) . (3.19)
The analysis of (3. 15) is straightforward. There are
always two real positive roots z; and 2, of the right-
hand side of (3. 15) since at z =5%(0) the right-hand side
is positive whereas at 2 =0 and *« it is negative. The
solution oscillates between the two roots z; and z, (2,

<z,) and the phase plane of v =(1/4,) dz/dT and z is
shown in Fig. 1.

If P=b%(0)(1~ v?) exp[- 5%(0)/1,] is almost equal to
toe? (namely, 5%(0)=p, v2=0), then the motion is an
elliptical one in the neighborhood of the center z = 1,
dz/dT =0. On the other hand, if »? is just less than unity
(i.e., the pulses start very far apart), then the two
roots of the right-hand side are very small (of order
P) and very large respectively. However, we note that
z is always greater than zero. For intermediate values
of the parameter P, we obtain a typical orbit given by
the curve ABCD,

Beginning at C where v/z is maximal [it should be
noted that maximal v does not mean the two pulses are
apart by the maximum distance since (by - b,) /(b +b,)
=y/x=v/2z; see (3.11)], the two pulses are far apart
with pulse 2 lying to the left of pulse 1. The motion pro-
ceeds in real time (recall real time T is related to light
cone time by 8/8f =- 29/3T) along CB. The square of
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the difference in the two pulse velocites increases and
reaches a maximum at B when the two pulses are close
together. Thereafter, pulse 1 (m, >n,>3, V1> 1V,l)
is the leftmost one and is slowed down as it travels
along BA till the maximum separation is again reached.
Along AD, pulse 2, moving leftward overtakes pulse 1
at D and continues ahead to C. The reason for the asym-
metry in the difference in pulse velocities is that if no
perturbation were present, pulse 1 would be the fastest
{moving leftward) pulse.

The predictions of this theory agree closely with the
observations of Bullough and Caudrey who have ex-
amined Eq. (1.1) numerically. Ablowitz, Kruskal, and
Ladik® have also seen a similar behavior in their nu-
merical experiments. We stress that the solutions dis-
cussed here are strictly only valid for time scales
O(e/?). 1t is possible that other weaker secular terms
may cause these structures to collapse by emitting ra-
diation over longer times.

4, SUMMARY

Whereas in the noninteracting system (1. 2), the two
pulses were separate and noninteracting, in the per-
turbed system the two separate pulses form one syn-
chronized state. We can define the stability of this
state, or the binding energy of the two pulses, to be the
minimal distance between the orbit ABCD and the limit-
ing orbit OMNP. If we had included more soliton pairs
in our basic description, then the initial conditions
change and it may be possible to knock the two pulses
out of their synchronized state by collision with other
synchronized states.

In this way, we can build up classes of particles
(synchronized states) which can interact (scatter) in a
nontrivial way. The calculations are lengthy but pres-
ently we are making some progress on the interaction

20

FIG. 1. Orbits corresponding to synchronized solitons.
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of many particles. If such a system were to provide a
useful model of a classical field theory, it would sug-
gest that the building blocks of the “real” universe con-
sist of synchronized states of more elementary and non-
interacting building blocks generated by the field equa-
tion of some “perfect” universe.

ACKNOWLEDGMENTS

I wish to thank Philip Caudrey and Robin Bullough
whose numerical experiments suggested to me that the
double sine—~Gordon equation might provide a useful
yet simple model in which to study strong interactions
between solitons, The work is partially supported by
the National Science Foundation, Grant Nos. MPS75—
07568 and DES75—06537.

YNote added in proof: Recently, there has been the remarkable
discovery that this criterion also governs the strong inter-
action of solitons in higher spatial dimensions. Miles (to be
published shortly) has shown that the Hiroto two-soliton solu-

926 J. Math. Phys., Vol. 18, No. 5, May 1977

tion for the Kadomtsev—Petviashvili equation breaks down
when this criterion with »=23 is satisfied, Furthermore,
Newell and Redekopp (also to be published shortly) have shown
that when in fact the criterion obtains, the multisoliton solu-
tions of all systems integrable by the general Zakharov—
Shabat scheme break down and this in turn leads to the possi-
bility of soliton creation,

1M.J, Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur,
Phys. Rev. Lett, 30, 1462 (1973).

?B.B. Varga and S.0. Aks, J. Math, Phys. 15, 149 (1974),
R. Bullough and P. Caudrey, private communication.

4M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur,
Stud. Appl. Math. 53, 249 (1974).

’D.J. Kaup and A, C. Newell, Advan, Math, {1977) (to be
published).

D.J. Kaup, SIAM J. Appl. Math. 31, 121 (1976).

"H. Flaschka and A, C. Newell, Lecture Notes in Physics,
Vol. 38, edited by J. Moser (Springer, New York, 1975),

pp. 355ff.

8V.E. Zakharov and A.B. Shabat, Zh. Eksp. Teor. Fiz. 61,

118 (1971) [Sov. Phys. JETP 34, 62 (1972)].

SM.J. Ablowitz, M.D. Kruskal, and J. Ladik “Numerical
Studies of Interacting Solitary Waves in Nonintegrable Equa-
tions ” (to be published).

Alan C. Newell 926



T matrix and effective range function for Coulomb plus
rational separable potentials especially for /=1

H. van Haeringen

Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands

{Received 20 October 1976)

The off-shell / =1 T matrix in the momentum representation for the pure Coulomb potential and for the
Coulomb plus a rational separable potential of the Yamaguchi type is obtained in closed form. The
amplitude, the effective range function, and the effective range parameters are derived from the T matrix
and are given in closed form. For a large number of rational separable potentials we prove that the
effective range function is real analytic at zero energy. We give, however, an example of a potential for
which this effective range function has a pole at the origin. From these effective range functions a certain
function W is extracted which does not depend either on ! or on the particular potential. This function W
is studied in detail. We indicate how the results of this paper can be generalized to arbitrary values of !

and to all Coulomb plus rational separable potentials.

1. INTRODUCTION

In Sec. 2 we present a number of results for scatter-
ing by a potential which is the sum of the Coulomb po-
tential and a rational separable potential! in the I =1
partial wave space. Analogous results for /=0 have
been published in Refs. 1 and 2,

We give a closed formula for the pure Coulomb T
matrix for =1 in Eq. (2.1). Further we consider a
rank-one separable potential with form factor of the
type p*(p? + 82)7-), For I=1 we obtain the T matrix for
the Coulomb potential plus a potential of the above type.
By applying the asymptotic states defined and studied
by the author to this 7 matrix we obtain the =1 partial
wave projected physical scattering amplitude. The
effective range parameters a; and », are derived from
the amplitude in the well-known way and given in closed
form, see Egs. (2.9) and (2.10).

The larger part of this paper, Secs. 3—6, is mainly
concerned with the so-called effective range function K
and related functions. The function K, being analytic
at zero energy (¢* = 0), can be expanded in a Taylor
series,

K(F)==a;t+ 57 Bt —ee,

where a;, 7,,*** are real. An analytic function with
real expansion coefficients is called real analytic.

In Ref. 2 we assumed that K is real analytic, and
we derived closed expressions for a, and #; In the
present paper we prove the real analyticity of K, for
a large number of rational separable potentials tsee
Eq. (3.11)]. To our knowledge, no such proof has been
given before when the additional potential is nonlocal.
Only for Coulomb plus local short-range potentials the
analytic properties of the effective range function K,
have been studied and the real analyticity of K; has been
proved, see Hamilton ef al.3 and Cornille and Martin. ¢

In the following we shall use several variables. In
the first place we have the strength s of the Coulomb
potential. It is real and in this paper it is kept fixed;
however, both s> 0 and s < 0 will be considered. Sec-
ondly we have the strengths A; of the separable poten-
tial which play only a role of minor importance. Further
we have o and B which are parameters related to the
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range of the rational separable potential. Finally we
have the wavenumber k which is equal to the square root
of the energy. It is often convenient to use ingtead of
k, o, B the variables 7, i, v defined by
pa=pi=ky=-s,
We shall consider functions of 2 and also functions of
B, It is important to note that the so-called physical
complex k*-plane corresponds to the upper half of the
complex k-plane, i.e., Imk> 0. Consequently, the
physical complex y-half-plane depends on the sign of
the Coulomb strength s. It is determined by sImy> 0,
The Coulomb bound states occur only if s> 0 and are
given by y=in, n=1,2,°°°,

In Sec. 3 we extract from the effective range functions
K, (corresponding to different potentials) a certain
function W(y; 1, v) which depends neither on [ nor on the
particular potential. If W is real analytic so is K|,
with the exception of possible poles, for a large number
of potentials defined in Sec. 3. We claim that this even
holds for all rational separable potentials. We shall
prove that W(y; 11, v) is indeed real analytic at y=2=0
for real 4 and v,

Related to W is the hypergeometric function F,(AB)
=,F(1, iv;1 +147; AB) [with A = (o + ik)/(a - ik),
B=(8+1ik)/(8 - ik)] that we encountered before.! In
Sec. 4 we shall study F,;,(AB) for real positive %, &
and B, i.e., for real 7, p and ». In Sec. 5 we investi-
gate W(y; u,v) for real u, v and complex y. We introduce
there the function W{y;£) which is related to but simpler
than W(y; i, v). This function W(y;£) is useful for the ex-
act numerical computation of W(y; 1, v) and therefore of
the effective range functions, see Eq. (5.11).

Eventually in Sec. 6 all variables are taken complex
and the proof of the real analyticity of W(y; i, v) at
k=0 (for real y and ») is given. To achieve this, re-
lated functions V{y; &, v) and V(y;t) will be introduced
which are analytic in all their variables. Section 7 sum-
marizes the results.

2. T MATRIX, AMPLITUDE AND EFFECTIVE
RANGE PARAMETERS

In this section we present the Coulomb T matrix, the
T matrix for the Coulomb plus Yamaguchi-type poten-
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tial and the corresponding amplitude and effective range
parameters in explicit form, all for I=1. The analo-
gous I =0 quantities have been presented in Refs. 1 and
2, We use here the same notation,

The I =1 pure Coulomb T matrix is obtained from
Eq. (24) of Ref. 1, in the same way as T, ., has been
derived., The result is as follows:

(P Te, 11 &) | )

k1 [ PR p B (' 4P\
‘wpp'm[z’y(l'”’ T e o 1“(»'-#)

PR\ [, R
* (W—p2pk )(W'pzp'k ) Fyylaa’)

N e Y P Lk x 1
+(z7+p2pk )(zy+p2p,k >F"(Ea7>

L PP EN(. PP HE
+(”'pzpk )(W+p2p’k ) F"(bg'-)

i p2+k2)(. _p'2+k2) a ]
+(”+ ok I\ 5o e\ )]
Here Fy, (°) is the hypergeometric function

2Fy(1,dy;1+dy;°) anda=(p-k)/(p+k), a’=(p'-k)/
(p’+B).

In Ref. 1 we have introduced what we call the rational
separable potentials in the I =0 space. The definition
of a rational separable potential can be extended to all [
in an obvious way. Here we consider only the form
factor

(p| g5, 1) =@/ 2 pH (g + p2)H-1, 2.2)

This form factor is often proposed to describe nucleon—
nucleus and nucleon—nucleon scattering (e. g., Cattapan®
and (frepinéek“). We would like to have closed formulas
for the T matrices corresponding to potentials
V=V,+V,, where V, is the Coulomb potential and V; a
separable potential of finite rank with form factors of
the type of Eq. (2.2). According to Sec. 5 of Ref, 1

it is for this purpose sufficient to derive closed formu-
las for the following two objects:

(PI g‘é,,(kz))z(p l[l + Tc.t(kz) GO,l(kZ)]! g5,1>
and
<gu,l | Gc,t(kz)] ga,x> = <ga, 1 l Go,z(kz) | gﬁ,,(kz))-

With the help of Eq. (2.1) this plan of action has
been carried out for I =1, By applying the straight-
forward method of Secs. 6 and 7 of Ref. 1 we find, with
A =(a+ik)/(a - ik) and B = (B +ik)/(8 - ik),

(P gh 11 (B

_e/mP  (2/mt iy
T @+ pEHET

(2.1)

(2/mV 28Ry (p* — )
B +p7) (B + BV

@/mi2et /. p2+k2)
+ e (- t) Fotea

. 2Rt B
+<’“p2;k ) F"<Z)]’
<gd, 115 | Gc, 1=1 l gﬂ. l=1>

_ 2ik°
T @R+

(2.3)

and

)2 [1 - (1 +72)F47<AB)]
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+ ik 1
2(e + BF(a — k) (B—ik)* ~ 2(a +B)(a — ik)(B - ik)

. 24
2(a + P (a? + BB + FY)

_ (ky)?
(a +B)(a +ik)(B+ik) (X + B + 1)°

(2.4)

In order to obtain the scattering amplitude from the
off-shell T matrix, one should take the physical on-
shell T matrix, i.e., sandwich the T matrix with the
appropriate asymptotic states as has been discussed by
the author.’

Let V, from now on be restricted to a rank-one po-
tential defined in the partial wave space characterized
by I,

Vs,t='legs.x><ga.z|, (2.5)

where the form factor is given by Eq. (2.2). Suppress-
ing now the subscript B, we get for the physical on-
shell Coulomb-modified T matrix,

tog,1(B) = (R0 = | Ty ()| R )
=-15(k>-| g (g5 k=), 2.6)
with
"'zc-1 =31 +(g,|G.| &),
and the amplitude is proportional to £, , + 1, ;.

At this point we are able to give a closed formula for
the amplitude for =1, Indeed, from Ref. 7 we derive

(gl k=)=(g, |kl +),, 2.7)
where the right-hand side is known,
(g | B+ )= /TN 27 + iV /1N RH(BR + B2)- -1 B,
(2.8)

We checked this expression explicitly for =1, using
Eq. (2.3) (cf. Ref. 8). Furthermore, a closed form
for 7§, is obtained from Eq. (2.4).

In particular we are now able to express the Coulomb-
modified low energy scattering parameters for I =1 in
terms of known functions. For a repulsive Coulomb
potential (v=Fky/B> 0) the results are

—al 1 =28°T(0, 4v)
+ & B exp(~ 4v)(168° /X ~ 1+2v - 84),
¥ es, 1:1 = 2BV (0, 4V)
+ % Bv + exp(- 4v){- % B+ 4+ %v) B8/AL (2.10)

(2.9)

For an attractive Coulomb potential (v < 0) the incom-
plete gamma function must be replaced by its real part
in both equations. The explicit derivation of these
formulas will be given in Sec. 4.

For vanishing Coulomb strength: kY —~0, i.e., v—0,
Egs. (2.9) and (2. 10) become

—ag . =8"/r- /16,
L7, 11 =485/1 - 98/16.

These expressions just give the effective range param-
eters for the rank-one potential of Eq. (2.5).
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3. THE EFFECTIVE RANGE FUNCTION

It is well known that in the theory of scattering by a
short-range potential the so-called effective range
function

K (B?) =11 cotd, (k) (3.1)

plays an important role. It has been proved that (under
certain conditions on the potential) this function is real
analytic at the origin, Its first two expansion coefficients
are related to the scattering length a; and the effective
range 7, according to®

(3.2)

If the potential is equal to V="V, ,+ V,, where V, is
the repulsive Coulomb potential, the effective range
function is modified, and may be taken as

l+iy I-iy
sty (155 (177

< [27h(7)+ B (cowg_i)], 3.3)

where the function %(y) is defined by’

K(BP)=-alt +3rkt -,

Reiy > 0.

(3.4)
If the Coulomb potential is attractive the function k(y)
should be replaced by

~ b tdt
hy)=-2 '[ # - expl2nt) -1]°

h(y) + im cothmy.

Now we know from the work of Cornille and Martin®
and that of Hamilton et al.3 that for certain classes of
local potentials the function K, ,(¥) is again a real
analytic function of k? at * =0 with a branch cut on
(part of) the negative real axis and possibly with iso-
lated poles in the cut complex k* plane. The first two
expansion coefficients are related to the Coulomb-
modified scattering length a, , and effective range 7 ,,

Kcs,l(kz)z—a:‘.is,l+%rcs,,k2—°°-. (3-5)

In this section we shall discuss the effective range
function for the case that V, is a separable interaction
of finite rank with rational form factors. For simplicity
we shall restrict ourselves mainly to the simple poten-
tial of Eqs. (2.2) and (2.5), and we shall discuss only
a few examples of more general rational separable
potentials.

The main purpose of the rest of this paper will be to
prove for those rational separable potentials the real
analyticity of K, ,(#*) at k=0 for real @ and B, to derive
a method for exact practical calculations of X, ,, and
to investigate it in general,

First we note that the function [cf. also Eq. (27) of
Ref. 4]

H(y)=9(@y) + (2iy)"! - In[- iy sgn(s)], (3.6)

where ¢ is the digamma function, is more useful than
R(y). Indeed, by using!

P(éy) = ¥(=iv) - (E¥)! + im cothmy,
we find that substitution of h(¥) by H(¥) in Eq. (3. 3)

(3.7)
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yields the general formula for K, ; which is valid for a
repulsive (s < 0) as well as for an attractive (s> 0)
Coulomb potential. (Recall ky=-s, so that on the
physical domain Im%> 0 we have Reiy> 0 if s<0

and Reiy < 0 if s> 0). Furthermore, by taking the limit
s —0 in Eq. (3.3) [with H(y) instead of z(y)] we obtain
Eq. (3.1), independently of the sign of s. This follows
from the fact that

lim2y H(y)=1.
s~0
Some useful equalities in connection with Eq. (3.3)
are
amylexp(2my) - 111 = exp(— 7¥) T(1 +4y) T(1 - i7),

and

) )

Now we have to express cotd$ occurring in Eq. (3.3)
in terms of known functions. The relation of the phase
shifts 0, and 8§ with the physical on~shell { matrices is
as follows:

t,,,(k) =li/(nk)] exp(2i0,),
tos, 1(B) =15, (R) exp(2465) - 1].
It is now easy to derive
cotd] — i = - 2 exp(2:0,)/(vkt,, ,),

and, with the help of Eq. (2.6) for /., ;, K, ; is obtained
in closed form. For the simple Yamaguchi-type poten-
tial of Eqs. (2.2) and (2.5) this yields

K ) =2r ) 0 (¢ +) (5 ")

(l+i‘r) (l—i)’) =ml—:11(1+yz/mz).

(3.8)

)

+ (8% + kz)zmazlr{k;l +{(g& | Gc,t(kz) ‘ gz)};

(3.9)
where the subscripts ¢s and 8 have been suppressed.
An explicit expression for {g,!G,,,|g,) is known! in the
case /=0, and for I =1 we found the expression (2. 4).

For a general rational separable potential the function
K, is much more complicated than the one of Eq. {3.9).
We claim, however, that, for any rational separable
potential, K, can be expressed!? in terms of simple real
analytic functions and a certain function W which we
define by

W(y;u, v) = (@y) AYBY[F,(AB) - 1]+ H(y). (3.10)

This function depends on p =ky/a and v=Fky/B through
A and B respectively. A warning is appropriate here,
that A*”B*” is not everywhere equal to (AB)*?. This will
be discussed in Secs. 4 and 5. Note that W is indepen-
dent of 7 and of the particular potential employed. We
have worked out three examples for different types of
potentials, in order to make the above conjecture plausi-
ble. These three cases describe the principal generali-
zations of the Yamaguchi potential that one can imagine.

(i) The rank-one potential of Eqs. (2.2) and (2.5) for
all I, that is, Eq. (3.9). In this case we find
K, =R + RPWly; v, v),
with

(3.11)
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143 _z
R§2) =27k210‘l( -;z.y) (l lly) ,

and R{¥ is regular at zero energy.
(ii) A rank-one potential with form factor
g(p)=(p* +a?)yt +b(p* + A1),

for I=0 only (b is a real parameter), This yields the
expression

Ky=R'" +R") W(r; p, 1)+ R W(r;v, v)

+ R Wy, u, ). (3.12)

(iii) A rank-two potential with form factors of the
type of Eq. (2.2), for =0 only. Then we get

Ky=2ky
(ARo + Wr; 1, u)Y(R, + Wey; v, )] = (R + Wiy 1, VI
Ry +Ry=2Ry 5+ Wly;u, 1)+ Wiy, v, )~ 2Wlr; 1, v)°
(3.13)
The R’s denote simple real analytic functions. Their
dependence on % (or ¥) is contained in the quantities
A", B'", and rational functions of ¥? with real coef-

ficients. We shall derive in Sec. 4 the equality [recau
A={1+ip/v)/(A=iu/7))

A" = exp|~ 2y arctan(n/y)] = expl(2s/k) arctan(k/a)],

from which it easily follows that A** and similarly B'”
is real analytic at 2=0 for real a and B8 respectively.

Our main task will be to prove that W(y; 1, v) is a
real analytic function of ¥*? at y 2 =0. Once this proof
has been given, it is relatively easy to investigate the
effective range function itself. We shall find that the
only singularities of W are the branch cuts — < g* <
- o? and - o< B2 <~ B2, The only additional singulari-
ties of K, can be (isolated) poles of finite order, i.e.,
K, is a meromorphic function in the cut ¥ plane, The
position of these poles depends on the particular poten-
tial and cannot be predicted in general. We have been
able to show that X; of Eq. (3.11) is real analytic at
k=0. However, in general even a pole at k=0 can oc-
cur although this is exceptional. It may be interesting
to consider an example in some detail.

We take the rank-one potential of Eq. (2.5) for =0,
with form factor

2\ _ 2)1/2( 2 ﬁzi) 2 4 a2yl

g(#)—(1r p- g5 ) WA (3.14)
With this form factor g we obtain from Eq. (2.8)
(glle+)o=@/MV 2" T (1 +iy) B (B + K22 B, (3.15)

Utilizing Eqs. (86)—(88) of Ref. 1 we derive (glG,| g),
and for the effective range function we get then

Ky= 2ky W(y;v,v) + IR, (3.16)

where R is a certain real analytic function of #* which
is regular and different from zero at 2=0. Consequent-
ly, K, has a pole of fourth order at the origin.

We like to discuss a few properties of the Coulomb-
modified phase shift 6;. At a bound state of V,+ V, we
have in general
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(3.17)

This corresponds with the situation for a pure short-
range potential, where we have

ty, (k) =[1 - exp(2i5, )}/ (ink).
In general ¢, ;(k) has a pole at the bound state, so that
(3.19)

Since ¢, ,(k) is always real for negative energy, it also
follows from Eq. (3.18) that 8, ,(k) is (purely) imaginary
when & is imaginary. In contrast, this does not hold for
85(k); from Eq. (3.3) we see that the expression

(cotbS — i) /[exp2ny) - 1]

must be real for negative energy because h(y) is then
real,

cotdf =i, Bf=—¢iw,

(3.18)

cotﬁs'l =1, 63'1 =—fo0,

(3.20)

Finally we note that the central function on the right-
hand side of Eq. (3.10) is F;,(AB). We have met this
function before, »? Its behavior at 2=0 is particularly
interesting but complicated. Now it seems that just
this function appears in the off-shell T matrix formula
for the Coulomb plus any rational separable potential.
For the case I =0 this has been proved by van
Haeringen and van Wageningen. ! See also the recent
paper by Bajzer.}® Equations (2. 3) and (2. 4) of the
present paper suggest that the same holds for /=1 and
we have reasons to believe that it is true for all 1.
Moreover, it is very likely that also the pure Coulomb
transition matrices T, , contain functions F;, with a
similar structure, see, e.g., Eq. (2.1). For these
reasons we devote the following section to an investiga-
tion of Fy,(AB).

4. THE FUNCTION £, (AB)

Asg a first step in our proof we shall consider in this
section the function F,,(AB) for real positive &, &, and
B, so v is real. The series representation

Fy(z)=1dy Eo 2"/ (n +iv) (4. 1)
Rl
reminds us of the logarithmic function series
-n(l-2z)= 23 z"/n.
nef
Indeed we have (Ref. 11, pp. 13 and 49)
lim (1 - F,,(2))/(iy) =1n(1 - 2)
and
1m1;[1n(1 ~ 2) + (1/1y) F(2)]
B~ .
-V 1
=—C—w(w)—'§("+iy—n—~+l). (4.2)

Here ¥ is the digamma function as before, ¥(z)
=T"(z)/T'(z) and C =0.5772...is the constant of Euler
or Mascheroni. We have substituted -~ C for (1),

The infinite series in Eq. {4.1) is convergent if
lzl<1, 2z#1, When [zi> 1, but z not real positive, one
can find an expression for Fy,(z) by applying the very
useful formula [see Eq. (32) of Ref. 1]

Fo(2) +F_,(1/2) =1 +T (1 +iy) (1 —dv)(- 2)*7, (4.3)
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since the series (4.1) for F_;,(1/z) converges in that
case.

Now we have A = (o +ik)/(a - ik), B=(B+ik)/(8 - ik)
with @, B,k> 0, so A*=A", B*=B"1 and Eq. (4.3) gives
2ReF,,(AB)=F,,(AB) + F_;,(A"'B"Y)

=1+ |T(1 +iy)|*(- AB)*", (4.4)

However, ImF,,(AB) is somewhat more complicated.
In Ref. 2 we have obtained the coefficients ¢y and ¢, (in
the restricted case A =B) of the asymptotic expansion

y -1 ImF,;,(AB) = Re(iy)" F,,(AB)
=cot+ciY)i+ 0y, Y-,

Since then we have found that the coefficients d,, of the
asymptotic expansion
AYBY Re(iy)™ F,,(AB)

=dg+dy(i7)7 +d (V) +0r™), ¥ e, (4.5)

have simpler closed expressions than c,,. We shall de-
rive dy, d,, and d; in explicit form. Let us first investi-
gate the factor A”B!’, We use for convenience the
parameters p and v, defined before by

paspB=ky=-s, (4. 6)
If arctan denotes the principal value determined by
~4r<arctanxy<4m, —®©<y< o,
then the following equalities hold for &> 0:
(1/2i) In(- AB) = arctan[(%? - aB)/k(c + B)]
=arctan[(pv - 7*)/v(p + )]
=« 37+ arctan(k/a) + arctan(k/B)
= 37— arctan(y/p) - arctan(y/v),

(4.7)
(1/2i) In(AB) =arctan(k(a + B)/ (0B - )]

=arctan(y(u + »)/(* - pv)]
=~ m+arctan(k/a) +arctan(k/g) if k> ap

= arctan(k/a) + arctan(k/B8) if B < aB.
(4.8)
Therefore
(~ AB)!" = exp(ry) A}'B'", (4.9)

(AB)*" =exp(2my) A'"B'" if B> aB, i.e., if Y'<puy,
= AY"BY it B <aB, i.e., if ¥>uv,
(4.10)

which shows that indeed A*”B** is not everywhere equal
to (AB)Y”, cf. Sec. 3. We shall work in the region de-
fined by 0< k< min(e, 8), which means that we can
write (AB)!” for A*”B'’, and we can expand arctan(k/o)
and arctan(/8) at k=0 in the well-known way. From

A = exp[~ 2y arctan(n /y)] = expl(2s/%) arctan(k/a)]
(4.11)

we see that A'” is real analytic at =0, and so is
(AB)Y", This means in particular that A** and (4B)*" are
real for real 2, @, and 8.

After these introductory formulas we are now in the
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position to derive the coefficients d,, of Eq. (4.5). The
integral representation

Fi(AB)=iy [! #74(1- AB1) at,

which holds for Reiy> 0, can be recast into the form
(AB)'[F,(AB) - 1] =iy [ #7(1 - pt dt. (4.12)

This equation is valid for 0<k<a, 0<k<p. We dif-
ferentiate both sides of this equation with respect to L.
By splitting the derivatives into real and imaginary
parts we find, using Eq. (4.5),

tr _a2
AB)T BV=Y" _ gt s 33iy) 2 +di(iv) + Oy ),

h+vy 4,L2+;'2
(4.13)

with df, =d}, (1, v) = (d/di) dy, (11, v). By taking the limit
for Y= -0 of both sides of Eq. (4.13) we obtain

(4.14)

By inserting this expression into Eq. (4.13) and multi-
plying with exp(2p + 2v) we get

di=— exp(- 21 = 2v)/ (1 + V).

exp(2u +2v) Z; df, (i)
fin

1 ¥
= [1-(AB) exp(2p +2v)]

+ Ezg_ﬁ,z (AB)' exp(2p +2¥). (4.15)

(The series 3 d},(i¥)"*" converges, although 3 d,,(iy)"*"
diverges.)

Now Eq. (4.8) yields

(AB) exp(2p +2V)
=exp| 24 +2v- 2yarctan (u + u)/y]
1-py/y?

_ -uv/¥* 1 (u+vRE/Y
=exp [ +20) (F520 + 5 {0

)

Consequently, we have the interesting relation

(AB)” exp(2p +20) =1 - (241 +2v) é By V)", (4.16)

where by, =by,(1t, V) are certain symmetric polynomials
in 4 and v, of degree 3n—1. Therefore, the factor
1/(u +v) in Eq. (4. 15) cancels. Upon substitution of
Eq. (4. 16) into Eq. (4.15) we find

n
exp(2u +2v) df, =2b,, — 1"V + (2 + 2v) 22 T L
ms,

So d§, is equal to exp(— 2 — 2v) times some polynomial
in ¢ and v of degree 3n - 1. For =1 and »=2 we have
obtained

dj =% exp(- 21 - 2v)[2p% + 20 - u(2v + 3)],

d}=- & exp(-2p - 2v)[10u° - 24 (50 + 24)
+ u3(1012 + 18v + 45) + 2u* (5v - 9)
-2uP(5v+6) + 204 (5= 9)]. (4.17)

Integration of df, with respect to n yields d,, up to some
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function of v. Because d,,(1t, ¥) must be symmetric in

K and v, it follows from the special form of d}, that this
function can only be a constant. This integration con-
stant will be determined below.

It is easy to see that the integration of an expression
of the form exp(z) Pol(z) yields exp(z) times a poly-
nomial of the same degree. Therefore, d,, is (just as
dj,) equal to exp(- 24 — 2») times a polynomial of degree
3n -1 (for n> 0). This polynomial is now, fo course,
symmetric in ¢ and ». An economical way to obtain
d,, from dj, is to make use of the equalities

Zi% T(n+1,r2) == x(Az)" exp(- A2)
and

T(n+1, z)=n! e,,(z)exp(\z)° (4.18)
Here the polynomial e, is defined by (Ref, 11, p. 338)

e.(2)= MZ)0 2"/ (4. 19)

and I'(n + 1, z) is the incomplete gamma function,
We have obtained the following explicit expressions:
dy=ReTl'(0,2u +2v),
dy= 1l2 exp(— 21 - 2V)[1+ (2u +2v)
+(1/21)2u +20) - 6(p? +14)]
= Tif exp(- 21 ~ 2v)[e, (21 + 2v) - 6(p? +17)],
dy=~ ﬁiﬁ exp(-2u = 20)[1+ (2p +2v) + (1/21)(2p + 2v)?
+(1/31)@2p +20)° + (1/41) (2 +20)* + 30(ut +14)
- S (pf ~ v+ B+ plS - ph 4 )]
=1 exp(-2u - 2v)[B,e,2p +2v) - pt —

+19(u5-u4v+u3u2+u2v3-u1/‘+v")], (4.20)

The expression for d, is in agreement with the expres-
sion for ¢, given in Eq. (31) of Ref. 2. [Notice that
I'(0, z) is real for real positive z. Along the negative
real axis it has a branch cut, but the real part of I'(0, z)
is continuous across this cut so that Rel'(0, z) is well
defined for z< 0, cf. Eq. (6.3)]. It is interesting to
compare Eq. (4.20) with the general formula for dy, in
Eq. (5.20) below. In Eq. (4.20) the correct integration
constants have already been inserted in the expressions
for d, and d,. Now we are going to determine these con-
stants. This will be done by considering Eq. (4.5) for
p,v—0and a,f—~=, such that pa =vB=ky=-s re-
mains constant. Utilizing

limA!"=1im B! =1

[V B
we get from Eq. (4.5)
llmoRe(l/(i'}’) F“,(AB) - do)
By

Oy B

= ‘}iﬂo(dz(iy)-z +diy) 4o ). (4.21)

From Eq. (25) of Ref. 2 [see Eq. (4.28) below] it fol-
lows that
1/(iy) F;,(AB)=9(1) = $(iv) - In(1 — AB)
+0(1-AB), AB—1.
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Using Eqs. (29) and (30) of Ref. 2, we get [recall that
P(1)=-C]
lim Re(1/(i¥) Fi,(AB) - dg) = Re[lny - ¥(37)]

L,y =0

~ ,.Z:; (iy)™2" B,/ (2n), (4.22)
where B,, are the Bernoulli numbers, The symbol ~
denotes an asymptotic expansion. Note that the infinite
series in Eq. (4.22) is divergent for all finite Y. Com-
parison of Eq. (4.22) with Eq. (4.21) yields.

}imod'ln(u’ V) =B,,/(2n), n=1,2,°°°,

and this determines the above mentioned constant of the
u integration, if the symmetry with respect to & and »
is taken into account.

We summarize the results obtained so far. The co-
efficients d,, =d,,(k, v) of the asymptotic expansion

(AB)”Re(—il; Fn(AB)' io don (i7)2" (4.23)

are symmetric functions of u and v. For n> 0 we have

d2n(“') V) =9XP(— 2“’ - 2”) P3n-l(“" V)s (4. 24)

where P is a certain polynomial of degree 3n—1 and
symmetric in p and v, Its value for p =v=0 can be ex-
pressed in terms of the Bernoulli numbers B,,,

dy,(0, 0) =Py, 4(0,0)=B,,/(2n), n=1,2,°°".

Equation (4. 20) gives d,, d,, and d, in closed form. The
expressions for ¢, and ¢, which follow from dy(v, v)
and d,(v, v), agree with Eqs. (31) and (32) of Ref. 2,
The effective range parameters for /=1 given in Eqgs.
(2.9) and (2. 10) can easily be obtained with the help of
the expressions for d, and d,.

(4. 25)

We conclude this section with a few formulas that
are useful for the high-energy limit: & ~. It turns out
that ReF;,(AB) can be expanded in a power series at
¥y=0, Let lyl<1, lyl<|ul, and lyl<ivi, Apply Egs.
(4. 4) and {4.7) and recall that ¥, ¢, and v have equal
signs since k, @, and § are real positive by definition,
With the help of the well-known equality

exp(my) T'(1 +¢Y) T(1 - iy)

=147y + Z} @my)*"By,/(2m)t, |v[<1
ne

= Eo (- 2my)"B,/n!, |v|<1, (4.26)

the following interesting equality is readily established:

2ReF;,(AB)

+ d B
=1 +exp[— 2yarctan M]E(— 20y =1, |y|<1.
HY =V Jdnao n

(4.27)
The exponential function here is recast into [cf. Eq.
“4.7]
exp{- 2y[arctan(y/p) +arctan(y/v)]},

and this function can easily be expanded in powers of
¥%. Alternatively one can start from Eq. (25) of Ref. 2
which can be rewritten as
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Fylz) =iy :21 ("+iy' 1) (1-2)

X [$0n +1) = dn +i7) - In(1 - 2)],

[1-z|<1, |arg(l-2)|<m. (4.28)

Further one has to use the Laurent expansion of the
digamma function ¥(z) at z =0 (Ref. 11, p. 13, correct-
ed for the misprint),

Plz)=- % -C- é,c(n+1)(-z)", 0<|z|<1, (4.29)

where { is Riemann’s zeta function. After a few manipu-
lations one arrives at the expansion

2 1 1 2y 27)
— L 2{E _ ) —g &7 &7
Fi,(AB)=1+3mv+7v (6 m v) zyln(u + >

+0(#*n|y]), v=—o. (4.30)

The real part of this expression agrees with the second-
order approximation obtained from Eq. {(4.27).

5. THE FUNCTIONS W(y; i, v) AND W(y; £)

In this section we are going to investigate the function
W(v;u, v) introduced in Eq. (3.10). We shall assume in
this section that W(y;u, v) is real analytic at ¥~ for real
¢ and v, The proof will be given in Sec. 6A. The three
independent variables ¥, (1, and v are related to &, @,
and B respectively through Eq. (4. 6), where the strength
s is supposed to be fixed.

It turns out that it is useful to investigate in addition
a closely related but somewhat simpler function, which
we denote by W(y;£). This function is also real analytic
at ¥"? = 0 (which will be proved in Sec. 6B). We shall
obtain all its expansion coefficients in closed form, In
this whole section we still take p, v, and £ real, and
only (% and) ¥ complex.

A. The function W(y; u, v)
The defining expression for W(y;u, ») is obtained
from Egs. (3.6) and (3.10),
W(v;u, v) = (@y)1 ABY[F, (AB) - 3]
+9(gy) + (247) - In[- 4y sgn(s)], (5.1)
where the last three terms are equal to H(y). Since we

have assumed that W is real analytic at ¥ =0, we may
write

Wiy, v) = 2y wpa(is, v)(Ev)™, (5.2)
where the coefficients ,,(1, v) are real symmetric
functions of y and v.

We are interested in the radius of convergence of the
expansion (5. 2) and in closed expressions for w,,((, v).
When we take ¥ real for the moment, we can write

W(y;it, v) =RelH(y)] + Re{(7)"1 A*’B#[F,(AB) - {]},

because W(y;u, v) is a real-valued function for real Y,
4, and v. From Eq. (30) of Ref. 2 and Eq. (3.6) we
have the asymptotic expansion

ReH(y)~ - ii (#7)" B,, /(2n). 5.32)
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Notice that the infinite series diverges for all finite 7.
Further Eq. (4.23) yields

Re{(i»)-1A"B""[F, (AB) - ;]}~ ,.Z% o, (8¥)72", (5. 3b)
Addition of Eqs. (5.3a) and (5. 3b) gives W(y;u,v). Be-
cause the asymptotic series expansions are unique, it
follows that

w0=d0=ReP(0, ZIJ- +2V),

w2n:d2n-32n/(2n)y n=1,2,°°°, (5.4)

It is interesting that the summation of the two divergent
asymptotic series in Egs. (5. 3a) and (5. 3b) yields a
convergent series, that is, the power series (5.2).

In order to investigate the radius of convergence of
the latter, we shall study the singularities of the func-
tions occurring on the right-hand side of Eq. (5.1). We
discern four sources of singularities namely those
originating from

(i) A"VB’Y’

(ii) the hypergeometric function F;,(AB),
(iii) the logarithmic function,

(iv) the digamma function ¥(7y).

(i) In the first place, A*"=exp(fylnA) has a branch
cut for real negative A and similarly B!” for real nega-
tive B, The location of these branch cuts in the complex
k plane is easily found. For real positive ¢ and complex
k we have

_oa+ik _a’- |kl*+2ia Rek
T a-ik (e+Imk) + (Rek) *

Since the denominator is clearly always positive (or
zero), it follows that A is real and negative if and only
if Rek=0 and 21> a. The branch cut, therefore,
consists of the two intervals (- i %, -ia) and (io, §=)
along the imaginary k axis. The product A*’B*” has in
the & plane the following four branch cuts:

(iﬁg ioo), ("ico, —iﬁ).
(5.5)
We have used (- AB)'” in Eqgs. (4.4) and (4.9). It is
useful to know the branch cuts of this quantity. They are
determined by InAB=0, ReAB> 0, Now
ImAB=D"(a +B)(aB - |k|®) Rek,

where D is real nonnegative. Therefore, AB is real if
and only if either |kI?=0apB or Rek=0. Assuming o < 8
for definiteness, one can easily verify:

(ia, i), (-ix), —ia),

AB>1<> ke (=io, ~iB)U (-ie,0), (5. 6a)
AB> 0 <> ke (—i©, —iB)U (-ia, io)U (iB, ix),
(5. 6b)
AB<0<= ke (-iB, —ia)U (ia, iB) or |k|*=0cB.
(5.6¢c)

Therefore (~ AB)*” has the three branch cuts of Eq.
(5. 6b). Furthermore, we have in the % plane, cut along
the imaginary axis,

(- AB)Y" =exp(+ my) A'"B!", Rekz0. (5.7a)
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Note that the origin is an exceptional point here since
k=0 is an isolated essential singularity of exp(t 7v).

Although (AB)*” plays no role in the physical quan-
tities, it is interesting to compare also this function
with A*"B!*, The branch cut of (AB)*’ is given by Eq.
(5. 6¢c). It has a rather peculiar shape. There are four
branch points namely +{c¢, +i8 and the cut connecting
them is only one curve, composed of a circle and two
finite intervals. Inside the circle |k|*=eap we have

(AB)'"=AVBY, |R|*<a8, (5.7b)
and, outside the circle,
(AB)!"=exp(t 21y) A'"B'", RekZ0, |k|*>ap. (5.17c)

(ii) Secondly, F,,{(AB) has a branch cut for real AB
with 1< AB <, According to Eq. (5.6a) AB is real and
larger than one if and only if % lies in either the interval
(-i%, —iB) or the interval (~fc, 0)., The discontinuity
across the cut (- i, 0) of the expression

(4y)"*AYBYF, (AB)

in Eq. (5.1) is equal to 27i; see Eq. (6.19) below. It is
remarkable that this discontinuity is independent of «
and B, despite the fact that the expression itself does
depend on o and B.

Further F,,(z)/T'(1+4y) is an entire function of 4y for
fixed z. This implies that F,,(z) has simple poles at
iy==nforn=1,2,¢--,

(iii) In the third place ln[~ iy sgn(s)] yields a branch
cut for 0 <fk <=, that is, for & on the negative imagi-
nary axis. The discontinuity across the cut is - 2mi. If
we combine this with the branch cut 0<ik< a from (ii),
we see that the discontinuities cancel. Therefore, we
call (- ia, 0) a “removable branch cut” of W(y; u, »).
Below we shall find other removable singularities.

The above considerations lead us to the conjecture
that the infinite series in Eq. (5.2) converges provided
that

|k| < min(a, B), i.e., |y|*> max(p?,?). (5.8)

(iv) In the fourth place the digamma function y{iy) is
a meromorphic function having simple poles at iy =-n,
n=0,1,2,°++. The pole at #¥=0 is always located out-
side the domain defined by Eq. (5.8). Now F,(AB) has
simple poles at t¥y=-n for n=1,2,++ [see (ii)]. It will
be shown below that the residues of ¥{iy) at these poles
cancel the residues of 1/(i¥) A*’B'"F,,(AB), despite the
fact that this latter expression depends also on o and B.
Consequently, W(y;u,v) can be made regular at these
“Coulomb bound-state poles.” We may call them “re-
movable poles,” The limit for » —= is particularly
interesting. This point iy =~- = is the origin 2=0, and
we will find that this singularity is removable as well.

We conclude this section now with a short derivation
of the value of W(y; 1, v) at iy =—n, and for comparison
at iy=n, for n=1,2,+++, In the limit » —~= we shall
obtain in both cases the value w, which is just what we
expect from Eq. (5.2).

Utilizing

lim[9(x) +1/(x +n)]=dn+1)
X=
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and I’H8spital’s theorem, we find
1y

hthHé;ﬂ#ﬂ

7~ an

o zm-n
=dm+1)+1lnz + 2,
ma) M—N
mitn
- n — om
—eC-mizZ L 5 127
z m=t m

Let 0<s<a,fand so =1<,v<0, (Note that the poles
occur only in case of attraction, i.e., if s is positive).
Then we obtain from Eq. (5.1) with the help of the above
formulas,

‘lyim"W(Y; g, v)=~C-1In(-2p - 2v)

[ () - 25 [ i) )

(5.9a)

The prime in §’ means that the last term (m =n) should
be divided by 2. The limit for n —« of the right-hand
side of Eq. (5.9a) must be equal to W(y; u, ») at k=0,
that is, wy(u, v) for which we have the closed form
(5.4). That this limit has indeed the correct value can
be checked as follows, The formula

(o3 -5 o

can be proved by using the binomial theorem for
{1+ x/n)", interchanging the two finite summations
and applying the equality

m-11 =l
my m=- j=-t°

. 1
lim —
L T m

By applying the above formula to Eq. (5.9a) we obtain
'l‘i_rg ‘lyimnW(‘y; g, v)==C—l1n(~ 24 ~2v)

o (=2 - 20!
”% 7°11 :

This expression is indeed equal to wy=d,
=ReIl(0, 2u + 2v) according to Eq. (29) of Ref. 2.

One should keep in mind that for s < 0 there are no
poles in the physical region, neither in {(s¥) nor in
F,,(AB). So W(y; 1, v) is regular at iy =n, for
n=1,2,°°°, Nevertheless, it is interesting to calculate
the value of W at iy =n. We find

W(=in; u, v) =(1-2"/(2n) - Inn + d(n) + ,,,é, 2"/m,
with (5.9b)
_n-pn-v
B Yo n+r’

In order to derive the limit of W(~in; i, v) for n — <
we proceed as follows, First, observe that

n ...E:, (1-x/ny™t =511 - x/n)™,

where the convergence is uniform for 0<e<x <n. Inte-
gration with respect to x yields

"Q m-x/n)"= f: 11— t/n)Vdt, O<xs<n.
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We now apply the inequalities
O<exp(-f)- (1~t/y)*<1/(ey), 0<i<y,

to the above integral and obtain (which follows also
from Tannery’s theorem)

lim f;' 11—~ t/n)""dt:f: t-lexp(- ) dt, x>0.

This latter integral equals I'(0,&) [cf. Eq. (5.15a)], so
that
lim "2 mA(1 =x/n)" =T(0,x), x> 0.

new

Finally we utilize the well-known fact
N
lim (¥(n) = 1nn] =lim (— C-1lmm+ Zg m") =0.
= -" me

In this way we obtain

lim W(—in; 1, v) =T(0, 2p + 2v) =wy(, v),
i

where now 4> 0 and v> 0 since s< 0,

One should be careful in applying here the equality
W(y; 1, v) = W(~v; i, v), since W depends also on the
sign of s, and therefore on the sign of 1 and v. In Eq.
(5.9a) 1 and v are negative, in Eq. (5.9b) p and v are
positive, It can be shown that the expression of Eq.
(5. 9a) becomes equal to the expression of Eq. (5.9b)
if one replaces In{— 21 - 2v) by In(2p +2v).

B. The function W(y; £)
We define W(y;£) for real ¢ by
Wly;£) = (57) expl(~ £){F,lexpGe /¥)] - 3} + H(7).

(5.10)
The function W(y;u, V) is obtained from W(y;t) if one
takes

£ =2y[arctan(u/¥) + arctan(v/7)).

One easily verifies that with this expression for £ one
has exp(it/¥) =AB and exp(- £) =A¥"B*, cf. Eq. (4.11).
The following important equality holds, therefore:

(5.11)

Now in order to calculate W(y;u, v) for some value of

¥, i, and v, one first has to calculate £ from the above
expression, and this value of £ has to be used then in
W(v;£). In Eq. (5.14) we give closed expressions for
the coefficients of the power series of W(y;¢) at y=t=0.
Therefore, W(y;t) is useful for the exact numerical
computation of W(v;u, v). For real i, », and ¥ one has
clearly l¢l<2wlyl. We shall find that W(y;¢) is analytic
in 7 on this same domain, see Egs. (6.32) and (6. 34).
For values of £, i, and v which are small compared
with ¥ the functions W{y;£) and W(y;u, v) are comparable
according to

E—2u +2v: W(y;£)= Wiy;u, v). (5.12)

Notice in particular that £, p, and v have equal signs
here.

W(y;u, v) = Wly;2y[arctan(u /v) + arctan(v/v)]).

By repeating the procedure that we described for
W(v;u, v) we obtain an asymptotic expansion and a
Taylor series for the £ functions which are the analogs
of Eqs. (4.23) and (5. 2) respectively. The coefficients
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are denoted by d,,(£) and wy,(£). At the “Coulomb-bound-
state poles” £y = —n we have the analog of Eq. (5.9a),

im W(y;t) =-C = 1lmn - In[1 - exp(t/n)] + £/n

1
i¥=en

- 22)1' m-3exp(- £m/n) - 1],

where £ < 0 since s> 0 (compare (1, v<0). At zero ener-
gy we get

N < o
im lim W(y;¢)=~C - In(~ £) - g;

n=© Yooy 11!
=ReT(0, £) =wy(£).

We have obtained the following simple closed formu-
las for d,,(¢):

dpn(£) =[B,,/(2n)1 1T (2, £), (5.13a)
=[B,,/(2n)! ] exp(- £) £2"1 , Fy(1,1 = 2n; = 1/£),

(5.13b)
=[By,/(2n)) exp(~ £) 3,4 (€), 7>0, (5.13¢)
=~ [B,,/(@n)] exp(- £) LG (£), n>0. (5.13d)

Here ,F, is a generalized hypergeometric function,
€3,-1 is the exponential polynomial of Eq. (4.19), and L
is the generalized Laguerre polynomial. Equations

(5. 13) are valid for all real £ if > 0, and for positive
£ if n=0. When ¢ is negative, d; is equal to the real
part of the right-hand side of Egs. (5.13a) or (5. 13b).
For the coefficients wy,(£) of the expansion

WiE) = 5w, Jgl<2aly],
we have obtained:
wo(€) =dy(€) =Rel'(0, £), (5. 14a)
Wyn(£) =~ [By,/ (@)1 ]¥(2n, £), n>0, (5. 14b)
=~ [B,,/@u)1 [£¥"/ @n)] exp(~ £) 1Fy(1;2n + 1;E)
n>0,
(5. 14c)
= [By,/ @)1 ][£%/ (@n)] \Fy(2n;20 + 1;- £),
n>0,
(5. 14d)

These Eqs. (5.13) and (5. 14) have been derived with
the help of Eqs. (6.31) and (6. 36). The incomplete
gamma functions are defined by

I'(2n,£)= [, exp(- ) ™ dt,

¥(2n, £) = [ exp(- £) ™1 dt, (5. 15b)

One should not confuse ¥(2x, £) and the variable y. From
Eqs. (5.13a) and (5. 14b) it follows that

Wy, (£) =dp,(E) - B,,/(2n), n>0, (5. 16)

which should be compared with Eq. (5.4). The polyno-
mial in Eq. (5.13c) is just a cutoff Taylor series expan-
sion of exp(). This polynomial is multiplied by exp(- &)
and therefore we have

d2n(£) =B2n/(2n) + O(SZH)’ g - 0,
and so

(5. 15a)

(5.17)
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wy,(£) = O(£), £—0, (5.18)

which follows also from Egs. (5.14c) and (5. 14d). Now
if we replace ¢ by 2u +2v according to Eq. (5.12), we
get analogous formulas for d,,(u, v) and w,,(k, v),

dZn(p‘, V)=B2n/(2n) +02"(p” U), u, V—.OQ

Wan (K, V) = 0p(1t, v), d,v—0,

where O,,(1, v) contains terms of degree = 2x in p and
v together, The proof of this remarkable fact will be
given in Sec, 6. There we will obtain the more precise
expression [¢f. Eq. (6.29)]

B, v 0,
(5.19)
valid for »> 0. By combining this result with the already

known properties of d,, we arrive at the following inter-
esting expression:

1
w2n(“', V)=-— %% <u2n+ V2n) +02n+1(ﬂ, V))

dy,(1, ¥) = (2n)! exp(- 2 — 2v)

X [Bynean (2L +20) = (L2 + 1#") + £, (1, v)]
(5.20)

for n> 0. Here f,,(1, v} is a certain symmetric poly-
nomial in 4 and » with the property that the degree of
its terms is at least 2n +1 and at most 3z~ 1, Obvious-
ly f,=0 and f; has only terms of degree 5. In the par-
ticular cases =1 and n=2 we have checked Eqs.
(5.19) and (5. 20) explicitly. The expressions for d, and
d, have been given in Eq. (4.20).

We conclude this section with two remarks.

(i) Equation (5. 14d) can also be derived directly from
Eq. (5.10) by using the last formula on p. 33 of Ref. 11.
We note that this formula must be corrected as follows:
Replace I'(m +2) by (m + 1)'(m +2), The function F,,(z)
is simply connected to Lerch’s function &,

F(2) =iy ®(z, 1,4y). (5.21)
We have then
(i¥)32""F,; (2) = - C - ¥(iy) - In(Inz"1)
n
_ ) {nz) B,(iv), |lnz|<2m,
st nen!
(5.22)

where B,(iy) are the Bernoulli polynomials. We insert
Eq. (5.22) with z =exp(i£/7) into Eq. (5.10). Compari-
son with

W8 = 35 () ")

yields after some manipulations agreement with the
expression (5. 14d) for w,,(£).

(5. 23)

(ii) The integral in Eq. (3.4) for k(y) is reminiscent
of the Mellin—Barnes integral representationi! of F,,,

. T odt (-z)t
ﬂﬂ*”f T+v 2 sinbai’

-

|arg(— 2) '< .
(5.24)

The path of integration is chosen such that the points
t=0, —i, —2i,*+*, are under the contour and the point
= -7 is above the contour. Therefore ¥ cannot be equal
to 0, ¢, 2¢,°° . It might be that this integral is a good
starting point to prove the real analyticity of Wi(r;u, v).
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However, we have not been able to take advantage of the
similarity.

6. PROOF OF THE ANALYTICITY OF VAND W

In Sec. 6 A we shall prove that W(y;u, v) is a real
analytic function of ¥-? at ¥ =0 when p and v are real.
For this purpose it is convenient to introduce a closely
related function V{(y;u, v) which is analytic in the three
complex variables y, p and v, on the domain defined by
lu/vi<l, lp/yi<i,

In Sec. 6B we shall introduce the function V(y;£),
which is similarly related to W(y;£), and prove that it
is analytic in ¥ and in £ on the domain defined by
[£/v 1< 27, We will obtain simple closed expressions
for the expansion coefficients v,,(£) (expansion in
powers of ¥*?), and for 9,(y) (expansion in powers of t).

A. The functions V(vy; u, v) and W(vy; u, v}

The function W(y;i, v) has been defined in Eq. (5.1)
for real p and v. Let us first take »=0. Then we have

W(v;i, 0)= @)1 AY[F,(A) - $]+ H(Y), (6.1)
with A = (1 +4p/¥)/(1~ip/¥) and [Eq. (3.6)]

H(y)=9(iy) + 1/(2iy) - In[- iy sgn(s)].
Assuming first p real, we define

Viy;i, 0)= W(y;i, 0) + C +1n[— 2 sgn(s)]. (6.2)

The Euler constant C has been added for convenience

only, but the term In[- 2p sgn(s)] has the effect to cancel

the singularity of wy(i, 0) =ReI'(0, 21), see Eq. (5.4).

In fact we have

= (- 2)

T(0,2) +lnz +C =~ 2y == | (6.3)
n=l N°N.

This is an entire function for which we have the follow-

ing useful integral representations:

T0,2)+lnz+C= fz %![1—exp(-—t)]
0

2{’

The combination of Egs. (6.1), (6.2), and (3. 6) yields
Vir;u, 0)=(1/iy) A[F,(4) - 3]
+3Gy) +1°f(2iy) + C + In@u/iv).  (6.5)

Notice that sgn(s) has disappeared. Below we shall find
that the right-hand side of Eq. (6.5) can be analytically
continued into the complex u plane on the domain de-
fined by

[u/v]<1.

We shall derive now a simple integral representation
for V(v;u, 0) from which the analytical properties can
easily be obtained.

%E‘ {1~ exp(~ zt)]. (6.4)

(6.6)

We differentiate Eq. (6.5) with respect to p, Utiliz-~
ing the following integral representation [cf. Eq. (4.12)],

t£7-1

1 i i
WZ F;r(l)—[ l—tdt’

Reiy > 0, (6.7)

we obtain
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£ . 6.8
i v =3 (1- ) ©.8
Further we know that wy(i, 0) =ReIl'(0,21) and so

lim V(v;u, 0) =0, (6.9)

where we utilized Eq. (6.3). From Eqgs. (6.8) and (6.9)
we obtain the desired integral representation

*ar 1 1+it/y

V(Y:“’°’=fo 21~ i (50) ‘] 6

which can be recast into the form

V(7'3”’0)=f0 dt[ Wexp[ Zyarctan(t/'r)]]
(6.11)

10)

or

U 1 1+iut/y "’]
V(r;u,0)=[ 7 [1——177—1“” 7 <-——/—1_iut y) .
(6.12)

The integrand of the integral in Eq. (6.12) is analytic
provided that

o< [t|< |v/ul,

and it can be analytically continued to 1=0. It follows
that V(y;u, 0) is an analytic function of ¥ and p on the
domain defined by Eq. (6.6), thatis, lpl< lyl. By
making the substitution ¥ — -7 in either of the Egs.
(6.10)~(6.12) we see that V(y;u,0) is actually a func-
tion of ¥* rather than of 7.

We have obtained in Eqs. (6.5) and (6.12) two impor-
tant expressions for the function V(y;u, 0). Since the
expressions (6.5) on the one hand and (6.10)— (6. 12) on
the other hand look quite different, they deserve a de-
tailed investigation. In particular we shall compare
their singularities. In Eq. (6.5) we see simple poles
at i¥=-n, forn=1,2, <>, They are removable and
have been discussed before. Further we see a remova-
ble singularity at 4 =0, that is, at A=1, In virtue of
Eq. (4.2) the function V(y;u, 0) can be made continuous
at 4 =0 with V(y;0,0)=0.

More interesting are the nonremovable singularities
which we are going to discuss now, For this purpose it
is convenient to introduce the new function U by U(y;p)
= V(¥;u, 0) with the new variable p=:u/y. We get from
Eq. {(6.5)

U(vp)—(zY)"(1+Z) [F (i+g) ;]

+1n(- 2p) + ¥(iy) + (2i¥)1 + C, (6.13)
and from Eq. (6.12)
" at 1 (1+8\”

Now that we have obtained these two expressions after
several manipulations, we note that a second proof of
their equality is obtained by using Eq. (6.7) and the fol-
lowing integral representation of the digamma function!!

zp(z)———-lnz C
+[ %’[1_1__1.[,(%;—:)] Rez>0. (6.15)
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From the definition of U(y;p) and the equality

Vir;u, v) = V(= 7;p, v) it follows that

Uly;p)=U(=7;-p). (6.16)
One can derive this equality easily from Eq. (6.14). It
follows also from Eq. (6,13), by using Eq. (4.3) and
observing that

Uly; p) - U(=v;-p)

=) = ¥~ i¥) + G¥)"! + In(- p) - In(p)

+ @) T(1+iy) 01 - W)(l +p> ~i7 (%i%)iy

6.17)
vanishes identically for all nonreal p, This can be de-
rived with the help of Eq. (3.7),

DY) = P~ iy) + ()3 =

By means of analytical continuation we then find that
the expression of Eq. (6.17) is identically zero and this
again proves Eq. (6.16),

im cothry.

Considered as functions of p, the expressions in
Eqs. (6.13) and (6. 14) show several branch cuts. Taken
together, they must yield the same branch cut with the
same discontinuity for both expressions separately. We
are going to show that this is indeed true. For the pur-
pose of this paper the discontinuity of a function f across
a branch cut in a point z on the cut can be defined by

Disc. f(z) Elei.rgl[ Fz(1 +i6) —Flz(1 - ie))]. (6.18)
For example,

Disc. In{~z)=-~27i, 2>0,
and, with the help of Eq. (4.3) [cf. also Eq. (5.22)],
(6.19)

For the discontinuity across the cut —©<p< -1 arising
from the integrand in Eq. (6.14), we obtain

D,=D(v; p) =2(iy)? sinh(ry)

p_lir l-p)_l
X(p+1) [F”(Hp 2]

We need this function only for ~©<p< -1 and for
1<p<-e, where it is regular. Equation (6, 16) implies
at once that the discontinuity across the cut 1<p<w
arising from the integrand in Eq. (6. 14) is equal to
D_,=D(~v;p). One can verify with the help of Eq. (4.3)
that

D{y;p} +D{-v;—p)=-27i.
The derivation of all the discontinuities will not be

given here, We summarize the results in the following
scheme.

Disc. (i) 2'"F (2) =278, 2> 1.

(6.20)

Branch cut Discontinuity Arising from
—o<p<~-1 D, Eq. (6.14)
1<p<e D, Eq. (6.14)
-o<p<-1 D, (1 +p)/A-p))
1<p<w D_, +2mi (A +p)/(1-p)*”
0<p<1 2mi Fil+p)/(1-p))
0<p<o - 27 1n(~ 2p)
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The first two lines concern Eq. (6.14): the last four
lines concern the respective expressions of Eq. (6.13).
On the third line we see the same branch cut as on the
first line. Furthermore, combination of the last three
lines just gives the branch cut of the second line. So we
see that Eqs. (6.13) and (6. 14) have indeed the same
branch cut structure,

So far we have studied W(y;u,0). However, our goal
is the function W(y;u, v). The final step now is the ob-
servation that W(y;u, 0) is transformed into W(y;u, v)
by means of the substitution

g +)/(1= py/7),

under the restriction
lu/vl<1, |vy|<1.

It is easy to find that this substitution yields
A—~AB, AY—AVB",

where B =(1+iv/y)/(1-iv/¥), see Eqs. (4.8) and (5. 7).
So we have

(6.21)

. _ L k+v
W(‘)’,;L,V)-W(7,1—_W , 0) . (6.22)
By defining .
. - . Wbty
V(Y,U,V)—V(Y,m, 0) , (6.23)
we get the following expressions
(- 2¢ ~ 2v) sgn(s)
V(‘)’;IJ-, V): W('Y,]J., V)+C +1n 1-“’”7)/1 (6.24)
=1 Logir 1 ) L
=3y AYB [F{r(AB) 2]'*'%1}(17)’*‘ 33y +C
2 +2v 1 )

wen/amuv/ 7y gy ) 1 (1+it/7)"]
~fo T[ T1+ 8 \1 =ity )

(6.26)

By means of changing the variable of integration accord-
ing to

pr, t=BEFD)

R T

and, denoting 7 again by ¢, we obtain from Eq. (6.26)

Vdt 1+ pvP/y
"W’”ﬁ[ T 1wl

y [1 _ (1 - pvd/v*)?
1+ p22 /¥ + VP /)

o (1 +iut/‘y> 1+ iut/y "]

1-ipt/v 1—dvt/y :

The integrand of the integral in Eq. (6.27) is analytic
in ¢, v, &, and v on the domain defined by

(6.27)

0< |t|<min(|v/u|, |v/v]),

and it can be analytically continued to ¢=0, so V(¥;u, v)
is analytic in ¥, 1, and v on the domain defined by Eq.
(6.21),

lu/rl<1, [v/v|<t.
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Since the integrand in Eq. (6.27) is real if ¢, ¥, U, and
v are real, V(y;u, ) is a real-valued function for real
Y, K, and v. Consequently, V(v;u,v) is real analytic
in any one of the three variables if the other two are
real. We point out that the desired analytical proper-
ties of W(y;u, v) follow from Eq. (6.24),

Now we shall give the proof of Eq. (5.18). For this
purpose we introduce the variable o={v/¥ in addition to
p=il/y used before [Eq. (6.13)]. We consider the limit
of V{v;u,v) for ¥, i, v—=0 such that p and ¢ remain con-
stant. In view of Eq. {6.21) we have to require !pl<1,
lol<1. From Eq. (6.26) it easily follows that

-i(pm)/(lwa)ﬁ [ 1 }

iy = (
loi<t, lo <1 0

(1-p%(1-0d%)

3%11’1—?1’_*_—‘)7)2—"' . (6. 28)

The power series expansion of this expression yields

Um vy, (k, V(GEY) ¥ =~ %z [p* + 0% ~ 2(~ po)*].
Yk ,w=0
o144, lel<t
Considering now W and w,,, we observe that the term
- 1n(1 - pv/¥*) occurring in Eq. (6.24) has the effect of
cancelling the term - 31n(l +p0) in Eq. (6.28). There-

fore, we have

lim gk, VEN*
YVelbov=0 =
lo 1<1,lol<t . 2n

¥ +0*), n>0, (6.29)

and this proves Eq. (5.19).

Finally we report that we have utilized Eq. (6.22)
to derive (for n=0,1,2) w,,(1, v) from w,,(k, 0) which
is much easier to obtain, This alternative method yields
a check on the derivation of d,,(§, v) performed in Sec.
4, see Eqs. (4.17) and (4.25). Since wy(it, 0) =dy(k, 0)
=I'(0,2p) for 4> 0, we have to expand

r(o 21 +2v
* 1 uv/PR

in powers of ¥ . The expansion is carried out with the
help of the addition theorem for the incomplete gamma
functions (Ref. 11, p. 341):

T(a,x)-T(a,x+y)=v(a,x+¥) - v(a,x)
= exp(- x) x > i) (=x)™(1-a),

ne0
x[1-exp(-y) e, (9], [y[<|x],
which implies in particular
r'o,x+y)=Ir(0,x)
2 1+x
+ exp(—x) [—- y’; +—i—)7 —5- +0(y%), y-—0.

B. The functions V{y: £} and W(y; £)

The function W(y;¢) has been defined in Eq. (5.10)
for real &,

W(y;£) = @) exp(- £)[F,,(expGt/v)) ~ 3] + H(Y).
Repeating the procedure of Sec. 6A, we get

V(y;£) = W(r;£) +C + 1n[- £ sgn(s)],
and

(6. 30a)
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V(y;£) = (1/iv) exp(= £)[F; (exp(E/7)) - 3]
+P(ey) +1/(24y) + C + In(¢ /17).

The latter expression can be analytically continued into
the complex & plane. We obtain

(6. 30b)

a gyl _ 1 £
T Viv;£) = P 5y exp(~ £) cot 5y

and
lim V{y;¢)=9,
-0

SO

1 at 3 £t
Viy;€) = .[ T [1-exp(— £t) 2y cot 27| (6.31)
This integral representation implies that V{y;£) is
analytic in v and in £ on the domain defined by

|£/v|< 2. (6. 32)

Let us briefly consider the singularities outside the
domain (6. 32). From Eq. (6.30b) we see that In[£/(i¥)]
yields a branch cut 0<it/y¥ <=, and Fy, yields a branch
cut 1< exp(i£/y) < . It turns out that the first branch
cut can be removed and that the actual branch cuts are
given by

0<it/y+2min<o, p=x1,+2,°°0, (6.33)

So we have in the plane of the complex variable £/ a
set of branch cuts consisting of vertical lines parallel
to the imaginary axis, starting from the points 2mn
(n=x1, +2,***) on the real axis and going downwards,
Only the negative imaginary axis itself (#=0) is a
removable branch cut.

The series expansion in powers of ({y) converges if
Eq. (6.32) is satisfied,
Viv;¢) = ’Q v (E)E)?,  |E|<2m]y]. (6.34)
The coefficients v,, are closely related to the coeffi-
cients w,, of W [see Eq. (5.14)],

v(§)=T(0,8) +Ing +c == 55 8T,

Van(£) = un,(8), n>0. (6. 35)

The closed expressions for vy,(£) follow easily from
Eq. (6. 31) if one utilizes the expansion

zcotz = i) (=)"(22)*"B,,/(2n)!, [z |< T.

n=

(6.36)

The coefficients of the expansion in powers of ¢ can
also be obtained in closed form. We write

Vo8 == 23w e/nl, [E]<2rly].  (6.37)

Starting from Eq. (6.31) and applying the generating
function of the Bernoulli polynomials B,(*), we find after
some manipulations [cf, Eq. (5.22)]

U,(v) =1/(2iv) + (1/n)(ey)™ B, (iv). (6. 38)

We know that V(y;£) and 7,(y) are functions of ¥* rather
than of y, and we show this explicitly by recasting Egs.
(6.37) and (6. 38) into the form
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w (g [0/23
=5 S8 () @t @.09)

Here [n/2] means the integral part of #/2 and we have
used the relation

B,(x) = Z")o (::;) x"™"B,

(6.40)
and the fact that B,, =0 for m=3,5,7,*°.

7. SUMMARY AND DISCUSSION

We have given in Sec. 2 closed expressions for
Te,1a4(Ps2'; ¥?), fOr Ty 1 4(p,p’; ¥*) and for a; and 7y,
corresponding to V. + V, with ¥, the =1 Yamaguchi-
type potential. In Eq. (3.6) we introduced the function

H@) =96y) + @iy)r? - In[- iy sgn(s)],

which replaces the often used function k() in the defini-
tion of the effective range function if the Coulomb po-
tential V, is attractive. When V, is repulsive, H(y) is
identical to k(y). The effective range functions corre-
sponding to V. + V,, for several rational separable po-
tentials V_, have been discussed in Sec. 3, and the func-
tion W(y; i, »), which plays the central role here, has
been introduced.

In Sec. 4 we investigated F,,(AB). This section con-
cludes with some formulas useful for the high-energy
limit, 2— =, In Sec. 5 we studied W{v;u, v) of Eq.

(3. 10) and an auxiliary function W(y;£); see Eq. (5.10).
This function is very useful for numerical computations,
due to the relationship

W(v;i, v) = W(y;2ylarctan(n/¥) + arctan(v/7)]) (5.11)

and the fact that we found simple closed expressions
for the expansion coefficients wy,{£) of W(y;£). The
equality

Wy =dyy — Byy/(2n)

holds for wy,(£) and d,,(£) as well as for w,,(K, ¥) and
dya(lt, V). We have obtained

dZn(g) = (zn).l exp(_ E) BZ" e2n-1(£)

and

(5. 13c)

dy,(1t, ¥) = (2n)"1 exp(- 2 — 2V)
X[Byuera(21 +20) ~ (12 + ") + £, (1, V]
{5.20)
In Eq. (4.20) d,, d,, and d, have been given explicitly.

In Sec. 6 we have proved that W(y;u, v) is a real
analytic function of 9* for real y and v. The only singu-

larities in the complex y plane are the branch cuts
{—iu,ip), {(-iv,iv).

They correspond in the complex k plane to the branch
cuts

(ia,iao), (_iw1_ia); (iﬂ,i""), (-iw,—iﬁ).

The power series

> (@) w8,

n=0

where ¢ has the value
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£ =2yarctan(p/y) + 2y arctan(v/y),

is equal to W(y;u, v). It converges if

|e|<2n]v]. (6.32)
The map of this region into the complex & plane gives

a region of convergence which is much larger than the
disk |21< min(e, B). [However, this disk is not wholly
contained in (6. 32)], In particular the whole real » axis
belongs to the region of convergence determined by

Eq. (6.32).

The effective range function K, of the examples of
the potentials in Sec. 3 is a real analytic function of k?
with the branch cut — © < £ < max(~ ¢?, - 8%) and possi-
bly with isolated poles of finite order. The position of
these poles depends on the particular potential and is in
general difficult to predict. In Eq. (3.11) K, is regular
at k=0. We have also given an example of a potential
for which K, has a pole at k=0 [Eqs. (3.14)—(3.16)].
For a general rational separable potential with real
positive B; [Ref. 1, Eq. (97)] we conjecture that, except
for the branch cut ~ © < k*< max(- g, ..., - B?), the
effective range function K, is a “real- meromorphic”
function of ¥* (i.e., real analytic except for a finite
number of poles of finite order).

The singularities of the effective range function have
thus been determined in principle. Its numerical calcu-
lation is facilitated, which is in particular due to Eq.
(5.11)ff. The use of these equations is not restricted to
the effective range function. They can also be applied
to other quantities playing a role in the scattering by
Vet Vo
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It is shown that certain assertions on the number of bound states of a Coulomb plus Yamaguchi potential
which Zachary [J. Math. Phys. 12, 1379 (1971); 14, 2018 (1973)] claims to have proved are incorrect. We
prove that there are always infinitely many bound states if the Coulomb part of the potential is attractive
and that, in case the Coulomb part of the potential is repulsive, there is one bound state only if the

Yamaguchi potential is sufficiently attractive.

In this paper we correct some assertions which
Zachary! claims to have proved concerning the number
of bound states (in the /=0 partial wave projected space)
for the Coulomb plus Yamaguchi potential.

We prove that the number of s wave bound states is
always infinite if the Coulomb part of the potential is
attractive, for a repulsive as well as for an attractive
Yamaguchi potential. Zachary found (by means of
numerical calculations) that the number of bound states
would be 0 or 1 in this case.

In case the Coulomb part of the potential is repulsive,
we prove that there is one and only one bound state if
the Yamaguchi potential is sufficiently attractive, and
that there is no bound state otherwise. Zachary found
in this case that the number of bound states could be 0,
1, or 2. See Ref. 1, pp. 1384 and 1385,

We start with the observation that all the bound states
are given by the poles of the T operator. In the notation
of Ref. 2, we have V=V_+V,. Here V, is the rank-one
separable Yamaguchi potential with strength A and range
parameter 3. V, is attractive or repulsive when A>0
or A< 0, respectively. Further, V_ is the pure Coulomb
potential with strength s, V_ being attractive when s >0
and repulsive when s < 0. Furthermore we shall use the
variable k which is connected to the energy by E= - &2,
k>0. Then

T=T,+T,, 1

___leeXe
o= iy @

where g° is the Coulomb-modified form factor, When V,
is repulsive, neither 7', nor g° has poles. Below we

shall show® that, when V, is attractive, the pure Coulomb
poles in T, are cancelled by corresponding poles in T,,.
Then it follows that the poles of T are obtained by solv-
ing the equation

1 +(g|G.|g)=0. (3)

In the case g is the Yamaguchi form factor, the second
term is known in closed form [¢f. Eq. (83) of Ref. 2]
and we have

A-1:2/3(ﬁ1+ <P 1 —i/K' Fill, - s/k52 = s/w; [(B - k)/

B+x)P). (4)
This is essentially Eq. (31) of Zachary.
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We now first consider the case that V_ is attractive,
i.e., s> 0. In that case T, has the pure Coulomb bound-
state poles at k=s/n, n=1, 2,+». The origin k=0 is
the limit point of these poles. However, we do not expect
bound states of V_+ V, at these energies. In fact, T
has poles at exactly the same points «=s/n and its
residues cancel the residues of T,. It follows that T,

+ T, has for these values of «x “removable poles” (in
the terminology of Ref. 4). This can be shown in the
following way. In the neighborhood of the point k =s/n,
where we fix » for the moment, we have

I G i, ) k| G
¢ -k +5%/n

(k=s/n), (5)

where | k,) is the pure Coulomb bound state vector. Us-
ing then

G.=Gy+ G, TG, ~Go T, G,
lg°)=(1+T,G,)|g)=~T,G,|g),
where both approximations hold near the pure Coulomb
bound state poles, we get from Eqs. (1) and (2),
TG, g g|G,T
T=T, - .
¢ (&G T,Golg)
Insertion of Eq. (5) into Eq. (6) shows that the residues
of T, and T, cancel,®i.e.,

(6)

3 2 2 2 _
~1_1’n/1a(—x +s2/n?)T=0. (7

It is also clarifying to consider the following interesting
equality, which holds without approximation,

(glGlg)yt=x+{g|G,|g)". (8)

Clearly, the poles of (g|G,|g) are no poles of (g|G|g)
(and vice versa) as long as 1#0, Furthermore, the
resolvent G and the T operator have the same poles,
which follows easily from

G=G,+ G,TG,.

We now turn to the solution of Eq. (4). All the vari-
ables in Eq. (4) are real and it follows that the whole
expression is real. Due to s > 0 we have —s/k <0, Now
it is known that ,F,(a, b;c;2)/T'(c) is an entire analytic
function of @, b, and ¢ if z is fixed and | z| <1, It follows
that the expression on the right-hand side of Eq. (4)
has simple poles at s/k=n=1, 2, *=-, (These are just
the pure Coulomb bound state poles.) At such a pole it
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behaves as®
(n—s/K)"2s(B~s/n)"? (B +s/n)?2,

from which it follows that the residues have the same
sign for all . Therefore, if we vary « from s/(n+ 1)
to s/n (i.e., between any pair of consecutive poles),
that expression varies continuously from + « to ~« and
adopts every real number at least once. (Below we shall
find that it adopts every real number jusf once.) This
holds for every n=1, 2,++, so Eq. (4) has infinitely
many solutions for every real value of ), i.e., there is
a bound state corresponding to k=s/n (n=1, 2,-) for
an arbitrarily strongly repulsive or attractive
Yamaguchi potential. The origin k=0 (zero energy) is
the only accumulation point of the bound state energies.

A second way to prove this, which at the same time
gives more detailed information about the position of the
bound state energies with respect to the pure Coulomb
bound states, is to insert the completeness relation

ﬂzg:i"(rJ(Kn'
+f0‘dkk2|k+)(k+| (9)

into Eq. (3). Here again |«,) are the bound state vectors
and | +) are the scattering states of the attractive pure
Coulomb potential. Using then G,= - (k¥* + H )™ where

H =H,+V_, we get

)\-1=2 _.g..liﬂﬁ]g_

—Sﬂ

dkk

T (&l (kt|g). (10)

The integrand and each term of the infinite sum is a
monotonically decreasing function of « on each of the
intervals s/(n+ 1)< k<s/n, n=0, 1,<-; This can be
seen either by inspection or by means of differentiation
with respect to «2. It follows that the right-hand side of
Eq. (10) is a monotonically decreasing function of x on
the above intervals. So if x increases between any pair
of adjacent poles® [from s/(n+1) to s/n, say], the
expression on the right-hand side of Eq. (10) decreases
continuously and monotonically from + « to -, There-
fore, Eq. (10) has for every real value of X one and only
one solution in the interval s/(n+1)< x<s/n, for

n=1, 2, e, Furthermore, in the #=0 interval s< k<
there is one and only one solution for every real positive
value of A, since the right-hand side of Eq. (10) varies
then continuously and monotonically from + « to 0.

This means that in the case of an attractive Yamaguchi
part there is just one bound state below the pure Coulomb
ground state, with binding energy E, < —s®, This is the
ground state of V_+ V. By increasing the Yamaguchi
strength, A —«, we get an infinite binding energy as
expected, E; —~«. Also all other bound states of V +V,,
namely those with n=2,3,+w, are shifted downwards
with respect to the corresponding pure Coulomb bound
states. But in this case the bound states always remain
above the next lower pure Coulomb bound states. On
the other hand, if the Yamaguchi part is repulsive, all
bound states are shifted upwards with respect to the
pure Coulomb bound states, but every state remains
below the next higher pure Coulomb state, no matter
how strongly repulsive V, is. This is a remarkable and
quite unexpected phenomenon.
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Now we consider the case that V, is repulsive. In this
case the pure Coulomb scattering states 12 +) form a
complete set in the /=0 space. The completeness rela-
tion now takes the form

_(® 2
1= ["aek®|k+){k+|. av
Again, we insert Eq. (11) into Eg. (3) and use the fact
that G,= ~ («*+ H )™' with H |k +>=Fk?* k+>. Then Eq.
(3) becomes

/ dk: k¥ g e+ )kt 1g)=0.

The integrand is clearly real positive and it is a contin~
uous and monotonically decreasing function of  for

0< k<, The same holds for the integral. It is maximal
for k=0. We denote the corresponding strength by 2,

d= [Tdar(gle+)(k+1g). (13)

It follows by inspection that Eq. {12) has one and only
one solution if the Yamaguchi potential is sufficiently
attractive, i.e., if A= X;. When A<, there is no solu-
tion and therefore no bound state. An explicit expression
for A, follows from

8/ x,=% - 2vexp(4v) T(0,4v), (14)

in the notation of Ref. 5 (v=~s/8>0). For this value
of A,, the Coulomb-modified scattering length is infinite,
a;y=0, see Eq. (34) of Ref. 5. We notice that

0<x exp(x)T(0,x)
=xexp(x) [ dttlexp(-1)<1,

(12)

x>0,

so0 that the right-hand side of Eq. (14) is always positive
and therefore ;' >0, cf. Eq. (13). It also follows from
Eq. (14) that 8%/A,<3. This is satisfactory since it is
known that for the pure Yamaguchi potential the bound
state appears just at zero energy if the strength x is
equal to 283, Addition of the repulsive Coulomb potential
must have the effect that x> 2%,

Finally we note that Eq. (12) implies that the expres-
sion on the right-hand side of Eq. (4) is a continuous
and monotonically decreasing function of « for 0< k<
if s < 0. This can be proved directly, but with consider -
ably more effort, as follows. Starting from a well-known
integral representation for the hypergeometric function,
we can recast Eq. (4) into the form

=2k [t N,
with
N=(B+«kP-t{8-k)2=0

(15)

Here we have also utilized
2Fi(1,iy: 244y, 2)=(1 = 2) ,F,(2,1+ iy 2+iy; 2).

We differentiate the right-hand side of Eq. (15) with
respect to k and obtain, after a few partial integrations,

2/ 'dt 2 /*N2{2(8 - k®)(1 - ) + Int[(8+ k) + (8 ~ )]}

(16)
One easily verifies that
S t-1Vt -1
— R — < <
1"“%%-1(”1) 2y 0l
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Substitution of this inequality shows that the integrand is
dominated by

£/ AN 4 (t - D[k + B = 8)/ (1 + 1)),

which is clearly negative for 0<¢<1, so that the inte-
gral of Eq. (16) is also negative. This proves the
monotonicity.

We note that almost all the assertions of this paper
remain valid when the Yamaguchi potential is replaced
by an arbitrary rank-one separable potential. It is not
difficult to verify this. There is one important excep-
tion, however. When we discussed the solutions of
Eq. (4), we assumed the energy to be negative. It can
be shown, with the help of Egs. (10) and (12), that Eq.
(4) has indeed no solution for positive energy if g is
the Yamaguchi form factor. That is, there is no bound
state in the continuum. However, by a special choice of
the form factor it is possible to construct a bound state
at positive energy. Such a pathological situation will not
be discussed here.

The results of this paper agree with our intuitive idea,
namely that the range of V, + V_, being still infinite,
causes an infinite number of bound states in case V, is
attractive. On the other hand, it is known that an attrac-
tive rank-one separable potential has at most one bound
state at negative energy. Addition of a repulsive Coulomb
potential should not change the situation.
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The mistake of Zachary shows that the hypergeometric
functions occurring here are complicated objects. The
source of the difficulties is that the energy variable is
contained in the parameters of ,F, as well as in its
argument. In particular in the zero energy region one
should be careful. Numerical calculations might fail
here because the well known ordinary power series of
oF, converges very slowly. A method for practical
calculations, in particular useful in this region, has
been developed in Ref. 4.
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We study the distribution of the singularities in the complex angular momentum plane of the S matrix for
a velocity-dependent potential, and note some deviations with respect to the general behavior established
for static potentials. We analyze the physical implications of our results concerning the existence of bound

states and resonances.

1. INTRODUCTION

The study of the analytical properties of the S matrix
in potential scattering as a function of the complex
angular momentum has received considerable attention
since the work by Regge.! The book by Newton? pro-
vides a good review of this field. More recently, sev-
eral articles studying Regge poles for local® and non-
local* potentials have been published.

Velocity-dependent potentials were introduced and
used in nuclear physics to describe the nucleon—nucleon
interaction. These potentials present peculiar proper-
ties as compared with static (i. e., velocity-nondepen-
dent) potentials.® In a previous paper® we have studied
the singularities of the § matrix in the complex linear
momentum plane for a velocity-dependent potential.
Several authors have investigated the general analytic
properties of the scattering amplitude, in the camplex
linear and angular momentum planes, for velocity-de-
pendent potentials. Weigel’ has obtained the Jost func-
tions and the equation of the Regge trajectories for a
group of soluble velocity-dependent potentials as well
as certain analytical properties of the S matrix and the
location of its singularities at zero energy. Butera and
Girardello® have investigated, in the case of a velocity-
dependent potential, the feasibility of the Watson—Som-
merfeld transformation, the validity of the Bargmann
and Levinson theorems concerning bound states and a
generalization of the N/D method. In order to extend
our knowledge of the characteristic features of these
potentials, it seemed to us interesting to investigate the
distribution of singularities of the S matrix in the com-
plex angular momentum plane for physical values of the
energy. Such an analysis reveals a somewhat peculiar
analytic behavior as compared to static potentials, and
provides interesting information about physical aspects
(bound states and resonances) of the velocity-dependent
potentials.

In Sec. 2 we write down the S matrix for a simple
form of velocity-dependent potential® and obtain some
general results concerning to the location of its poles
in the complex angular momentum plane. Sections 3 and
4 are devoted to the description of the Regge trajector-
ies for low and high energies, respectively. Finally,
Sec. 5 shows a numerical investigation of the poles at
intermediate energies and presents some conclusions
concerning bound states and resonances.
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2. THE S MATRIX

Let us consider a spinless particle of mass m and
energy E in a velocity-dependent potential of the form

V(r,p) =Ap* 8(b~-7)p/2m, 2.1)

which was first introduced by Razavy, Field, and
Levinger? for the description of nuclear forces. It
possesses spherical symmetry and its radial shape is a
velocity-dependent square barrier (4 > 0) or well (4 <0)
of range b and intensity A. The S, function for the I
wave is given by®

ERE (kb)Y (kD) — (1 + A3 (Eb)Yj! (kD)

$i) = o )y, ey = L+ AVt nyiies) 22
where
B=2mE/M:, B?*=k/(1+A). 2.3)

The general analyticity properties of the S matrix in
the complex ! plane have already been discussed. "% S,(k)
is a meromorphic function of % for fixed real /, and a
meromorphic function of ! for fixed k2, and its poles are
given by the zeros of the denominator in the right-hand
side of Eq. (2.2). Let us call

a=Fkb, B=Pk'D, (2.4)

A=1+3, (2.5)
and denote

Hh(s)=a Hi, (@)/H\(a), (2.6)

9x(s") = Bdr B/, (B), 2.7
with

s=0a% s'=f=s/(1+A). (2.8)

In our study, the adimensional parameter s, related to
the energy through

s =2m Eb* /K2, 2.9)

will take only physical (i.e., real) values. The equation
determining the poles of the S; function can be written
in the form

Hhls) = (1+A4) §u(s) +A(A - 1/2) =0.

From well-known properties of the Hankel and Bessel
functions, it can be seen that /\(s) and ,(s’) are real
functions of their arguments for real A, Similarly, one
can easily verify the relations

(2.10)
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Hxls)=#,(s), for negative s, (2.11)

and
y;(s’) =ﬂ>.(8'), for real s’, (2.12)

where the bar denotes complex conjugate. These prop-
erties make evident that, for a given negative energy,
the solutions of Eq. (2.10) in the complex A plane are
either real or appear in the complex conjugate pairs.
This result is also obtained for static potentials.? In-
stead, there are two results, valid for static potentials,
which do not apply in our case. These results concern
the poles in the right A half-plane and say: (i) At negative
energies such poles may only be real, and (ii) at posi-
tive energies they can only lie above the real semiaxis.
In fact, for a certain range of values of the intensity
parameter A, we will find complex poles in the first and
fourth quadrants for negative energies and in both the
first and fourth quadrants for positive energies.

3. REGGE TRAJECTORIES AT LOW ENERGIES

In the case of low (positive or negative) energies, |s|
«1, the description of the Regge trajectories is more
easily done by writing in Eq. (2.10) the expressions for
H\(s) and Jx(s’) defined by Eqs. (2.6) and (2.7) in terms
of series expansions of the Hankel and Bessel functions.
We obtain

/{;\(s):2{f§(— $/4Y/nt L(=A)eeo(=2=1+n)
- [sG\(s)/4x +1)]

><f>(-8/4)"/71! I +2)esc(a +1 +n)}
n=0
x{io(— s/4Y/ni l(=a+1)ere(=r+n)

- G,(s) é (~s/4"/n! 1O+ 1) "+ (A +n)}-l(3. 1)

and

’ s’ Z;.g(—s’/‘l)"/nl 1A +2)see(XA+1+n)
NG )=2(x+1) Se s/l 1+ ) e o tn)

3.2)

where
G,(s) = (s/4) exp(~ imA) T'(1 = \)/T(1 + 1), (3.3)

Following a terminology used by Newton,? we shall call
0 poles the poles that tend to A =0 and C poles those

that tend to a point Ay#0, as s = 0. We discuss these two
cases separately.

A. 0 poles

Let us consider the possibility that Eq, (2.10) is satis-
fied with A~ 0 as s— 0, From Egs. (3.1) and (3.2), it
is easy to see that this possibility exists only if A and s
are related in such a way that G,(s), given by Eq. (3.3),
is of the form

G, (s)=1+0()+0(s), |r], |s|<1. (3.4)
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This implies
r=0(log|s[I"), |s|«1. 8.5)

Equation (2. 10) then takes a form similar to that studied
by Keller, Rubinow, and Goldstein. ! Terms O(s) are
negligible compared to terms O(), and the condition for
the existence of poles becomes

G,(s)=1-4x/A(1 -2\)+0(s). (3.6)

Replacing the expression for G,(s), Eq. (3.3), and tak-

ing logarithms in both sides of Eq. (3.6), we obtain

Mlog(s/4) - in] +1log[T(1 = 1)/T(A + )] + 2nwi
=logl -4 /A(1-2))], n=2x1, +2, £3, -+, (3.7)

Following a procedure similar to that used by Keller

et al. ' we obtain
s, . 2m . N E@2m +1) o0
log(4)~-n )\ +m—2'y—2"§1—————2m+1 bt

1 4x
+7\ log(l - m) (3.8)

Here, ¥ is the Euler constant and ¢ is the Riemann zeta
function. Retaining in explicit form terms up to the first
order in A, we have
s 27 , 4 8 1 2
Iog(4)_—n Y + 7 - 27—A—A (1 +A-)x +0{xe).
(3.9)

Let us call

5(s)=-[log|s/4|]%, 6(s)=args,

o(s) =2y +4/A - (1~ 8)i.

The expression for A in terms of s, for small X and s,
can be obtained from Eq. (3.8) and is given by
A=n2mi5{1+ ¢85+ [ +n2mi8(A +1)/A%] 6% + 0(6%)},

(3.11)
j)\l, |s|<<1 and n=x1, £2, £3, **,

(3.10)

For negative energies ¢ is real. So, as the energy
tends to zero through negative values, the poles follow
trajectories given approximately by

Rex~ - n? 327%[(4 +1)/A%][ - log|s/4]]%,
Im\=n 21]- log|s/4|]",

where

(3.12a)
(3.12p)

§—0" and n=+1, +2, £3, ¢+,

For positive energies ¢ becomes complex. The thresh-
old behavior of the trajectories is then given approxi-
mately by

Rex=n 27— log|s/4|]7,
Imix=n 27~ log|s/4|],

where

(3.13a)
(3.13b)

s=0" and n=zx1, £2, £3, «o»,

Equations (3.12) and (3.13) allow us to describe the
threshold behavior of the 0 poles. For values of the
parameter A in the range — 1 <A, that is, for a barrier
(0<A) or a “shallow” well (-1<A<0), as the energy
approaches zero through negative values, the poles
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move to the origin in the A plane coming from the sec-
ond and third quadrants. Then, as the energy increases
from zero towards positive values, they leave the origin
moving towards the first and third quadrants. For val-
ues of A in the range A< -1, that is, in the case of
“deep”’ well, the 0 poles, which lie in the first and fourth
quadrants for small negative energy values, reach the
origin at zero energy and enter the first and third quad-
rants as the energy increases. Of course, for any value
of A, at negative energies, values of » with opposite
sign in Eq. (3.12) correspond to complex conjugate
trajectories.

We thus observe that, for A <—1, there occur com-
plex poles in the right-hand side of the A-plane for
negative values of the energy. This result is peculiar
of the velocity-dependent potential studied here, since
it is well known that, for static potentials, poles at
negative energy must be real if Rex>0.

B. C poles

Now we investigate the existence of poles which, as
s~ 0, approach points X¢# 0 in the A plane. From Egs.
(3.1)—(3. 3) it is clear that, except for negative integer
values of Ay, we have

' N= .14
‘];If;gho(s )-—0, (3 )
umﬁ,o(s) =0, for Rex <0, (3.15a)
90

=2X;, for Rex,>0, (3.15b)

In view of this we conclude that Eq. (2.10) can be satis~
fied only for

Rery>0, XY=A/2(2+A). (3.16)

So, we have one and only one C pole, which at zero
energy is in a point of the plane determined by the value
I; of the angular momentum given by

Iy=-1/2+A). (3.17)

In what follows this pole will be denominated “special
pole” in connection with the terminology used in Ref. 6.
In view of the restriction ReXx; > 0, such pole does not
appear as a C pole for values of A in the range - 2<A4
<0.

Let us examine the trajectory of the special pole for
low energies. Following Newton,? we distinguish three
cases:

(i) 1<, i.e., ~4<A<-~2. We have in this case

Rex=x [1+s/(2+A)E~ 1)], (3.18a)
Ima={A/(2 +A)2)Js/4])‘° sin{n - 9) A,
XT(1 = xg)/T (L+2g). (3.18Db)
(i1) Ap=1, i.e., A=~ 4. Now it becomes
Rex=1 + (s/4){log|s/4| +2v - 1/2}, (3.19a)
ImA= (8 — m)s/4. (3.19b)

(iii) 0<2y <1, i.e., A<~4 or 0 <A, We obtain
Rer= ), —[A/(2 +A)]|s/4|™
X cos(m= 8) A,T'(1 = X)/T(1 +2,),
Imr= (A/(2 +A))|s/4 |

(3.20a)
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X sin(m = 6) XgT'(1 = Xo)/T(1 + Ay). (3. 20b)

These expressions can be obtained easily from Egs.
(3.1) and (3.2), retaining only the dominant terms as
s —~ 0, The quantities 8 and ¥ are the same as in Eq.
(3. 10).

The displacement of the special pole on the complex
A plane as the energy passes through zero can be de-
scribed in the following way. For A <-2 the pole is on
the real axis for a small negative value of the energy,
moves to the left towards the point A, as s —= 0" and then
leaves the real axis, moving leftwards and downwards
as the energy becomes positive. For 0 <A the pole is
moving along the real axis towards the right as s — 0"
and, at A=2;, passes to the complex plane moving left-
wards and upwards as the energy becomes positive.

It remains to examine the possible existence of poles
located at negative integer values of A for energy equal
to zero. These values of A are indeterminacy points of
the S matrix, " where the trajectories of its zeros and
of its poles intersect. At small energy values there is
a pole in the neighborhood of each of the values A =-1n,
n=1,2,3, +»+, Let us examine the form of the Regge
trajectories in the vicinity of these points.

|
<o S LS LS LS LS |

S L R . N, W .T\_._.‘.L.he-._a»_.“ ————

l

A= -22 W—.—T

R e at cae %f———*
A<.d _/7._._417,__‘(7_447—;;»*“‘__,

-

-10 -5 0 5

FIG. 1, Schematic threshold behavior of the C poles for a
velocity-dependent potential, for different values of the inten-
sity parameter A, as described in the text, The arrows indicate
the direction of displacement of the poles as the energy goes,
passing through zero, from small negative to small positive
values,
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For a value of A near —n, retaining only the dominant
terms in Egs. (3.1)=(3.3), we obtain

Honee(8)% = 2(s/4)(1 = 8,,4)/ (0 = 1) +2(s/4)"
x[log|s/4| —i(r- Y -1,  (3.21)
ﬂ_,,,,(s’)*"-—Zn/[l-n! (n-1)1e/(s'/a)], (3.22)

where lel is an infinitesimal or order O(s"). Taking
these expressions into Eq. (2.10), we obtain

Ree~[(A —2n(2 +A))A Cn+1ml(n—-1)1](s'/4)",
(3.23a)
Ime= (7~ 8)(1 +A)4/A(2n +1)((r + 1)1 )*J(ss’/16)",

(3.230)
where s’ is given by Eq. (2.8).

Equations (3. 23) determine the threshold behavior of
the C trajectories. InFig. 1 we have sketched, for the
different values of the intensity parameter 4, the mo-
tion of the poles as the energy goes through zero, vary-

ing from small negative to small positive values. )

Hi@)  4,5((1=2%) “2Ai(p)x“@;_gck(g)(x“+exp(zm'(s)Ai'(Q)z;,Qd,(g)éx“
AT R s( ¢ ) Ai(p) Timo 5 (8)/A%* + exp(27i/3)AL’ (p) Tig Da(E)/ A% 7

and

ﬁm —_lea ((1—2'2))1/2Ai I)A-Z/S N- c (g) 7\2"+Ai' I) © d (g) )\Zk
JA(8) ~ § Ai(p") Tmoan(t)/ 7*“""‘\1'(1)')7&'5:5 § 4

The notation here is the same used in Ref. 11, We have
denoted, for brevity,

a=>«z, B:Az', (4'4)
p=exp(2mi/3) /3, p'=a%/3¢, 4.5)

The relation between the variables p and z is given in
Ref. 11, p. 368, and a similar relation holds between
the variables £ and z’. The poles move to infinity in the
complex angular momentum plane as |s|— «, However,
due to the presence in Eq. (4.5) of the variables ¢ and ¢
which may tend to zero, the moduli of p and p’ do not
necessarily tend to infinity. If the modulus of p and/or
p’ increase without limit as Is|—«, Eqs. (4.2) and
(4.3) can be conveniently simplified. We can use the
asymptotic expansions of the Airy functions (see Ref.
11, p. 448) to obtain

aH} (@)/Hy(@)
==A1=2) 21 x5t

X[= by(£) +co(8) £ = /4] +0(1Y)}, (4.6)
valid for
la|=w, [x[=w, [p]=w, |argp|<7, 4.6%)
and
BILB)/T,(B)
:K(l _zIZ)I/Z{l +A'1£1/2
X[By(E) — co(£)E - £2/4] +O (1 "2)}, 4.n
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4. REGGE TRAJECTORIES AT HIGH ENERGIES

Now let us consider the limits of infinite (positive and
negative) energies, s — %, Of course, |s'[ =<, From
the asymptotic expansions of the Bessel and Hankel
functions for large values of the variable (see Ref. 11,
p. 364) it is easy to conclude the impossibility of exis-
tence of solutions of Eq. (2.10) in the finite A plane for
infinite energies. Thus, all poles go to infinity in the
A plane as the energy increases or decreases without
limit,

Equation (2.1 0) determining the poles can be written
in the form

ol (a)/Hi(a) - (1 +A)BI(B)/1,(B) +A/2=0. (4.1)

The Hankel and Bessel functions and their derivatives
can be replaced by their uniform asymptotic expansions
(see Ref, 11, pp. 368—69) to give respectively

(4.2)
S BalE)/ AT “.3)
i
valid for
|8l =, [x]|=w, |p'|—x, |argp’|<m. (4.7)

We now consider three different possibilities, namely,
(i) x= & in such a way that p—~ const, lp’| =, (ii) A
= 8 giving p’ — const, [pl— =, and (iii) A different from
@ and B, i.e., lpl, lp’l ==, as s— 2, We thus iden-
tify three kinds of poles which we shall call a, B, and
¥ poles, respectively.

A. a poles

Let us first assume that, as [s|—= = and IA]l =, it
becomes p— const, Ip’l ~ =, Taking Eq. (4.7) into Eq.
(4.1), we obtain for the poles

HY'(a)/H\(@) - W) =0, (4.8)
where W{a) can be approximated by
W) =z"((1 +A)(1 - z"2)1/2
X1 +x1[by(8) - co(£)€™ - £72/4]}
~AX1/2+0(1%). 4.9)

If W(\) is a constant, (4.8) belongs to a type discussed
by Cochran. !? Actually in our case W(r) tends to a
constant

W) —~W =01 +A)A/(1+A]?, (4.10)
as the energy goes to infinity. Then the solutions of Eq.
(4. 8) are given by
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A= a +c, expl= 27i/3)(a/2)1 /3

+(1/60)c? exp(- 4mi/3)(a/2)" /2 + O (a™), (4.11)
where c, denotes the nth sblution of the equation

Ai'{c,) = (a/2)} /W explin/3) Aile,), (4.12)
given approximately by

c,,=a,,+(a/2)'”3/Wexp(_i1r/3)+O(a'“3), (4.13)

where a, stands for the nth zero of the Airy function. 13
We thus obtain that the poles tend to the points given by

Ap=a +a, exp(— 278/3)(a/2)!/3 = 1/W +0{a"/3),
(4.14)
it is easy to see that there are poles, different from

those given by Eq. (4.14), corresponding also to p
-~ const, lp’| =<, If we make use of the relations

HY, () = exp(\mi) Hi(a), HY(a)=exp(mi)HL (@),
(4.15)
in Eq. (4.8), we obtain for the pole equation
HY(@)/HY (@) - W) =0, (4.16)

whose solutions can be obtained similarly to those of
Eq. (4.8). The values of X so obtained are nearly the
symmetrical of those given by Eq. {4.14). They are not
precisely the same with opposite sign because of the fact
that W(= 2)= W(A), and actually W(=x)=~ W(x) +0h).
For negative energies, the solutions of Eq. (4.16) are
exactly the complex conjugate of those of Eq. (4.8), as
can be seen by writing Eq. (4.16) in the equivalent form

HY(a)/H}) - w@)=0, s<0. (4.17)

Summarizing, for large positive energy we have two
families of trajectories which are nearly symmetrical
with respect to the origin,

Re(z X)) =a - (a/20a/2) 2 s Re(1/W)

+0(a1’?), (4.182)
Im(x),) =~ (V3a,/2)(@/2)!/3 +1m(1/W)
+0(at’3), (4.18b)

and pairs of complex conjugate trajectories for large
negative energy

Rex, = - Re(l/W) +0(|a|"/3), (4.19a)
Imi, = |a| - a,(|a|/2)'% = Im(1/W)
+0(|alt/3). (4.19b)

Notice that W is pure imaginary for -1 <A <90, and is
real otherwise, So we find that for large negative ener-
gies the trajectories tend to rise vertically in the 2
plane, approaching asymptotically the imaginary axis
for -1 <A <0 and the lineReA=-W-! forA<-1or 0
<A.

B. 8 poles

Now, let us examine the possibility that Ip|—
p’ — const, when Isl, Ix] =, We may substitute Eq.
{4.6) in Eq. {4.1) to obtain for the pole equation

JNB)/T,(B) + V(X)) =0, (4. 20)
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where V(A) can be approximated by
V) =271 +4)]"H1 - 28! /2
X1+ A1 2= by (L) +co(2)E - £/ 4}

~14/2+0007R). {4.21)

Equation {4. 20) can be treated similarly to Eq. (4.8).
As in the precedent subsection, there are poles other
than those given by Eq. (4. 20) corresponding to Ip!
—x, p'— const. Taking the complex conjugate of Eq.
(4. 20), we obtain

JLB)/I5(B) + V() =0, for real B, (4.22a)

JEB)/J5(B)~ V(1) =0, for imaginary B. (4.22b)
At positive energies the solutions of Eq. (4.22) are not
the complex conjugate of the solutions of Eq. (4.20),
since + V(A)# V(d). At negative energies, instead, Egs.
(4. 22) can be written

JHB)/TA(B) + V() =0,

whose solutions are the complex conjugate of the solu-
tions of Eq. (4.20).

(4.23)

Let us summarize, describing the asymptotic form
of the trajectories of the B poles. Let g, be the nth zero
of the Airy function, At positive energies and for values
0<A, we have

Rex, =B +a,(B/2)' /3 +0(81/3), (4.24a)
Imx, = (1 +A)/A2 +0(81/%); (4. 24D)
for values — 1 <A <0, it becomes
ReX, =B +a,(8/2)1/% +(1 +A)/(- A) /2
+0(g™/%), (4.252)
Imx,=0(8"/3), (4.25b)
and for values A <-1, we obtain
Re\, = (V3a,/2)(|B]/2) 3+ (1 +A)/(- A)'/?
+0(||"73), (4. 262)

Im(+2,) = 8] +(@/2)(| 8]/2)! 3 +0(|8[1/%), (4.26D)

where the signs ¥ in the right-hand side of Eq. (4. 26a)
are in correspondence with those of the left-hand side
of Eq. (4.26b), At negative energies we have pairs of

complex conjugate trajectories for 0 <A,

Rex, = (V3a,/2)(|8]/2)! /3 +0(|B[*/3), (4.27a)
+Imh, = |B] +(a,/2)(|B]/2)!/2 + (1 +A)/AL/
+0([B[1/3), (4.27b)
and for -1<A <0,
ReX,=(V3a,/2)([B|/2)'/2 - (1 +A)/(~ A}/
+0(| 8|73, (4.28a)
£ImA, = |8] + @/2)(|8]/2) 2 +0(|8]/%), (4.28b)
and pure real trajectories for A <-1,
Rex, =8 +a,(8/2)! /% + (1 +A)/ (- A /?
+0(g /3, (4.29a)
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Im)x,, =0. (4. Zgb)
C. v poles

Finally, let us consider the possibility that Ipl, Ip’|
—w for |sl, IN]| =, In this case, Eqs. (4.6) and (4.7)
are simultaneously valid. The equation of the poles
takes the form

M =291 +21B(E) + (1 +A)(1-2z )1 /2

X(1+r-tC(e)}-4/2 +0(x ) =0, (4. 30)
where we have abbreviated

B(£) = £/« by(8) +co (k)¢ - £7/4], (4.31a)

C(&) = £ "¥[by(£) ~ co(£)E™ - £7Y/4]. (4.31b)

Dividing by A and grouping terms of the same order,
Eq. (4.30) becomes

(1 _z2)1/2 +(1 +A)(1 _212)1 /2 +}\'1[(1 _22)1/23(“
+(1+AY1 -z22)2C(g) - A/2] +O(A2) =0,
(4. 32)

It is evident that this equation can be satisfied only for
(1 +A)<0, In this case we have
A=a/2+A)0 - [(1 +A)/A2 +A)]
x{B(£)- C(£)- A/2[- (1+A)]"/?} +O (%), (4.33)

At first sight, Eq. (4. 33) does not seem an explicit
expression for X in terms of a, because the right-hand
side depends on X through B(¢) and C(t). However, both
z and z' approach constant values as a tends to infinity.
In fact,

2P =2+A+0(@™), 2%=@2+A4)/1+A)+0(a™),
(4.34)
3

Iml

Sa-oﬁf |

and so, retaining only the most relevant terms, ¢ and
£ can be approximated by

3= m{(+ [- A+ A7+ AN ) - - (L AT,
(4. 35a)

28322 m{1 +[- 1/ +A) /12 +A)/Q + A7)
-[-1/a +A)]72 (4. 35b)

Therefore, B({) and C(¢) can be replaced by constants
in Eq. (4.33). The values of these constants, for a
given intensity parameter A, can be obtained from Eqs.
(4. 31) by using the expressions for ¢ and £ given by
Eqgs. (4.35) and the definitions of the functions b, and
¢, (see Ref. 11, p., 368).

5. DISCUSSION

To discuss the physical implications of the Regge
trajectories and to relate 0 and C poles (at threshold)
with @, B, and y poles (asymptotically), we have inves-
tigated the location of the poles at intermediate (posi-
tive and negative) energies, using the method of “steep-
est descent” to obtain the numerical solutions of Eq.
(2.10). #,(s) has been calculated through Eq. (3.1), with
double precision in the sums, and gx(s ) was evaluated
using a continued fraction expansion.

In order to see the peculiarities of velocity-dependent
potentials, it is interesting to compare our results with
those obtained in the case of static potentials. The
singularities of the S matrix for a static square poten-
tial and its physical implications have been thoroughly
discussed by Nussenzveig, *!* Summarizing, the poles
for a cutoff potential are grouped into two classes.
Class-I poles are associated with the interior of the
potential and can be related to bound states and reso-

FIG. 2, Regge trajectories of the
Class-1I poles for a “deep” (4
=-3) velocity-dependent square
well potential, We show the first
four of an infinite family of tra-
jectories. For large negative
energies the poles appear as o
poles, following trajectories
asymptotically tangent to the line
Rel=-1/2+1/V6 in both upper
and lower half-planes, As the
energy becomes less negative,
the poles follow two complex con-
jugate families of trajectories,
reaching the O-point I==1/2
(A=0) at zero energy. When the
energy goes to positive values the
poles leave the 0 point following
two families of trajectories, one
in the first quadrant and the other
in the third quadrant of the a
plane. These two families are

S=-0co
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nearly symmetric with respect to
the point I=~1/2, At large posi-
tive energies the poles appear as
o poles, The numbers along

the first trajectory denote the
values of the energy parameter
8. The transversal dashes con-
nect poles corresponding to the
same value of s,
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nances. Its trajectories are C trajectories at threshold
and at high energy they appear as 8 poles (in our termi-
nology). Class-II poles are motivated by the sharp cut-
off in the potential and correspond to surface waves in
much a similar manner to those produced by a hard
sphere, Its trajectories are 0 trajectories at low ener-
gy and they become a poles at high energy.

In the case of a velocity-dependent square well {(or
barrier) potential, we find also Class-I and Class-II
poles. Class-II poles offer an aspect quite similar to
those for a static well (or barrier), except for some
minor differences. (For instance, for A <-1, at nega-
tive energies the poles lie in the first and fourth quad-
rants of the X plane). As in the static case, they are not
related to bound states or resonances. In Fig. 2 we
show the Regge trajectories of the Class-II poles for an
intensity parameter A =— 3. The general aspect of these
trajectories is about the same for other values of A.

Class-I poles follow C trajectories at low energy and
become B poles at high energy, as for static potentials.
However, there are some interesting differences with
the static case in what concerns the bound states and
resonances. Let us discuss our results.

For a velocity-dependent barrier (0 <A), there are
no bound states and an infinite number of resonances
can occur for each physical value of the angular momen-
tum. For a low barrier (0 <A «1), these resonances
are very broad. For a high barrier (1 <4), the width of
the resonances becomes roughly proportional to AE!/?
and, in contrast with what happens for a static barrier,!
the resonances become broader as the height A of the
barrier increases. Thus a velocity-dependent barrier
does not show sharp resonances, the resonance effects
having its greatest intensity for A=1, g

4

\ Iml
-100

o

In the case of a “shallow” velocity-dependent well
(-1 <4 <0), there are no bound states. Each Class-I
trajectory originates an infinite number of resonances,
one for each physical angular momentum, These reso-
nances become sharper as the intensity parameter A
tends to — 1. The trajectories of the Class-I poles for

==1/2 can be seen in Fig. 3.

For a “deep” velocity-dependent well (A <-1), an in-
finite number of bound states appear for each physical
angular momentum. The binding energy spectrum is un-
bounded. In contrast with what is found for static po-
tentials, for a given Regge trajectory the poles with
higher angular momentum have larger binding energy.
There are no resonances associated to Class-I poles.

In Fig. 4 we show the Regge trajectories of the Class-I
poles for A =- 3.

Besides Class-I and Class-II poles, we find in the
case of our velocity-dependent potential a Class~III pole
which in Ref, 6 we have denominated “special” pole,
For a velocity-dependent barrier (0 <A), this Class-III
pole has a behavior very similar to Class-I poles: it
follows a C trajectory at low energy and becomes a 8
pole at high energy. For a “shallow” velocity dependent
well (-1 <A <(), it presents some properties of Class-
I and Class-1II poles. At low energy it appears as a
Class-1I pole, following a 0 trajectory; at high energy,
instead, it resembles a Class-I pole, as it becomes a
B pole, For a “moderately deep” velocity-dependent
well (- 2 <A <-1), the Class-~III pole follows a 0 tra-
jectory at low energy and appears as a ¥ pole at high
energy. It originates one resonance at each physical
value of I, Finally, for a “very deep” velocity-depen-
dent well (A <-2), the Class-III pole has a C trajectory
at low energy and behaves as a ¥ pole at high energy.

FIG. 3. Regge trajectories of the
Class-I poles for a velocity-de-
pendent “shallow” well potential
{A=-1/2). We have drawn the
first four of the infinite family

of trajectories. For large nega-
tive energies the poles appear

as B poles, at the infinity in the
second and third quadrants, They
follow two complex conjugate
families of trajectories, ap-
proaching the real axis as the
energy increases towards zero.
The pairs of complex conjugate
poles meet on the real axis for
different negative values of the
energy. The two poles of each
pair then move in opposite
directions along the real axis.

At zero energy each pole reaches
one of the C points, [=~1.,5,

\i T

950 J. Math. Phys., Vol. 18, No. 5, May 1977

~ i;“ -2,5, —3.5,°°+, As the energy
becomes positive the poles leave
these C points moving rightwards
15 Rel and upwards. Each trajectory

originates one resonance for each
physical value of the angular
momentum. When the energy
reaches large positive values,
the poles behave as § poles,
followlng trajectories asymptotic
to the real axis,
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FIG. 4. Regge trajectories of the Class-I and Class~III poles
for a velocity-dependent “deep” well potential (A=—3), We
show the first four of an infinite family of Class-I trajectories
and the unique Class-III trajectory. For large negative energies
the Class-I poles appear, as 8 poles, at the infinity of the posi-
tive real semiaxis. As the energy increases towards zero, all
these poles move along the real axis. Each trajectory originates
one bound state of each physical value of angular momentum.,
At zero energy the Class-I poles reach the C points I=-1.5,
-2,5, -3,5, —4,5,++-, When the energy takes positive
values, the poles leave the C points in the form described
qualitatively in Fig. 1. As the energy reaches large positive
values, the poles move, along two nearly complex conjugate
families of trajectories, towards the infinity of the second and
third quadrants, where they behave as 8 poles, The Class-III
pole is located for large negative energies also at the infinity
of the positive real semiaxis. However, it behaves as a vy pole.
As the energy goes to zero, the pole moves leftwards, along
“the real axis, causing one bound state at each physical angular
momentum such that I >1, At zero energy the pole reaches the
point =1, thus giving a P-wave bound state of binding energy
equal to zero or a zero energy resonance, As the energy takes
positive values, the pole leaves the point I=1 moving leftwards
and downwards, and originates a broad S-wave resonance,
Finally, at large positive energy, it becomes a vy pole, moving
downwards along an asymptotically vertical trajectory.

This Class-1II pole originates one bound state for each
physical angular momentum Z>1/(-— A — 2) and a possible
resonance at each physical I such thatI<1/(~ A - 2),
These resonances become broader as [ decreases. If
the parameter - A has a value slightly smaller than 2
+1/1, with I integer, there occurs a sharp resonance of
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angular momentum I. The Regge trajectory associated
with those resonances shows a peculiar feature. As the
energy increases from zero, the pole leaves the real
axis moving downwards and towards the left. So, the
resonances are associated with poles in the fourth
quadrant of the A plane. For these poles we have ImA <0
and d(Re))/dE <0, giving for the resonance a positive
width. In Fig. 4 we show the trajectory of the Class-III
pole for A =-3.

To conclude, it is interesting to point out the main
difference between our results for the velocity-depen-
dent square potential and the results obtained for a static
one. ' A velocity-dependent square barrier does not
originate sharp resonances, in contrast with what hap-
pens for a static barrier. A velocity-dependent square
well can give an infinity of sharp resonances and no
bound states (shallow well) or only some resonances
and an infinity of bound states (deep well), whereas a
static well has a limited number of bound states and no
sharp resonances.

ACKNOWLEDGMENTS

We are grateful to the staff of Centro de Cilculo de
la Universidad de Zaragoza for the facilities given to us
in the use of the computational equipment, It is a plea-
sure to acknowledge the John Simon Guggenheim
Memorial Foundation (E. M., F.) and the Ministerio de
Educacién y Ciencia (R. M. ) for fellowships granted to
the authors.

*This work was supported by Instituto de Estudios Nucleares,
Spain.

T, Regge, Nuovo Cimento 14, 951 (1959),

’R. G, Newton, The Complex j-Plane (Benjamin, New York,
1964),

*H,M. Nussenzveig, Ann. Phys. 34, 23 (1965); J, Math,
Phys. 10, 83, 125 (1969); F.F.K, Cheung, Phys. Lett, B
30, 257 (1969); H.H. Aly, K. Schilcher, and H.J. W, Miiller,
Lett, Nuovo Cimento 1, 707 (1969); H,H, Aly and P,
Narayanaswamy, Phys. Lett, B 28, 603 (1969); Lett. Nuovo
Cimento 2, 729 (1969); H.H, Aly and H,J. W, Miiller, Lett,
Nuovo Cimento 4, 675 (1970); E. M. Ferreira and J. Sesma,
J. Math, Phys. 11, 3245 (1970); P.W. Johnson, J. Math,
Phys, 12, 1610 (1971); R. Kronenfeld, Am. J. Phys, 39,
1056 (1971); J.B. Delos and C.E. Carlson, Phys. Rev. A 11,
210 (1975); R.O. Mastalir, J. Math, Phys, 16, 743, 749,
752 (1975); S.K. Bose, A, Jabs and H,J. W. Miller-Kirsten,
Phys. Rev. D 13, 1489 (1976),

D. Gutkowski and A, Scalia, J, Math, Phys, 10, 2306
(1969),

SE.M, Ferreira, N. Guillen, and J, Sesma, J. Math, Phys.
8, 2243 (1967).

®E. M. Ferreira, N. Guillen, and J. Sesma, J. Math. Phys.
9, 1210 (1968),

™., Weigel, Z, Physik 186, 186, 199 (1965).

8P, Butera and L. Girardello, Nuovo Cimento A 54, 127,

141 (1969).

®M. Razavy, G, Field and J,S. Levinger, Phys, Rev. 125,
269 (1962),

193, B. Keller, S.I. Rubinow, and M, Goldstein, J, Math,
Phys. 4, 829 (1963).

M. Abramowitz and 1. Stegun, Eds., Handbook of Mathemat-
ical Functions (Dover, New York, 1965),

123, A, Cochran, Numer. Math. 7, 238 (1965),

3y, B, Headley and V.K. Barwell, Math, Comput., 29, 863
(1975).

14y, M, Nussenzveig, Causality and Dispersion Relations
(Academic, New York, 1972),

Ferreira, Merf, and Sesma 961



Phase-space approach to relativistic quantum mechanics. I.
Coherent-state representation for massive scalar particles

Gerald Kaiser
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We construct a family of equivalent representations U, (A>0) of the restricted Poincaré group Pl for a
massive scalar particle on spaces K, of functions defined over “phase space” P,. Each P, is a submanifold
of the forward tube, and K, consists of restrictions on holomorphic solutions of the Klein-Gordon
equation to P,. Each K, has a resolution of the identity in terms of “coherent states” e,, z€ P,, which are

wavepackets characterized by an invariant extremal property.

1. INTRODUCTION

This is the first in a series of papers devoted to a
phase-space formulation of relativistic quantum me-
chanics. In this paper we construct representations of
the “coherent-state” type for a free massive scalar
particle. In forthcoming papers we extend the present
formalism to particles with spin, supply our “phase
spaces” with natural symplectic structures, and for-
mulate a covariant phase-space quantization. The re-
sults of this paper were announced in Ref. 1.

We begin by sketching the coherent-state
representation.

In addition to the well-known configuration-space and
momentum-space representations of quantum mechanics
for a nonrelativistic particle, there is a class of rep-
resentations on spaces of functions over classical
phase space, -7 the most common of which is known as
the “coherent-state” representation. The simplest such
representation® is constructed as follows: let X, and P,
be the position and momentum operators for a particle
in R" (¢k=1,...,n) and form the nonnormal operators
a, =X, +iP,. These are found to have an overcomplete
set of eigenvectors ¢, : a,¢, =Z,¢, {the bar denotes com-
plex conjugation), one for each z =x~iy<c C", and each
e, is a minimum-uncertainty wave packet with (X,) =x,
and {(P,) =v,. The coherent-state representation is then
the representation of wavefunctions f by functions f(z)
={e, ). These functions are entire and satisfy

(loy=m" [ .fl2)g(e) exp(- |2 |%/2) d?z, (1.1)
where z1%=|z,12+---+ |2,|% d®z is Lebesgue mea-
sure, and the left-hand side denotes the inner product
of f and g in the given Hilbert space (say, of functions
over configuration space).

In spite of its usefulness and intuitive appeal, the
coherent-state representation is generally regarded as
something of a fluke. The formal combinations X, +iP,,
on which it is based, cannot be justified in physical
terms, and the use of non-Hermitian operators as any-
thing other than a technical device is regarded with
suspicion.

It is one of the aims of this paper to show that rep-
resentations similar to the above can in fact spring
from physical principles, and that the resulting formal-
ism can, as above, be interpreted as a phase-space
representation of the given quantum system. The gen-
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eral argument goes as follows: The positivity of the
quantum Hamiltonian permits the extension of the one-
parameter unitary group exp(- itH) (¢ real) representing
dynamics in # to a holomorphic semigroup exp(~ :TH)
(tr=t-1iB,B>0). On a classical level, evolution in com-
plex time (were it possible) would result in a complexifi-
cation of the configuration space (hence complex space—
time). This has a counterpart at the quantum level in
that wavefunctions evolved in complex time, exp(-iTH)f
=exp(- itH) exp(— BH)f, may be continued analytically
from R" (configuration space) to a subset (possible all) of
C", In particular, if the given system is a free nonrelati-
vistic particle, this continuation is even possible at the
classical level and gives the complexified position z(7)
=X,+T7(p/m) = (X, +tp/m) - iBp/m, which is a combina-
tion of the type x - ip. Hence the complexified space

can, at every complex “instant” ¢ - iB, be interpreted

as a classical phase space. Moreover, the set of analy-
tically continued solutions carries a representation of
the quantum dynamics on functions over phase space.

In Sec. 2 we develop this idea for a free scalar non-
relativistic particle and arrive at a representation
which essentially coincides with the usual coherent-
state representation. An analogous construction is car-
ried out in Sec. 3 for a relativistic free scalar particle
(with positive mass). The ensuing formalism appears
to be new and has the general features of the coherent-
state representation. The “phase spaces” P, of Sec. 3
are products of R" (configuration space) with an n-
dimensional hyperboloid (roughly, a mass shell). It is
shown that in the nonrelativistic limit (c ~ =) the for-
malism goes over smoothly to the formalism of Sec. 2.

" In Sec. 4 we study the relativistic coherent states e,,

ze€ P,=C", We show that ¢,_,, is a wavepacket with (X,)
=x, and {P,)=b,y,, where b, is a constant and X, are
the position operators obtained by Newton and Wigner11
by axiomatizing the notion of “localized states”. These
results partly justify calling P, a “phase space.” The
e, are shown to be characterized by an extremal prop-
erty which, we suggest, is a covariant substitute for
minimal uncertainty.

2. NONRELATIVISTIC PARTICLE

The wave function of a free, spinless nonrelativistic
particle in R" evolves under the Schridinger equation
0 1

i _py, g=—-Lla.

2.1
ot 2m @1
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The solutions are given by

fix, t) =[exp(- itH)f)(x)

=(@n)™/? [ exp(-itp®/am +ix-pif (@ d'p,  (2.2)
where f (p) is the Fourier transform of the initial func-
tion f(x, 0) € L*R"). Now let z=X-iy< C" and let 7=t¢

- iP be in the lower half-plane C* (8>0). Then

exp(- iTp?/2m + iz - p) decays rapidly as Ipi—~=, and
Eq. (2.2) defines a function f(z, 7) =[exp(- iTH)f](z), holo-
morphic in/) =C"XC-. Let H={f(z, 7) I (p) € LA(R"} be
the vector space of all such functions. Then, for each
B>0, the function fy(z) =f(z, - iB) =[exp(- BH)f](z) is en-
tire in C". Let /s be the space of all such functions
fa(z). On Hg define the map exp(- itH) by

exp(~ itH) exp(~ BH)f] = exp(- BH)[exp(- itH)f],
fe LARY.

We shall make /s into a Hilbert space such that ¢
— exp(- itH) is a unitary representation of dynamics on

Hs.
Thus, let 8>0and z=X-iyc C". Then
f5(z) = [exp(- BH)f](2)
=(2m™/2 [ exp(-Bp?/2m +iz - p) f (p) d"p

(2.3)

=(es| ), (2.4
where
(e8| p) = (2m)™"/2 exp(— Bp%/2m +iz - p) 2.5
with Fourier transform
(e |x"y = (27B/m)™/% exp| - m(z - x)?/28]. (2.6)

The eﬁ are minimum-uncertainty spherical wavepackets
with (X,) =x,, (P, ={(m/B)y,, 8X,=VPB/Zm and AP,
=Vm/2B. They are eigenvectors of a,(8) =X, +i(8/m)P,
with eigenvalue z,.

For f; €/ define

WlE= fnalfa(@) |2 dus(z), 2.7
where
dig(z) = (m/1)"/2 exp(~ my?/B) d*x d'y. (2.8)
Theorem 1: Let B> 0 and f(p) € L*R"). Then
Al =IIF1I. (2. 9)

In particular,

(a) Il -l is a norm on A under which #, is a Hilbert
space.

(b} The map exp(~ itH) is unitary on 4.

(¢) The map exp(- BH) is unitary from L%(R") onto s
and intertwines the dynamics on L%R") with the
dynamics on#,.

Remark: Equation (2. 9) can be polarized to give a re-
solution of the identity: For f, g, in L3(R"),

71828 = [ nir] eB)(e2 ] 2 dity(z)

={fl @ r2crnye (2.10)
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Hence f—~ (¢2]/) is a “representation” of f by an entire
function. The connection with the coherent-state repre-

sentation is as follows: Set m=8=1 and let f (z) = 7"/*
X exp(22/4)fs(z). Then (2.10) becomes
™ [ J@EE exp(- 2| dx dy =(fl@r2mn,  (2.11)

so that f—f(z) is (essentially) the ordinary coherent-
state representation [in most of the literature, z
=(x-1y)/V2; the weight function is then exp(- 1z2)].

Proof: Let f € S(R"). By (2.4), fa(x-iy) =é5’,(x) where
Zs,y(p) = exp(~ Bp%/2m +y - p)f (p) and g denotes the in-
verse Fourier transform of g. Thus, by Plancherel’s
theorem (and Fubini’s),

A3 = (m/78)"/% [ exp(- my*/B)dy

x f exp(- Bp?/m+2y -p) | F ()| *dp
= [|F (@ [2dp = IIf 117,

which proves (2.9) for f = S(R"), hence also for f
€ LE(R™ by continuity. (a)—(c) are obvious. .

For the definition of intertwining operators, see Ref.
12.

3. RELATIVISTIC PARTICLE

In the last section we obtained unitary maps from
L*(R") onto Hilbert spaces /s where the role of & func-
tions is played by spherical wavepackets e in LE(R")
[#sis continuously imbedded in L%R") by restricting
fa(2z) to R*]. This formalism is nonrelativistic since the
inner product for L3(R") is not Lorentz-invariant. In
this section we define covariant counterparts of the
¢f and prove the analog of Theorem 1. We begin with
the relativistic version of the free-particle Schrédinger
equation, namely the Klein—Gordon equation {for a free
scalar particle of mass m >0 in n +1 space—time
dimensions):

( 1. a mz)f( =0 3.1)

—zza—tz - X, )=V, .
The positivity of the energy played an essential role in
Sec. 2, and will do so again here. Hence we confine
ourselves to positive-energy solutions.'® These are
given by

Sx) =£(x, x,) =[exp(~ ixH)f](x)

= (2m™/2 [, exp(- ixp) f (p) d2(p), (3.2)

where
%y =ct, H=+{m??-a)l'? xp=xw-x-p,
w=(m%?+pI''2, dQp)=dp/w
is the Lorentz-invariant measure on the mass shell, *®
and f(p)/w is the ordinary Fourier transform of the
initial function f(x, 0) (considered, say, as a tempered
distribution in R"). For every f(p) € L), i.e., with
IR [al7 ) |20 <=, (3.9)

the corresponding solution f(x) is the boundary value of
a function f(z) holomorphic in the forward tube**:s
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T=R™_ivV,={z=x~iy|xc R™, ye V,},

where V,={y = (y,, y) € R™|y,> |y|} is the open forward
light cone in R™!. This is because |exp(-izp)|

= lexp(- izgw +1iz - p) | = exp(~ y,w +y - p) = exp(~ yp)
<exp[- (yo~ Iy!)Ip!]; hence lexp(-izp)| decays rapidly
as |pl - for fixed z=x-4iye . T will replace the
domain /) =C"XC" of Sec. 2, and is strictly contained
in/). Thus, for ze7,

Azy=(2m)™/2 [ exp(-izp)f (p) dp)

=(e,| ), (3. 4)

where
(e.]p) = (2m) /2 exp(= izp) (3.5)

and (e,! ) denotes the inner product in L%(Q). The vec-
tors e, are in LXQ), since for z, we 7,

(gle,)=(2m™" fR,, exp[— i(z — w)p ] dQ(p)
=1/ (me/2m0)°K,(nmc), (3.6)

where 4, is the familiar two-point function for the free
scalar field of mass m, " n=[~ (z - 0)*] /2= [= (2, - ¥,)?
+32(zy - @,)?] /2 is uniquely defined by analytic conti-
nuation from n=[- (2 -2)?}/2=2(y3-y®'/2 when z2=w
=x~iye], K, is a modified Bessel function, ' and
throughout the rest of this paper we set v=(n-1)/2.
The analog of the space /{ of holomorphic solutions

flz, 7) in ) is the space K ={f(z) |f € L3(Q)} of functions
defined by (3.4). Recall now that HB was obtained from
H by restricting functions fc/4 to the “phase space”
Py® —{(z, - i) Iz C"} =C". This set is, however, not
contained in /. To obtain a relativistic phase space we
reason as follows: /) can be obtained (roughly) as a de-
formation of 7 by letting ¢ ~* while fixing 7 =z,/c. A
set in 7 which goes into P{® under this “deformation”
is

Po={(z, - i +y)'/¥|z=x-iyc C}, (3.7

with A=pgc > 0. We will show that P, is a suitable phase
space. For A=0 Eq. (3.7) defines P as a subset of the
boundary of 7.

The sets P, are clearly not invariant under Lorentz
transformations. To make the formalism manifestly
Poincaré-covariant, we will also need the sets

Pl ={(z, xy= i(X+y)* /3 |z=x-iyc C", x,cR}.

(3.8)
Every function f(z) € K defines a “boundary value”
function on P{ (and by restriction also on P;) as follows:
for z =(x~1iy,%,~ilyl) € Py,

fz) =fo(x - iy, %)
=((1/w) exp(= |y|w+y - p- ixw)f (p)) (%) (3.9)

[see (3.4)]. It follows from (3.9) that, for fixed yc R"
and ¥, € R, f;is in L%R") as a function of x. [Actually,
as we shall see, fye L%C") in x - iy and f—f, in L¥C"
as A—0.] Thus f(z) makes sense even when 2 e P}
(though its pointwise values no longer have meaning).

Given A= 0 and fe K, define
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I = [, [A(2) [2dm(a), (3.10)
where

du () =Cyd™x dYy, z=(x-1iy,2)€eP, (3.11)
with

C,=1@2/m(mN/me)" K, 4 (2dme) ], >0, (3.12)

and Cy=lim,.C, = (mc)"!/mT'(v +1). C, is a continuous,
monotone increasing function of A on [0, ©), with

(3.13)

These facts, and others needed later, follow from cer-
tain properties of the K,,'® which we summarize in Ap-
pendix A. We may regard du, either as a measure on
P, or as a measure on C", In the latter interpretation
(which will also be useful) we write (3. 10) as

A= [alA@) |2du(z),

C,~mc{mec/TN" 2 exp(2Amec) as Mmc ~ <.

(3.14)

where £,(z) =f(z, - i(A® + y)1/9) is the restriction of fe K
to P,. Let K, ={fi(z)Ifc K} be the space of all such re-
strictions (boundary values, if A=0) and denote the map
Fp) = A(z) from L) onto K, by D,. Similarly let K}

be the space of restrictions f,(x, y) =f(x— iy, x,-i(3®
+y9'/?) to P} and denote the corresponding map by D;
Since each fi(x, y) € Ky satisfies (3.1) in xe R™!, K7 is
simply the space of solutions with initial values in K.
Notice that (3. 14) is defined for f, €K as well as for
hHe K A

Now L3Q) carries a unitary, irreducible representa-
tion of the restricted Poincaré group P, * given by

(Ua, M)F)(p) = expliap) f (A'p), (3. 15)
where (a, A) € P, acts on space—time according to
(a, NVx=Ax+a, xcR™, (3.16)

In (3.15) p =(p, w) denotes a point on the mass shell (a
homogeneous space for the Lorentz group) rather than
the corresponding momentum vector p. The represen-
tation (3. 15) defines a corresponding representation on
K given by

(U(a, MP(2) =f(A (z = a)) (3.17)

(where we have extended the action of } to 7 by lin-
earity). Now P; is a homogeneous space of P, [in fact,
P;= ]2, /SO(n) since the stability subgroup at, say,

(0, - in) is SO(n)]. Hence (3.17) gives a representation
U; on K} by restriction (taking boundary values, if A
=0). Since extension sets up a one—one correspondence
between K, and K} we also have a representation U/, on
K>, but this one is less direct since P, is not invariant
under /..

The next theorem, which is our first main result,
shows that U, U,, and U; are all unitarily equivalent.

Theorem 2: Let A> 0 and f € L3(). Then

Il = IF1). (3.18)
In particular,
(a) Il - Iy is a norm on K, (K;) under which K, (K{) is
Hilbert space.
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(b) U, (U)) is a unitary irreducible representation of

P on Ky K.

(¢) D, (D)) is unitary from L¥Q) onto K, (K1) and inter-
twines the representations U and U, (U)) of P..

Proof: The proof is completely parallel to that of
Theorem 1. Let f< $(R") and note that
fe)=(2m™/2 [, exp(~ixyw +ix-p-yp)f (p) d'p/w

=((1/w) exp(- txgw ~ yp)f) “x). (3.19)

Hence
”ﬂli:fo d"yfd"xlf(x_iy,_i()\2+y2)1/z)|z

=C, [ &'y [ @] (1/@) expl- (2 +y9 2w +y -p]
xF (o) |

=G, [apllf@2/e?] [ d'y expl- 202 + )} 2w
+2y - p]

= [(d@p/w) |[f 0 |2=1IF1I3,

where we have used (A6) with a=0. This proves (3.18)
for f < S(R™), hence for fe L¥£) by continuity. (a) and
(b) are obvious, and the intertwining property follows
from

(D{U(a, M)7)(2) = (Di(expliap)f (A"p)))(2)
=(2m)"/2 [ exp(~izp +iap)f (A"p)dQUp)

=(2m™/2 [ exp[-i(z ~ a)Ap’]
Xf(p") dUAP’)
=(2m™"/2 [ exp[-i(A™ (- a))p]
XF (") d2p”)
=f(Az - 2)) = (D P2), ze P},
where we have used the invariance of dQ(p). =

The norm 1l * i, on K, and K defines an inner product
{+1+) on these spaces by polarization. As an immedi-
ate consequence of Theorem 2 we have

Covollary 1: Let 2> 0 and f, g L*S). Then
(flan= [, fleNe. 8 duale)

=<f|g>1,2(m- (3. 20)
In particular, taking f —e, (we7), we obtain
gw) =(e 18 = [, (e,] e)e,] 8 dunz)
= [, feulenglz) du(a). (3.21)

Equation (3. 21), restricted to we P,, states that
(e | ey is a (hence the) reproducing kernel'” for K.

In the sequel we will sometimes identify the spaces
L¥Q), K, Ky and KJ (as Theorem 2 permits us to do).
Thus f could stand for 7(p) or f(2) as an element of
K, Kx or K}. We will also set c =1 except in consider-
ations involving the nonrelativistic limit.
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We can now make precise the sense in which a func-
tion fe K takes on its boundary value on Py,

Covollary 2: (a) Each K, i8 a closed subspace of
L2(C"). (b) Let 0< A< X and f € L¥Q). Then

lfar = fillgzem, ~ 0 as M+ A,

Proof: (a) follows from (3.18), and {b) follows essen-
tially from the proof of Theorem 2:

l1fyr = Atz ony = [ dpl|f(p)[2/w®) [ dy
x (exp[- (2% +y%'/2w]
— exp[- (A" +y%!/2w))% exp(2y - p)
= [ apl|f () [2/w?][w/Cs+w/Crr = 20, A, 11]
where
J= [ dyexp{- [(FF+y)' "2+ (A2 +y*! /2w + 2y - p}.
But w/C,, <J < w/C,; hence
Ve = fillE2icmy < (C3 = CDIIFIIZ,
which implies (b). .

We conclude this section by showing that the e,-
representation on K, is indeed a relativistic version of
the ef-representation on Hg. For given 8> 0, define

fat(x~ iy)
= exp(— my?/2B)(exp(~ Bp?/2m +y - ) (p) (x)

_ [exp [_‘3_2’2(%_%) 2]f(p)] ")

Theorem 3: Let B> 0 and f(p) € L¥R"). Then fi*(z)
e L¥C™ and

(3.22)

J(c) =llme exP(ﬁmCz)fsc‘fBNR”iz(c") ~0 as ¢~

where f,, is the function in K. corresponding to f
e L¥R") C L¥§). The proof is given as Appendix B.

4. THE WAVEPACKETS e,

In this section we study the “relativistic coherent
states” ¢,. We show that they are centered about x
=Re(z), travel with average momentum proportional to
y, and are characterized by a property which is a co-
variant analog of minimal uncertainty.

To compute the position of the center of e,, we need
position operators. It was shown by Newton and Wigner‘11
that certain group-theoretical postulates about (ideal-
ized) “localized states”—e.g., that any space translate
of a localized state be “orthogonal” to the state!®—
uniquely determine a set of self-adjoint operators [here
given on L%(Q)]

Y A _
X~~l(apk—%g), k=2,...,m,

whose (generalized) eigenvectors are the localized
states. (The notion of being localized in this sense, how-
ever, depends on the frame of reference.) In a later
paper, dealing with quantization, we will show that the

(4.1)
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operators (4.1) can also be obtained naturally from the
formalism of Sec. 3. For the purpose of this section,
we simply adopt {4. 1) as the definition of position
operators.

We begin by computing the expectation of X, in ¢,:

el = [Beerl (52 - ao2) e

=fdp%‘£2 N (%ﬁ))

(e lp) . 172 exp(izp)
Re[de— T (w”a——-——rz-(zm,, )

':xk(ezl ez>-
Thus
(X, =x,=Re(z,). 4.2)
To find the expectation of P, let
G(m,y) = [4nexp(~ 29p) dQUP) = 2(mm/N'K,(2)m)
=a(m}e™K,(¢) =b(y)¢"K,(¢), (4.3)
where a(m) =2(2m?m)"*, b(y) =2(2)3%/m~”, ¢ =2xm, and

A=) = (yo¥*)' /2 with all the y, considered as indepen-
dent variables. G(m, y) will be a “partition function”

(as in statistical mechanics) for generating expecta-
tions. Thus, using (A2),

123G
f Pa €xp{- 2yp) dQ(p) = - 23y,

= ZmZy,a(m)%ga(; (0K, (9))

=2mPy a(m) e K, 4 (¢);

hence

in the state ¢, (z=x - z‘y). Similarly,
1 3%
[paps et 2p anto) =352
= 4m*y,y5a(m) 9~ 2K, .5(¢)
- ngasa(m) ¢'V'1Kw1(¢),
giving
_K,,(2xm) m?
(P.Pg) =K.(2m) A& Veds
uﬂ(zhm) m (4. 5)

K, (2am) 21 Bage
Equations (4.4) and (4. 5) give the expected momenta
and their correlation matrix

caB:(PaPB>_<Pa>(PB>-' (4.6)

To gain a rough idea of the behavior of (P,) and Cgg,
we consider the limiting cases AMm ~, From (A3) and
(A4) we obtain

14

0 w©
')'\'Zya'@a "Tya; 4.7
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v 0
Y!(y—‘;\%)—s— %gas)" Cas

(4.8)

Hence the uncertainties in energy and momentum obey

n-1 w n  my?
-z—kz—(i-i-%z) COD —g+z>\¥§, (4.9)
n-1({1 92\ wm N m YE
_—2—27\ <§+—xz Ckk ?X_W-Fﬁ ik (4 10)

Finally, we need an estimate on the uncertainty in posi-
tion: At x;=0,

i [ -Jo
Xexp(-yw+y -p-ix-p)
—l(yk yo—l_zw)@lez%

hence

Xy~ x)® = G-lf[y" - yo%(l - 23’10“)>]z

X exp(~ 2yp) dQ(p).

(4.11)

The integral is difficult to evaluate, and we merely de-
rive an upper bound in the rest frame. Setting y=0 and
Yo= )\;

2 2
(X, - x,)% = 223G %; (1 +-2y—105) exp(-— 2 w) d2(p)

1 2
wve f(1eg
0

— )\2 + AG-I J(_u%_ + 4)\1(‘.)2) exp(—- 2)\&)) dg(z)).

exp(— 22w) dQ(p)

Now
1 3G 1 1
~ S T (Z; +onE ) exp(- 2 w) dQ(p),
hence
1 3G
2 2 96
(K= 2 < X -5 T
2X%{y) 1 9
—_ — (¥
=N e a(p(w K, (®))
2
=2 +&Gb@qﬁv'1K,_1((p).

The position uncertainty therefore satisfies

A K, q(2hm)

(X, = 2,08 < A2 +Em’ (4.12)

hence
((Xy = 2)® S[v/(v = D]X* as am -0, (4.13)
<A 4 A/m as Am -, (4.13")

For v=(n-1)/2=1 (which is in fact the physical case),
(4.13) must be replaced with

Gerald Kaiser 956



(X, = %00 SR - 2X21In(20m) as dm—~0. (4.13"

Thus AX, ~0 when A—0.

We can now draw consequences from the above com-
putations. Equations (4.2) and (4.4) confirm that e, _;,
is a wavepacket centered about x with expected energy—
momentum proportional to (y,, y). Note that

de(z)‘m)

((Pa><Pa>)1/2:m K,,(Z)»m)

=m, >m. (4.14)

We shall call m, the “effective mass” for the particle

in P,. The factor K,.,/K, represents a kind of renormal-
ization which takes into effect the fluctuations in energy—

momentum, m, has the asymptotic behavior

l//)k'o-m)‘:m. (4.15)

Equations (4. 7)—(4.10), (4.13), and (4.15) show the
following pattern: When Mm — 0, the expectations and
uncertainties of physical observables in the state e, be-
come independent of the mass. Thus, roughly, when
A-0 (i.e., z approaches the boundary of 7), analyticity
fails and fluctuations take over. On the other hand, we
have seen that Am = dme =fBmc? — gives a smooth tran-
gition to the nonrelativistic formalism (Theorem 3).
Thus we expect (P,) ~my,/BE=myy /A, Cp—m/28=m/2),
and ((X, - x,)® —B/2m =7/2m. The first two are born
out by {4.7) and (4. 10), Equation {4.13"}, though con-
sistent with this expectation, shows that in obtaining
the estimate (4.12) we gave up too much ground.

The nonrelativistic wavepackets ¢ have the attrac-
tive feature of being minimum-uncertainty states. So
far we have not shown that the e, have a similar prop-
erty. Now uncertainty products do not seem to be
natural measure of the optimality of relativistic states.
The position operators X, are not covariant, " and fur-
thermore it is not obvious how to define an invariant
counterpart to the uncertainty product. We conclude by
proving that the e, are characterized by a simple, in-
variant property which we propose as an adequate sub-
stitute for minimal uncertainty. For z e/ let

53(7'0) :<ew|ez>/”e;”, we 7_°

Theovem 4: Let z< ] . Then ¢, is the unique (up to a
constant phase factor) solution to the following problem:
Find fc K such that IIfi=1 and 1f(2)! is a maximum.

Pyoof: We have
[ (e 1A | < lle A,

and equality holds if and only if f is a constant multiple
of e,. »

Remark: Theorem 4 can be restated as a variational
principle'®: e,(w) ={e, le,)/lle,I? is the unique function
fin K such that f(z)=1 and !Ifll is a minimum. The
above form seems to be more appropriate for quantum
mechanics. See also Ref. 20.

5. CONCLUSION

We have developed a formalism analogous to that of
the coherent-state representation. By this analogy we
have called P, a “phase space.” We then showed that,
at least so far as the e, are concerned, P, is indeed a
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space parametrized by coordinates and momenta. Now
in the classical notion of phase space, a central role

is played by Poisson brackets and canonical transforma-
tions, i.e., by symplectic structure.?!*? These geom-
etrical aspects will be dealt with in a later paper, where
the present formalism will be given a geometrical
foundation and made manifestly covariant.
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APPENDIX A

We collect here some properties of the modified
Bessel functions K, and evaluate some integrals needed
in Secs. 3 and 4.

The functions K,(£) are defined'® for Rev > - % and
Re{>0 by

K,(E)zgigizi); fo mexp(- £ cosht) sinh®¢ dt. a1
They satisfy
1d )m o
~ T3t (EVKV(E)):E mKu-m(E),
( £dt (A2)
1d\" - _ p=v=m
(-557) €0 = £k,
for m=1,2,--- and
K, (8 ~3T(®)(£/2)", £~0 (v#0),
Ky(&) ~-1n(¢/2), £-0, (A3)
KB ~V7/2E e, f~+te,
In Sec. 4 we use
2
L(v+k) (¢ « 3 Kuu(B) ) R +2kv,
LB () K T »
2(11— l)ﬂsz(g) _(le(g))z:l*_ n
£ K, (& K, (&) £ g

To evaluate
I d"p 231/2
B0y = fﬂnmz;mexp[— 2yo(1+p%" "2+ 2y - p],

A= (y%_YZ)l /2> O,
note that 7 is Lorentz-invariant; hence
1069 =100 = | b expl— 20(1 +p1/2]
0y ] n (1 + p )

n/2 © a
=Iz‘(Ln/—23 o (:r—y%;ﬂe?{p[— 2A(1 + 731 /2]

n/2 L
= I?(T; 3 f sinh™¢ exp(- 2 cosht) dt
0

=2(f) ke, ve27t.

5 (a5)

Consequently, using (A2),
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(—d"pmpaexn[ 2y4(1+p)' /2 + 2y - p]
=- 2ay I(VO;

1 9 7\
=0~ axsem) () =)

2 r\"*
=—Ya ('X) K,,,‘(Z)\),

— (1 +p2)l /2.

(A6)
where p,

APPENDIX B. PROOF OF THEOREM 3

We can set m =8=1 without loss. Note
VR (x - dy) = exp(- y?/2){es iy ‘f)Lz(R")'
Hence by (2. 8) and (2.9),
112 2cny = 77 2HANRI =7 2 N2 gm, <.
Note also

202
e 2
ceune,

2,12 c
llee® Follzaieny =

<1 %|If 20,(1 +0(c™)]

<12f 22 an,[1 +0(cD)].

Now

I= [ [ dxdy|[{(c/w) exp(c? - yp) - expl- 1 (p - )2} ] ()|

= [ dp|f |2 dy((c/wexp(c? - yp) - exp[- 4 (p-y)2])°
Choose @, ¥ such that 3 <¥< a<1. Then [, ,l-«dp
X |f(p)|2~0 as c ~=; hence

1= fipser-e dp|F(p)|2 [,ndy

x{(c/w) exp(c® - yp) - exp[~ 3(p - y)*}?
< 4w"/z||xcf||ia(kn) -0 asc—w=,
where x,(p) is the characteristic function of {Ip| > c!-*}.

Define 8 and ¢ by |yl =csinhf, |pl=csinhg. Then
yo=(c?~y?)'/2=c coshf and w=c coshg; hence yp
=y,w=y-p=c?cosh(f - @)= c? +{c?/2)(8 - ¢)%. Thus for
arbitrary a= 0,

G = f
P Ly15cstnha @Y exp(2¢? -~ 2yp)

zcnﬂnlz
< T®/2)
ol-n.n n/2

: -1“—("72)_/ expl(n ~ 1)6)(e” + ™) exp[- ¢*(6 - 9)*]d6

92-ncn n/2 fﬂo [ 2( )2]
S = exp{nd - c*(6 - )*1dé
rn/2) J,

—ﬁ7—22-"cn-lwn/zexp(mp +n?/4c? -/c exp(- u?) du
T Tl 2) cla-0)-n/2¢ P )

Let a=sinh™*(c"). Then, for Ip! <¢!™,

f sinh™! cosh6 expl— c?(6 — ¢)?]d6
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cla- @) =n/2¢ = c[sinh(c"") ~ sinh ™ (c**)} - n/2¢c

=g(c).

g(c) is independent of p and g(c) ~c!
< = @ <c**, Hence

Y, ¢—=, Algo, Ipl

Jy= fdp |f(p) | 2 fl st dy exp(2¢®- 2yp)

Ipl <cl-o:

92-n,n=ln/2 u 2 2 (f” Z) P
<t = 4 n2/4 -
T2 exp(nc= +n?/4c?) o exp(—u u)

X IV”LZ,Z(R") -0,

C—~ o,

Now
2c% - 2yp =y +p2 - 29p = (y - p)*
=(yo- w)?-(y-p)?
>=-(y-p?

Hence
f“,, Ao 9P | (p) |2 Sisiser-rdy exp[—(y - p)?] < J,

and

Jinrcct-2dp |F @12 [ 1yi5e1-ray{(c/w) exp(c? - yp)

-expl-3(y~-p?i<4J,~0 as c~=,
Finally,
Iy = fipcot-a dp |F ()] 2 fi<ot-r dyf(c/w) exp(c? - yp)
- exp[- 3(y - p)*]}
= fipict-adp|F )12 fiy1ct-r dy expl~ (v - p)?]
X [(c/w) exp(c?6%/2) - 1%,
where
b= | (1+y2/c /2 - (1 +p2/cd)H 2|
<tlyt/ct-pt/ct| < ge? ) <o

We have used the estimate
I(l +u2 1/2 _ (1 +Uz)1/2‘

d
[ 1_’:;6 |fxdx _z|v —ul.

Hence for sufficiently large ¢ and Ip} <ct-

[(c/w) exp(c?6?/2) - 1

< exp(c?6?) + 1 - (2¢/w) exp(c?52/2)

< (1+2c26% +1 - 2(1 = p2/2¢?) exp(c?6%/2)

< 2[1 - exp(c?62/2) ] + 2¢%0% + c~** exp(c?6%/2)

<2c26% + c"2*(1 + 269

=h(c)
Thus

-0 as ¢c—~>.
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Ty €h(e) fiper-adplf 02 [ 1y1ct-rdy expl- (g - p)?]
<h(c)m?||All32gn, =0 as c—=.

which proves that J—~0 as ¢ ~,

*This work is part of the author’s Ph,D. thesis (submitted to
the University of Toronto, 1977),

1@, Kaiser, “Relativistic Coherent~State Representations,”
in Proceedings of the Fifth International Collogquim on
Group Theoretical Methods in Physics, Montreal, 1976
(Academic, New York) (to be published).

’E.P. Wigner, Phys. Rev, 40, 749 (1932).

3], E. Moyal, Proc., Cambridge Phil. Soc. 45, 99 (1945).
4].R. Klauder, Ann. Phys. (N.Y,) 11, 123 (1960),

5%V, Bargmann, Commun. Pure Appl, Math, 14, 187 (1961),
. E. Segal, Illinois J, Math. 6, 500 (1962).

TA. Grossmann, G. Loupias, and E. M, Stein, Ann, Inst,
Fourier 18, 343 (1968),

8For other representations of the “coherent-state” type,
see Refs., 9, 10.

A.0. Barut and L, Girardello, Commun, Math, Phys, 21,
41 (1971).

1A, M. Perelomov, Commun. Math, Phys. 26, 222 (1972).

J. Math. Phys,, Vol, 18, No. 6, May 1977

T, D, Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400
(1949).

121 M. Gel'fand, M.I. Graev, and N. Ya, Vilenkin, Generalized
Functions, Vol. 5 (Academic, New York, 1966),

BThe definiteness of the energy (s necessary in order that our
representation of 2! be irreducible; choosing it to be positive
is also in the spirit of quantum field theory, where solutions
of (3,1) enter as one-particle test functions for the field.
(See Ref, 14,)

R, F, Streater and A.S. Wightman, PCT, Spin and Statistics
and All That (Benjamin, New York, 1964).

15M. Reed and B. Simon, Methods of Modern Mathematical
Physics, Vol, 2 (Academic, New York, 1975),

18M, Abramowitz and I. A, Stegun, Handbook of Mathematical
Functions (Natl, Bureau of Standards, Washington, D.C.,
1964),

1"H, Meschkowski, Hilbevtsche Réume mit Kernfunktion
(Springer-Verlag, Berlin, 1962),

For a more rigorous treatment, see A,S, Wightman, Rev,
Mod, Phys. 34, 845 (1962),

133, Bergman, The Kernel Function and Conformal Mapping

(Amer. Math, Soc., Providence, R.1., 1970), 2nd ed.

20J R, Klauder, J, Math. Phys. 5, 177 (1964),
18, MacLane, Geometrical Mechanics 1, 11, Univ. of Chicago

lecture notes, 1968,

%2R, Abraham and J.E. Marsden, Foundations of Mechanics

(Benjamin, New York, 1967),

Gerald Kaiser 959



Curvature invariants and space-time singularities
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This paper collects together in a general setting observer dependent curvature invariants for space-time

and applies them to an analysis of curvature singularities. Observer dependent quantities, such as energy
and momentum densities and tidal stresses, are dependent not only on the space-time point but also on
the observer’s 4-velocity. The properties of these invariants are discussed, and it is shown that they
completely describe the behavior of curvature along timelike curves. In particular, curvature singularities

can be characterized by unboundedness of these invariants.

1. INTRODUCTION

One of the major difficulties one encounters in deal-
ing with the curvature of space—time is that of de-
scribing in a meaningful way the size of the curvature,
The components R, ;,; of the Riemann tensor in a sys-
tem of local coordinates are useless for this purpose
because unless the Riemann tensor is very special
(constant curvature), its components may be made ar-
bitrarily large simply by an appropriate choice of co-
ordinates. The scalar polynomial invariants of curva-
ture are of some use in measuring the size of curvature
since the values of these invariants are coordinate in-
dependent. But, as is well known, there exist Riemann
tensors all of whose scalar polynomial invariants vanish
but which are nevertheless not zero.

From the point of view of an observer in space—time,
what really matters are those quantities which can be
felt and measured such as tidal forces and energy den-
sity. These quantities are observer dependent. Two dif-
ferent observers sitting at the same point of space—
time will measure different tidal forces and energy
densities because these quantities depend not only on
the point in space—time but also on the 4-velocity of
the observer.

In this paper we shall study a collection of observer-
dependent curvature invariants. These invariants are
scalar functions on the bundle of unit timelike tangent
vectors rather than on space—time itself. Some of
these invariants have direct interprefations in terms of
tidal effects, spatial curvature, and energy and mo-
mentum densities. Others are related to the matter and
conformal parts of the Riemann tensor. Using these
invariants, it is possible to deal meaningfully with
questions relating to the size of curvature and its growth
along timelike curves. In particular, curvature sin-
gularities can be characterized by unboundedness of
these invariants.

Currently the most satisfactory formulation of the con-~
cept of curvature singularity is by way of parallelly
propagated frames.! Curvature is said to be unbounded
along a timelike curve 7 if some component of the
Riemann tensor relative to a parallel frame field along
¥ is unbounded. If curvature “blows up” in this sense in
finite proper time, the curve ¥ is said to run into a pa-
rallelly propagated curvature singularity. A refinement
of this idea® says that curvature is unbounded along v
if relative to every orthonormal frame field along 7
there is some component of the Riemann tensor which
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is unbounded. The key idea in both of these formulations
is that the growth of curvature along a timelike curve ¥
can be measured by curvature components in suitable
orthonormal frame fields along v. Viewed another way,
curvature components can be regarded as scalar func-
tions on the orthonormal frame bundle and the growth

of curvature along a timelike curve ¥ can be measured
by the growth of these scalar functions along suitable
lifts of ¥ to this frame bundle.

Our approach to curvature singularities is similar,
but does not require introducing orthonormal frame
fields. Each timelike curve ¥ parametrized by proper
time has a natural lift, defined by its velocity vector
field, to the bundle of unit timelike vectors. By identi-
fying v with its natural lift, observer dependent quan-
tities can be regarded as defined along ¥. Hence we can
measure the growth of curvature along timelike curves
by means of observer dependent invariants. We shall
show that a timelike curve of bounded acceleration runs
into a parallelly propagated curvature singularity if and
only if some observer dependent curvature invariant
is unbounded along ¥. Furthermore, the singularity can
be classified as tidal, matter, conformal, etc., depend-
ing on which invariants are unbounded.

Some of the invariants constructed here for unit time-
like vectors are also defined on null vectors. We shall
show that unless all these invariants vanish along the
limit set of an imprisoned timelike curve, such a curve
(when it exists) must run into a curvature singularity.

2. INVARIANTS

Let M be a space—time. Thus M is a four-dimension-
al manifold with metric tensor g of signature (~+++).
We shall assume for convenience that M is oriented and
time oriented. An observer (“instantaneous observer”
in the terminology of Sachs and Wu®) is a unit timelike
tangent vector v at some point p of M. Attached to each
observer is a rest space v consisting of all tangent
vectors at p which are orthogonal to v. Thus each ob-
server v at p determines a 3 + 1 orthogonal decomposi-
tion of the tangent space M, to M at p into a spacelike
3-plane (v*) and a timelike line (all multiples of v).

We shall construct from the Riemann tensor a collec-
tion of self-adjoint linear operators on the rest space
v‘, whose eigenvalues we shall call principal curvatures.
The idea is to combine the invariant decomposition of the
Riemann tensor with the 3 + 1 decomposition of the tan-
gent space attached to our observer to obtain linear
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operators which are self-adjoint and hence diagonaliz--i
able relative to the positive definite inner product on v

The invariants constructed here are essentially known
in special contexts. A 3 +1 decomposition of the tangent
space occurs naturally in general relativity in two situa-
tions: (i) fluid flow, where the observer at each point is
the 4-velocity of the fluid, and (ii) slicing of the space~
time by a family of spacelike hypersurfaces, where the
observer at each point is the future timelike unit vector
orthogonal to the slicing. Our interest here is in study~
ing the behavior of these invariants along arbitrary time-
like curves, parametrized by proper time, where the
observer at each point of the curve is the tangent vector
to the curve.

The construction is as follows. Given any tensor
L4y, with the symmetries of the Riemann tensor (L,
== Ly == Lyj;p = Lyyy5) we can construct, using a given
observer v, the symmetric 2-covariant tensor L
=Ly, 0*'. Since Lyv'=L;;v' =0, we may, without any
loss of information, view L;; as a tensor on v, since

4. . . 1
v" is spacelike, the metric on v~ is positive definite so
the tensor L, can be diagonalized. Thus there exists
an orthonormal basis {el, ey, 63} for v* and real numbers
{M, A, A} such that, relative to this basis, L;; =X5;;.
The A, are the eigenvalues of the self-adjoint linear
operator L!; =g"%L,; on »". We shall always order the
A; so that A <A, € A,

We shall apply this construction to five tensors.

(1) The Riemann tensor. Taking L, =R, ,;, we obtain
the symmetric tensor L, =R, ,,v** which is the tidal
stress, or tidal force,1 as seen by the observer v. We
shall denote the corresponding eigenvalues by {71, Ty Tob
and call them the principal tidal curvatures (as mea-
sured by v}). T; and 7, represent, respectively, the mi-
nimum and maximum values of tidal stress as measured
by the observer v. Geometrically, the 7; represent
(up to sign) the critical values of Riemannian sectional
curvature, * a function with domain the manifold of non-
null 2-planes at p, restricted to the (compact) set of
timelike 2-planes containing v.

(2) The double dual of the Riemann tensor. Taking
Ly = 1€y mnB ™ €,rny, we find that the associated tensor
L;; has components, relative to any orthonormal basis
with e;=v, which are simply the spatial components
Ry (4,7, R, 1 >0) of the Riemann tensor. The associated
eigenvalues will be denoted by {, ;, K3} and will be
called the principal spatial curvatures, Geometrically,
the k; represent the critical values of Riemannian sec-
tional curvature, restricted to the (compact) set of
spacelike 2-planes orthogonal to v.

(3) The Weyl tensor. Taking L, =Cy;e, We find that
the associated tensor L,; is the electric part of the Weyl
tensor. ® The associated eigenvalues will be denoted by
{€, €,, €} and will be called the principal conformal
electvic cuvvatures.

1(4) The dual of the Weyl tensor. Taking L,
=2€;;mC™";, the associated tensor L, is the magnetic
part of the Weyl tensor.® The associated eigenvalues
{11, kg, 15} Will be called the principal conformal mag-
netic curvatures,
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(5) The Ricci part of the Riemann tensor. Taking
Lijwt =Rypmi = Cysp, we obtain the part of the Riemann
tensor which is determined algebraically, through the
field equations, by the energy—momentum tensor. The
associated tensor L,; is a linear combination of the
spatial parts of the Ricci tensor R;; and the metric ten-
sor gy; and hence has the same eigendirections as the
spatial part of the Ricci tensor. The associated eigen-~
values {&,, 8,, 6;} will be called the principal matter
curvatures,

The principal curvatures are continuous real valued
functions on the bundle J of unit timelike vectors over
M. They are invariants in the sense that they are con-
stant under the action of the orthogonal group O{3)
(SO(3) for the conformal magnetic curvatures) repre-
sented as the subgroup of the Lorentz group at p leaving
the observer v fixed.

These curvatures have the following properties.

(i) If the principal tidal curvatures are identically
zero on (), then M has zero curvature. Indeed, if 7y
=Ty=0, then the minimum and maximum values of sec-
tional curvature on 2-planes containing v are both zero
for all ve (. It follows that sectional curvature is identi-
cally zero on the set of all timelike 2-planes, hence on
all 2-planes. This then implies that Ry, =0.

(ii) The mean tidal curvature is equal to the value of
Ricci curvature on the observer v,

',
Ty + T+ Tg=Ryv',

and the mean spatial curvature x; + k, + K3 is equal to
the energy density as measured by v (assuming the
Einstein equations with cosmological constant equal to
zero).

Verification of the first statement is straightforward,
using an orthonormal basis with e;=v and {el, €4, g4} in
the principal tidal directions. To check the second,
choose ¢;=v and {et, e,y es} in the principal spatial di~
rections. Then the energy density as measured by v
is given by

i, 1 I
T, '’ = (Ry; —zpgi)v'v
R | gt} R
=R ,uv‘v’ +38 iR iRi
2 ipk
=R +2, &Ry,
i
3
=2 Ruu:Z‘/ K.
Ki<e i=1

Here, Ty, denotes the energy—momentum tensor and
p denotes scalar curvature.

(iii) The principal tidal curvatures and the principal
spatial curvatures are, in general, independent invari-
ants. However, for vacuum solutions of the Einstein
equations, the principal spatial curvatures are the nega-
tives of the principal tidal curvatures. This is because,
when R;; =0, Ry, =C;j;; so that the Riemann tensor is
the negative of its double dual.®" Also, in a vacuum,
the principal tidal directions in " coincide with the prin-
cipal spatial directions, for each v in (.

(iv) The components of the Riemann tensor relative
to an orthonormal basis {e, €, e,, &5} for M, (e, time-
like) can be conveniently displayed in a 6 X6 matrix
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[Rap], where a and B run through the set of index pairs
{01, 02, 03, 23, 31, 12}. [R,,] is then just the matrix for
the Riemann tensor regarded as a quadratic form on the
space of bivectors at p. This matrix splits naturally
into 3X3 blocks

A

[Ras]z 11 Alz ,
A Ag

where Ay and A,, are symmetric matrices and 4, is
the transpose of A,,. The matrices Ay, 4,, and the
symmetric part of A, represent, respectively, the
tidal, the spatial, and the conformal magnetic parts of
curvature, while the skew-symmetric part of A,, rep-
resents (up to a factor of 2) momentum density, all as
seen by the observer e;,. The matter and conformal
electric parts of curvature are represented by linear
combinations (4, +A,,) +[tr(A;; - A, of Ay, A
and the identity matrix I.

22s

Choosing the orthonormal basis {e,, e;, e,, ¢;} so that
the spacelike vectors ¢, e,, ¢; are in principal curva-
ture directions forces certain curvature components
to be zero. Thus, for example, choosing ey, e,, ¢; to be
in the principal tidal directions diagonalizes 4.
Choosing ¢, ¢,, e5 in the principal spatial directions
diagonalizes A,,. In a vacuum, A, and A4,, are simul-~
taneously diagonalized for each choice of ¢; in { by
choosing ey, ¢;, ¢; in the common principal tidal and
spatial directions. Further, in a vacuum, the matrix
A,; is symmetric (momentum density is zero) so Ay,
=Agy, yielding the canonical form

[7, 0 0 ]
0 7, 0 B
0 0 7,
[Ruﬂ]: ,
-7, O 0
B 0 -7, O
0 0 -7

where the symmetric matrix B represents the conformal
magnetic part of curvature as seen by the observer e,.

For one special observer ¢, at p, aligned in a direc-
tion particularly well oriented in relation to the Riemann
tensor, the matrix B can simultaneously be cast into a
canonical form, and one obtains the Petrov canonical
form® for [R,s]. The advantage of being content with
diagonalizing only one block (two in a vacuum) in [Ry,]
is, however, that this diagonalization can be done for
every choice of observer e In particular, along any
timelike curve in M, e, can be chosen to be the unit
tangent vector yielding particularly nice representa-
tions of the Riemann tensor along the curve, displayed
with respect to orthonormal frame fields adapted to the
curve.

(v) I all the principal curvatures and their corre-
sponding principal directions, together with the momen-
tum density, are known for any one observer v at pe M,
then the full Riemann tensor is completely determined
at p. In fact, by (iv), it suffices to know the principal
tidal, spatial, and conformal magnetic curvatures and
directions together with momentum density (as seen by
v) since each of the blocks A;; in the matrix represen-
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tation for R relative to any orthonormal basis with ¢,
=v can be computed from this information,

(vi) Given any L,,, with the symmetries of the
Riemann tensor and any v €0, we can construct another
tensor L,,; with the same symmetries by

Lo =00 Ly ymngn Ve ™0" = vy Ly Vg
L. represents that part of L;;,; which is determined
by the associated tensor L;;=L,,,;v*'. In particular,
the tensor vy R 0p0™" represents the tidal part of
the Riemann tensor; it is #0 if and only if some tidal
curvature 7; #0 at v. This condition, that
VR ymar Ve 00" # 0, plays an important role in the sin-
gularity theorems of Hawking and Penrose.'®

Remark: Many of the invariants described here carry
over also to “null observers.” For v a null vector and
Lygpy == Ljjpy == Lyjp =Ly, we can define Ly on vt
as before by

k1
LUZL”,“U (2N

The metric on v* is no longer positive definite, but, if
we restrict to a two-dimensional spacelike plane P in
v, L,; can still be diagonalized. Moreover, the result
is independent of the 2-plane selected since any space-
like vector in v* differs from one in P by a multiple of
v and

Lyt +av')(w' +b0') =L, utw’.

Thus each L;; defines two invariants A and A, rather
than three as when v is timelike. The tensor

V4L im0 ™" still represents that part of Ly, which
is determined by L;;. In particular, viL; pmnpiteo™0"
#0 if and only if A;#0 at v for i =1 or 2. It should be
noted however that, in contrast to the timelike case,
these null observer invariants fail to fully determine
the Riemann tensor at the given point, even with the ad-
dition of energy density Ty;v'v’ and magnitude

T Tv'v’ of 4-momentum to the list of invariants. In
Taub—NUT space, !'® for example, all these invariants
are zero for v any null vector tangent to the horizon,
yet Ry, # 0 there.

3. SINGULARITIES

Observer dependent invariants are especially useful
for describing the behavior of curvature along timelike
curves because each such curve defines an observer at
each of its points and so one can study the growth of the
invariants as one moves along the curve. Any invariant
growing without bound in finite proper time along a
curve of bounded acceleration will signal a singularity.
At the other extreme, if all the invariants are zero at
points along a curve, then the full Riemann tensor is
zero at those points.

In order to describe the growth of curvature, it suf-
fices to consider the following ten invariants: the princi-
pal tidal, spatial, and conformal magnetic curvatures
(three each) and the magnitude 7', T *v'v! + (T p'v")2 of
momentum density. By (iv) and (v) of the previous sec-
tion, if these ten invariants are bounded along a time-
like curve 7, then so are all of the observer dependent
curvature invariants. Further, R,,, =0 at ¥(¢} if (and
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only if) these ten invariants are zero at v =¥(f), where
¥(#) is the unit tangent vector to ¥ at ¥(t).

For v a timelike curve parametrized by proper time,
the natural lift of v is the curve ¥ in (/ defined by 7 (2
=the tangent vector to ¥ at (). We shall say that ¥
runs into a curvature singularity if

(a) ¥ has domain a half-open interval [a, b),
(b) ¥ has bounded acceleration, and
{e) A °7 is unbounded for some curvature invariant .

Remarks: (i) The terminology “¥ runs into a singular-
ity” does not mean that there is some point p = lim,_, ¥(¢)
in M which is singular in some sense. Rather it
means that the curve 7, a world line for some particle
or moving observer, encounters unbounded curvature
as £ —b and hence cannot be extended to proper time
t =5, not in the space—time M and not any smooth ex~
tension of M. (In order to find an actual poinf for 7 to
run into, it would be necessary to enlarge M as a topo-
logical space, necessarily destroying the Lorentz mani-
fold structure in the process. Such a construction has
been carried out by Schmidt.!?)

(ii) A more inclusive concept of curvature singularity
would replace condition {(c) by the weaker condition

{c”) lim, ., x° ¥ (#) fails to exist for some X.

This condition would also prevent extension of ¥ to
t=>b, but the effects on the observer would be less
dramatic and possibly physically insignificant.

(iii) The nature of the singularity can be specified
further by noting which invariants blow up. Thus a cur-
vature singularity is a matter singularity if the momen-
tum density or one of the principal matter curvatures is
unbounded. It is a conformal singulavity if one of the
principal conformal (electric or magnetic) curvatures
is unbounded. Thus the Schwarzschild singularity is a
conformal singularity whereas the Friedmann singular-
ities are matter singularities, A curvature singularity
is tidal or spatial if one of the tidal or spatial principal
curvatures is unbounded, respectively.

The nature of the singularity encountered by an ob-
server falling radially into a Schwarzschild black hole,
for example, can be seen from the values of the cur-
vature invariants along a radial world line. In Schwarzs-
child coordinates (¢, », 8, @), if v is the unit vector in
the direction of the (timelike for » < 2m) radial vector
~ 3/37, then the principal curvatures can be read off
from the curvature components relative to the normal-
ized coordinate frame.!' The nonzero ones are

Ty=- K3=u1:—2m/73,
T2=TS=— KI::—KzzlJ.z:[J.szm/’Va.

Thus this Schwarzschild singularity is tidal, spatial,
and conformal magnetic.

(iv) A timelike curve 7: [a, b) =M of bounded acceler-
ation runs into & curvature singularity (as described
above) if and only if it runs into a parallelly propagated
curvature singularity (as described, e.g., in Hawking
and Ellis'). Indeed, since ¥ has bounded acceleration,
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each parallel orthonormal frame field {E} along v dif-
fers from an orthonormal frame field {177;} adapted to v
(with £,=7) by a bounded one-parameter family of
boosts. Hence the Riemann tensor R will have an un-
bounded component relative to {E‘} (a parallelly prop-
agated singularity) if and only if it has an unbounded
component relative to {£,}. But the matrix for R relative
to {E,} has the block form (relative to the observer
E,=7) as described in (iv) of the previous section

so an unbounded component relative to {E~,} corresponds
to a tidal, spatial, conformal magnetic, or momentum
density singularity depending on whether it appears in
the Ay block, the A,, block, the symmetric part of the
A, block, or the skew-symmetric part of the A,, block.

(v) To illustrate the use of observer dependent invari-
ants, we shall prove a refinement of a theorem of
Hawking and Ellis.!? Recall that a future inextendible
timelike curve ¥:[a, b) ~ M is imprisoned if there ex-
ists a compact set K in M and a sequence {¢,} in [a, b)
converging to b such that ¥(¢,) ¢ K for all v. The limit
set /[ of a curve ¥ imprisoned in K is the set of all limit
points of all such sequences. / is nonempty since K is
compact. Since the space of directions on K is also
compact (it is a fiber bundle over K with fiber a 3-
sphere), there are at each point of / one or more limit-
ing directions. These directions are limit points of the
sequence of directions determined by the tangent vec-
tors 7(t,) to v at ¥(t,). Clearly, each of these directions
is either timelike or null (we shall see shortly that they
are in fact null). We shall refer to these limiting direc-
tions as divections along /.

Theorem: Suppose 7 is a future inextendible timelike
curve of bounded acceleration imprisoned in the compact
set K. Then either

(a) all null-observer-dependent curvature invariants
vanish along the limit set/ of 7, or

(b) ¥ runs into a curvature singularity.

Proof: Let pc/ and let v #0 lie in a limiting direc-
tion of ¥ at p. Thus there exists a sequence {£,} in [a, b)
converging to b such that lim,..¥(#,) =p and
lim,..[7(t,)]={v], where for a nonzero vector w the nota-
tion [w] means the direction of w. Since 7 is future inex-
tendible, lim,.,¥(¢) cannot exist so there must exist a
neighborhood U of p and a sequence {s,} in [a, 8) con-
verging to b such that ¥(s,) ¢ U for all v. By passing to
subsequences if necessary we can assume that 7, <s,
<ty for all v,

Now [v], being a limit of timelike directions, must
be timelike or null, If [v] were timelike, the vector v
could be chosen to be a unit timelike vector in which
case we would have v =lim,_.7(¢,). Letting A be a bound
on the acceleration along ¥ and choosing € >0 such that
all points reachable from p in proper time < € along
timelike curves with initial velocity v and acceleration
bounded by A are contained in U, it follows that, for
sufficiently large v, all points reachable from 7(¢,) in
proper time < € along timelike curves with initial velo-
city 7(¢,) and acceleration bounded by A are contained
in U. In particular, (t)c U for ¢, <t <¢,+ € and hence
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tyy—t,>8,-1,>¢€,

for sufficiently large v. But this is impossible since
{¢,} converges to b. Hence v must be null.

Now let A be any principal curvature at v and let w
be a unit spacelike vector in the corresponding principal
direction, so that

Lyt ww’ =)

where L;;,, is one of the five tensors described in the
previous section. Let v, and w, be vectors tangent to
M at 7(t,) such that

(i) v, is in the direction of 7(¢,) for each v, and
lim,..v, =v,

. s . i
(i) w, is a unit vector in v,” for each v, and
lim, . .w, =w.
Then

A= Liwzvkvlwiwj

= lilekHVkavlwv‘wvj

]

=lim (gmnvvmvu")(Likll )./ (tu)‘b 7'/ (tv)twv‘wvj) .

Yoo

Since lim, .« &mat, "0, =&m? 0" =0, the only way A can
be different from zero is for the sequence

{L ik 11 7 (tv)k')‘/ (tu)lwv‘wuf}

to be unbounded. But this implies that ¥ runs into a cur-
vature singularity.

If X represents an observer dependent curvature in-
variant other than a principal curvature, the proof is
similar. For example, if A:T”v‘v’ then

964 J. Math. Phys., Vol. 18, No. 5, May 1977

A=lim Tyt

Y=o

=lim (g,,,,,v,,"'v,,")(T;;? )y (tv)j)

v

so A#0 only if energy density is unbounded along 7.
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A unique two-component spinor connection, which we call the standard connection, is determined by the
requirement that it be compatible with the spinor inner product and that it give rise to the standard 4-
vector connection. Here we take the most general spinor connection, presuming that the conjugate spinor
connection is uniquely determined by it, and examine which 4-vector connections are thereby determined.
We classify such nonstandard spinor connections and the resulting 4-vector connections and show that the
most general torsion tensor can be so generated. However, it is not possible to generate in this way the
most general tensor describing incompatibility of the 4-vector connection with the 4-vector inner product.
These results illuminate the relationship which must exist between nonstandard theories for spinors and for

vectors.

|. INTRODUCTION

The universe is best modeled by a four-dimensional,
pseudo~ Riemannian manifold. Of the geometric struc-
tures with physical importance, the vector fields X and
the inner product e seem to be most fundamental. To
differentiate a vector field, a connection is needed, and
it is hardly surprising that customarily a connection is
used which is compatible with the inner product. Most
often, too, the requirement is made that the torsion
vanish, so that a unique connection Vy is determined,
which we shall call the standard connection.

Here we examine a more general situation. Since two-
component spinors may be used to form vectors, we
consider the most general connection on this latter set.
It has been shown! that a unique spinor connection (which
we shall call the standard connection) is determined by
the requirements that it be compatible with the spinor
inner product a4 and that it produce the standard vector
connection when spinors are combined to form vectors.
In extending this result, we determine how a general
spinor connection determines a vector connection, and
in particular, whether the most general vector connec-
tion arises from a spinor connection.

We consider linear connections, and we presume that
the connection acting on complex conjugate spinors is
given by the complex conjugate of the spinor connection.
The results are first, that the most general vector con-
nection is not given. Second, we classify those vector
connections which are determined in this way, and
exhibit the degree to which they violate the requirements
of vector inner product compatibility and of being tor-
sionless. Perhaps the most important of our results is
that the general torsion tensor does arise from this
linear formalism. However, the only compatibility ten-
sor (the measure of compatibility between the vector
inner product and the connection) which arises in this
fashion is proportional to the 4-vector identity. The in-
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formation which originates from this tensor is lost in
the usual Palatini variational method.?

We interpret our results as shedding light on the re-
lationship between possible nonstandard theories for
spinors and vectors. Thus if a spinor field theory re-
sults in some general spinor connection, it would then
seem most natural to use this connection to generate a
vector connection., In general this vector connection
would have torsion and would be incompatible with the
vector inner product, On the other hand, it is desirable
to generate a vector connection which is incompatible
with the vector inner product in the most general way
conceivable for use in a Palatini-type variational princi-
ple. We are therefore currently studying modified
formalisms in order to investigate purely spinoral vari-
ational principles for relativity (without hybrid terms as
are often used®).

In Sec. I we briefly review some of the basic concepts
of spinorial analysis. In Sec. III we parametrize the
most general linear spin connection. In this section we
prove several theorems relating the 4-vector torsion
and metric compatibility tensors to these parameters.
We discuss the necessary generalization we feel these
results point to in the conclusion, Sec. IV. For the pur-
pose of completeness, we have included an appendix
where we state several helpful identities using permu-
tation and contraction operators. Throughout we use the
notation of Luehr and Rosenbaum.! As needed, we brief-
ly sketch some of the results of their paper, but without
any attempt at completeness. For a more complete and
precise development, we refer the reader to it and the
references cited there.

Il. SPINOR SPACES AND CONNECTIONS

At each point ¢q in the spacetime manifold /1, the vec-
tor space over the complex numbers of two-dimensional
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spinors is denoted by (§,), (or briefly as §,, with g
omitted) with elements u,v, etc. §, is endowed with a
bilinear, nonsingular inner product 4 which is antisym-
metric,

UAV=—DV AU, (1)

We will also use, u,v, etc. to denote spinor fields, with
u(g) being used for emphasis to denote the value of the
spinor field » at a point ¢. In a given basis a spinor field
is represented by a pair of complex functions on ///, and
uA v is a single complex function,

We analogously define a second two-dimensional com-
plex vector space §, at g called conjugate spinor space,
its elements being denoted u,v, etc. §, is endowed with
a bilinear, nonsingular, antisymmetric inner product,
also denoted by 4. We will also use u,v, etc., to denote
conjugate spinor fields with the value of # at ¢ being de-
noted by #(g). The quantity #a 7 is a single complex
function.

At each point ¢, S, and 52 are related by maps u
€ Sy~uc 52 andwe 52 —~we §,, called the conjugation
operation, having the following properties:

(17):14, (2)

for all u,ve §, or fz and for all complex numbers o
(where @ is the ordinary complex conjugate of @),
Furthermore

UAU=TAT. (3)

(au):&ii, utv =17+1—)-,

Note that the conjugation operation can be regarded
as_a single map which is a bijection of the union §,
U §, onto itself.

The space _S':2®,,_§2 at a point ¢ is isomorphic to the
tangent space /), of the manifold at g, and we will iden-
tify these two spaces. A 4-vector X thus is identified as
a linear combination (over the reals) of terms of the
form #u, The expression #u is an abbreviated notation
for the tensor product #® .

The inner producx of two elements A, B in 52 iy
will be denoted —A 4 B, On the other hand if A and B
are thought of as tangent vectors of //, their inner
product [which is of signature (+ + + =) since /] is
spacetime] is denoted A @ B, The relation between these
notations is

-ALB-AeB. (4)

The introduction of the inner product e is redundant;
it will be used when we wish to emphasize that the inner
product of two spin tensors can be viewed as the inner
product of vectors or vector tensors.

An §, connection associates with each vector field X
on //f an operator on spinor fields. Here X is treated as
a derivation operator, and the connection D acting on
u(g) produces a spinor field Dju(g). The connection
obeys the axioms

Dy(fu+v)=Xflu+fDgu +Dxv,
D:’Xd’u =gD),(u +D;'U)

(5)

where u(g), v(g) are any two spinor fields, X,Y are
vector fields (derivation operators), f(g) is any com-
plex function, and g(g) is any real function.
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In analogy, an §, connection is an operator which
obeys the same axioms as an §, connection but which
operates on conjugate spinors. We can extend Dy to act
on §, by the requirement

Dii =Diu. (6)

In a future paper we will explore the possibility of dis-
pensing with this relation and having an §, connection
not necessarily related to a given §, connection.

One §, connection Dy is called “standard.” Dy is
uniquely determined by the requirements:

(a) When operating on §,®,¢, spin—tensor fields (i.e.,
4-vector fields), the connection Dy coincides with the
standard 4-vector connection. Thus it is torsionless
and is compatible with the 4-vector inner product,

(b) Dy is compatible with the spinor inner product.

The most general linear §, connection D% is uniquely
given by a field Ky(g) with entries in §,®5, by the
relation

Diu=Dyu+Kyau, ")

Similarly the most general 52 connection Dy is uniquely
given by a field Lx(q) with entries in 52 ®52 by the
relation

Dy =Dyt + Ly AT, ®)

Notice that the mapue §,—~ue 52 generates a umque
map Ky € 52®52"Kx € 52®_§2. The relation Dyu =Dyu
is equivalent to

Rx:ix. (9)

As we said, we will demand this equality, Dy =Dy.

_ It was previously shown! that P,’[ generates a unique
S$2®4S, connection. Let A be a §,®4S, spin—tensor
field (i.e., a 4-vector field). The §,®,§, connection is
given by requiring that the Leibnitz rule for covariant
differentiation hold with respect to tensor products and
that covariant differentiation commute with the projec-
tion map §,®5,~ §,8,5,. The result is that D} gives

the 4-vector connection
DYA=DyA +Kyxa A -AsKy. (10)

Since the standard connection preserves the 4-vector
inner product, we have

X(AeB)=(DyA)e B+Ae (DyB). (11)
Further, Dy is torsion free,
D,B-DpA =[A,B]. (12)
The most general 4-vector connection is of the form
VyA=DyA +Cy®A. (13)

The 4-vector connection Dy generated by the general
spinor connection produces Cg,

DYA =DyA +CyeA=DyA - CxhA. (14)
This Cx is given by
- (23)(Kxl, +1,Ky), (15)

where I, and 72 are the identity operators on §; and 5_“2
and (23) is a permutation on spinor files.

Luehretal. 966



At this point we note that Cy is in /|, ®/), or equivalent-
ly in (§,®45,)®(5,®x5,). Thus the general Cy is de-
fined by 16 independent real numbers at each point g
& /M. The tensor B in M, @M @M, =/M>? is defined by

X.B:Ex. (16)

B has 64 independent real componeunts (at each ¢). The
linear operator Ky has four independent complex com-
ponents, or eight real ones. We also introduce the

spin—tensor J defined by
XeJ=Ky. 1)

J thus has 32 independent real components so that it is
clear that the most general Cy cannot be of the form Cy.

1. RELATIONS AMONG SPINOR AND VECTOR
CONNECTIONS

The torsion tensor T associated with a 4-vector con-
nection Vy is defined by

XY8T =VyY -V X—[X,¥]. (18)
Thus
T={1-012)]B, (19)

where (12) is a permutation of vector files, In terms
of spinor spaces, at a point 4, B is a member of
(5,©45)%® ana

T =[1- (13)(24)]B. (20}
The compatibility tensor U is defined by
XYYEU:X(Y.Z)—(VXY)CZ—YQ(VXZ), (1)

so that U vanishes if and only if Vy is compatible with
the 4-vector inner product. In terms of B, U is given
by

U=-[1+(23)]B=-[1+(35)(46)]B. {22)

The tensor B’ generated by the spin-—tensor J is given
by

XoB' =Ch=(12)C} = - (13)(24)(23) (K ly +1,Kx)
= +(13)(24)(23) {x 3 [(12)J I, + (35)(46) JT,]}
=-X1[(354)(12)J I, - (36)dJT,]. (23)
Thus we have
B’ =(354)(12) J I, - (36) JT,. (24)

Consequently the torsion tensor T’ associated with B’ is

T’ =[1- (13)29)][(354)(12) TI, - (36)J7,]. (25)
The compatibility tensor U’ associated with B’ is
U’ =~ [1+(35)(46))[(354)(12) 71, - (36)JT,]. (26)
This expression can be rewritten as
U’ =(12)(54)[1 ~ (34)]J7, + (36)[1 ~ (34)]JT,
=[(12)Cyy T +Cy, J]1,, (27)

where Cy, is contraction on the third and fourth spinor
files. Note that Iy =~ (23)1I,l, =4-vector identity
operator,

We decompose J into independent parts which we will
later relate to vector connections. In order to do so, we
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first need a lemma:

Lemma: (23) (v +ip) I, =[1~- (24)](v +ip) I, where v,p
are 4-vectors.

Proof: v+ip is a sum of terms of the form ab in
terms of spinors. We choose an arbitrary spinor v
and write va (12)(23) abl, =abv. However, note that

abv =a(bv - vb) +avd
= (v ab)al, +avh
=va (12) @bl - v a (12)(24) abl,.
Since v is arbitrary we have
(23)abl, =[1 ~ (24)]abl,.

QED (28)

Theorem 1: Any J can be expressed as (here 8, ¢, u,0
are 4-vectors or Hermitian spin tensors)
J=(8+ip)l, +(24)(u +io) I, +H, (29)
where H is completely symmetric on the last three
spinor files,
(23)H = (34)H = (24)H = (234)H = (243)H =H.
Notice that J € (5,®,5,)05,®5,, but the individual
terms in the right side of Eq. (29) are in general in
5,©5,85, ®F, (these spaces are, however, the same—
see below).

Proof:. Define the symmetrizing operator by
$(234) =L[1 + (234) + (243) + (23) + (34) + (24)]

and let

H=5(234)J. (30)
Similarly the antisymmetrizing operator is

A(234) =31 + (234) + (243) - (23) - (34) - (24)].
Now

A(234)J =0, (31)

since J is in the tensor preoduct of two-dimensional
spaces, We rewrite this equation as

J=H+3{{1~(23)]+[1-(24)] +[1 - (39)]}J.

Since any antisymmetric spin—tensor is proportional to
I,, we have

H1~(34)]T=(6" +igp")1,, (32a)
H1~(23)]0 = (24)(u’ +ia") 1, (32b)
31~ (24)]9 = (23)(v +ip) I, (32¢)

for suitable vectors 6, ¢’, u’,0’, v, p.

By the previous lemma, Eq. (32¢) is a combination of
Eqs. (32a) and (32b), and the decomposition, Eq., (29),
results. QED

Theovem 2: The decomposition for J is unique; that is,
at a point ¢, J=0if andonly if 8=¢p =pu=0=0, H=0.

Proof: Consider J41,. Since H41, =0 we have
T4, =2(6 +ig) + (1 +i0).
Similarly
[(20)J]4 L, =6 +i +2(n +i0).
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Consequently
0 +ip =3[27 - (24)J]41,, (33)
p+io=3{2(24)J - J]4 L. (34)

Equations (29), (30), (33), and (34) show that there is a
one-to-one correspondence between J and the set
(8’ ¢! u‘ ’ G’H)‘

As a check we count the number of linearly indepen-
dent parameters involved in J. As pointed out below
Eq. (17), J has 32 real independent parameters. This
number can be found by counting the dimension of fz
®y8, {four real dimensions) times the dimension of §,
®§, (four complex or eight real dimensions) since J
€(S5,®45,)®5,®5,. Notice that in Theorems 1 and 2
we considered J as being in §,85,85,85, which also
has dimension 16 complex or 32 real. The space (fz
®y53)® 5,85, is in fact the same as §,®§,® §,® ;. The
reason for this equality comes from the facts that §,
=CS,and $,85,=C] §,®4S,] where  is complexifica-
tion (multiplication by complex numbers). Thus we have

(§2®H.§2)®52®52
= (52945 8CS,8C S =Cl(5,®8152)® 529 5,]
=[C(§z®y52)}®52®52=§z®52®52 ®5,.

Equivalently a typical element abed of 5,8 5,85,85, is
a sum of elements from (§,®,5,)®§,®§,:

QED

abed =%[(a +ib)(a +ib)—aa - bb +ila + b){a + b)

~iaa - ibbcd.

Incidently, (5, ®”52)®S?" is the same as §,® 3" pro-
vided > 1.

We now return to the general 4-vector connection.
Each J determines a B’, and the decomposition of J re-
sults in

B’ =(354)(12)J1, - (36) J1,
== 2(45) 61, I, — [(13) +(24)](45) T o I, +4[(13)
- (24)](45)01 , I, + (45)(12)HI, - (36)HI ,. (35)

Notice that ¢ does not appear in B’. We can also write
this expression as

B’ =1{26 +[(13) + (24)]u - 1[(13) - (24)Jo}1,

+(45)(12) HI, - (36) HI,. (36)
The analagous expression for T’ is
T’ =[1 - (13)(24)] {26 +i(24)0}1, + (45)(12) HI,
- (36) HI,}. (87)
Similarly U’ is given by
U' == 2(20 +p)1,. (38)

We now state a few theorems about the values of
B, T’, U’ at at given point g € /}:

Theorem 3: At each point g, T’ =0 if and only if 8
=O’=0, H=0,

Proof: Clearly § =0=0, H=0 implies T'=0. To show
the converse we express these parameters in terms of
T,
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- [(36) 5(246) 7’147, =H,
- H@s)1- as)1-e)I T LT, =6- 0.
Theorem 4: U’ =0 if and only if 26 +p =0,
Proof: See Eq. (38).

(39)
(40)
QED

Theorem 5: B’=0 if and only if 6 =p =0=0, H=0,

Proof: We must show that if B’=0, then we have 6
=u=0=0, H=0, Since B'’=0 implies 7’ =0, we have
6=0=0, H=0, Further B’ =0 implies U’ =0 so that
p =0 also. QED

Next we show that the most general torsion tensor T
is of the form T’. Notice that T has 24 real independent
components. T’ does also: H is symmetric in the last
three spinor files, so that H has eight complex or 16
real independent components. The two vectors 8 and p
add eight more real components.

Theorem 6: Any torsion tensor T is of the form given
by 7' [see Eq. (25)], so that T can be given by a suitable
spinor connection.

Proof: Define
Almn) =3[1 = (mn)], S (mn)=3[1+ (mn)].
It readily follows that
[1-12)]=[1-13)24)]
=4[1- (1 2)[[A(35)A(13) S (24)

+4(46)A(24) $(13)]. (41)
Therefore,
T={1-(@12)]8B", (42)
where
B" =4[ A(35)A4(13) §(24) +A(46)4(24) S(13)] B.  (43)
Now define J” by
- (36)J"1,=4A(35)A4(13) §(24) B (44)

to correspond to the second term in Eq. (25). Equiva-
lently, we have the definition

J" =2C;4(36)4(13) § (24)B. (45)
We note that since Be (32@’” 52)®3,

B =(12)(34)(56)B. (48)
We take the complex conjugate of Eq. (44),

- (36) "I, = 44(35)A(13) 5(24)(12)(34)(56)B (47
and multiply both sides by — (354)(12)(36); and so

(354)(12)J"I, = 44(46) A(24) S (13)B. (48)
We therefore have

B” =- (36)J"T, + (354)(12) J "I, (49)

so that Eq. (25) does indeed hold, with the spinor con~
nection being determined by J =J” given by Eq. (45).
QED

As a final note, we derive the condition on the param-
eters of J so that Dy be compatible with the spinor inner
product. From Eq. (29), we compute Kx =~X4J. When
K, is broken into a symmetric part and an antisym-
metric part we find
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Ky=-X4H-S(12) X4 (24)(p +i0),
—-i[2x4 (0 +ip) +X 4 (u +io)),. (50)

Theorem 1: Dy is compatible with the spinor inner
product if and only if 260 +u =2¢ +0=0. Such a D gives
rise only to a 4-vector connection which is compatible
with the 4-vector inner product, so that U’ =0,

Proof: Recall that the condition that Dy be compatible
with the spinor inner product is

(51)

Consequently the coefficient of I, in the last term of Eq.
(50) must vanish for arbitrary X; that is,

Kx =I?x.

(52)
QED

2(8 +i¢) +{u +i0)=0.
By Theorem 4, thus U’=0 also.

V. CONCLUSION

The most general linear 2-spinor connection is used
to generate a connection on the conjugate spinors and in
turn to generate a 4-vector connection, By parametriz-
ing the spin—tensors J, which describe the spinor con-
nections, we have exhibited those 4-vector connections
which arise from them. One result can be viewed as an
alternate proof of the uniqueness of the spinor connec-
tion which is compatible with the spinor inner product
A, which generates a vector connection compatible with
the vector inner product e, and which results in vanish-~
ing torsion T,

The most general torsion T can be obtained from
these spinor connections. This is the main result of
this paper. It is not possible, however, to generate
every tensor U which describes the degree to which the
vector connection is incompatible with the vector inner
product. The form of U which can be generated is pro-
portional to the 4-vector identity operation I,.

In searching for acceptable theories of spacetime
geometry it is desirable to investigate nonstandard con-
nections. Because of the undoubted importance of spinor
fields,? it seems especially desirable to seek a spinorial
formalism for these theories. Our results show that the
usual spinorial formalism has to be modified in order to
generate all possible nonstandard 4-vector connections
from spinor connections. We are currently investigating
such modifications and possible physical applications.
One application, for example, is to the study of Palatini-
type variational principles, where quite general varia-
tions in the connection are usually assumed to be possi-
ble.?® Other applications include the study of spinor
fields obeying theories with nonstandard connections in
spatially homogeneous manifolds.

APPENDIX

We use an index-free language requiring facility at
handling permutations and contractions. Permutations
are treated in various texts, ¢ but we feel it desirable
to give here some helpful explicit expressions involving
contractions., For definitions see Refs. 1 and 6.
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In permutations such as (mn) or contractions such as
C., the integers m,n,a,b refer to files in spin—tensors.
Remember that these integers refer to files counted
from the left. C,; decreases the total number of files
by two, and this effect shows up particularly if com-
mutation relations involving (mn) and C,, are examined.
In the following list, we take m <n as well as a<b:

(mn)Cap =Cgplmn) if m<n<a<b, (Ala)
(mn)Cp=Cumn+1) f m<aandasn<b-1, (Alb)
(mn)Cp=Cpimn+2) if m<aandnz=2b-1, (Alc)

(mn)Cp=Chm+1n+1) ifas<m<b-landn<b-1,

(A1d)
(mn)Cap=Com+1n+2) ifasm<b-landnzb-1,

(Ale)
(mn)C oy =Coplm +2n +2) if m=>b-1. (Alf)

Since C,; does involve an antisymmetric inner product,
as extra minus sign results if C,, is preceded by a per-
mutation using the same files

Capladb) =—Cy. (A2)

For equations in which the C,, operation is preceded by
a permutation involving either but not both indices, it is
convenient to adopt the notation

{(m m+lecca-1a) if m=<a,
(m...a)z(mm_l_“aﬂa) it a<m, (A3)
for the cyclic permutation acting between the m and a
files. We then have

Cyplmay=m-+-a-1)C,, if m<a, (Ada)
Culap)=(p-1++-a)C,, ifa<p<b, (Adb)
Cplan) == m =2+ a)C,, if b<n, (Aac)
Copmb)==(m+++b=2)C,, if m<a, (Add)
Cop(pb)=(p—1+2-5-2)C,, if a<p<b, (Ade)
Cun)=m=2°-+b-1)C,, if b<n. (A4f)

Permutations can, of course, be applied to far more
general functions. In the case of vector files, our con-
vention is to emphasize the vector nature of a permuta-
tion by writing (m n). In this paper we have tried to
translate all vector quantities into equivalent spinorial
quantities. An operation such as (m n) is then equivalent
to a pair of spinor operations (ab)(a+1 b+1). Each vec-
tor file corresponds to two spinor files (the left one
actually a conjugate spinor file), so that a =2m -1 when
a vector—tensor is reinterpreted as a spin—tensor.
However, mixed vector—spinor objects are common, so
that a#2m - 1 in general., Further, it is not convenient
to distinguish between spinor and conjugate spinor files.
A permutation (mn) thus may involve changing a spinor
with a conjugate spinor file.
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Matrix superpropagators with derivatives
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An earlier method of evaluation of matrix superpropagators without derivatives is extended to cover all

such cases of interest. Matrix superpropagators with derivatives are reduced to superpropagators without
derivatives by a straightforward application of Wick’s theorem for time ordered products. A simple

connection is found between the superpropagators involving the fields with derivatives at one of the points
only and superpropagators obtained by replacing fields with derivatives by fields without derivatives. The
results of the present paper are sufficient to allow evaluation of all superpropagators, with and without
derivatives, encountered in the second order for nonlinear chiral Lagrangians.

I. INTRODUCTION

The use of guitable summation techniques for non-
polynomial Lagrangians has been shown to give supres-
sion of ultraviolet divergences.' The nonpolynomial
Lagrangians naturally arise in gravity modified theories
and also when nonlinear realizations of internal
symmetry are used.? Nonlinear realizations of chiral
symmetries were used to construct nonlinear La-
grangians which reproduced current algebra results in
a simpler way when used in tree graph approximation.?®
It is therefore of interest to study these nonlinear
Lagrangians beyond a tree graph approximation using
nonpolynomial Lagrangian techniques, However, this
requires methods for the calculation of vacuum expec-
tation values (VEV’s) of time ordered products of func-
tions of matrix fields and their derivatives. These time
ordered products, called superpropagators, have been
studied extensively for the SU(2) case and methods exist
for evaluation of SU(2) matrix superpropagators.* For
gravity modified theories and theories with the SU(N)
type of symmetry, a technique for calculation of matrix
superpropagators, °

(TF (@) F' (@M,

without derivatives was developed by Ashmore and
Delbourgo.® In Ref. 7 it was shown that the superpropa-
gator (I.1) can be written as an integral over a set of
complex matrices,

(TF(@(x)7" (@)

(1.1)

=N [ dUexp(- Tr(U'D)) F(cU)F'(cU), (1.2)
where & (x) is an nX»n Hermitian matrix field satisfying
<T¢u(x) ‘I’u(y»o =63k5uA(x—y)- (I.3)

The integrations in (I.2) are over the set of all nXn
matrices U with complex elements. The volume element
dU is given by

(1.4)

dU= 11 dU,,.
,'I;Iﬂ 7]
N is a normalization constant and ¢*=A(x - y).

Assuming that the superpropagator to be calculated
has the form

(TW(@ ()W (@(y))),, (1.5)
where W and W’ are scalar functions of &(x)} and &(y),

respectively, it was shown’ that integrals could be
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easily carried out following methods developed in
statistical mechanics,?®

In this paper we show that it is possible to use the
representation (I.2) even for those superpropagators,
without derivatives, which may not have the form (I.5).
Examples of such superpropagators are'®

(T{exp[r, & (x)] exp[x,& ()]},

(T{explr, @ (x)] explr, & (y) ] {explr ;@ (x)] explr & ()]}
(.m
In Sec. II we review the method of Ref. 7 and its ex-
tension. As an illustration of the method of Sec. I we
evaluate the superpropagator (I.6) and (I.7) in Sec. V.
In Sec. III we show that, by a straightforward applica-
tion of Wick’s theorem for time ordered products, the
superpropagators with derivatives can be reduced to
superpropagators without derivatives. We obtain an
extremely useful connection between superpropagators
involving, on one hand, fields with derivatives at one of
the points only and on the other hand, superpropagators
obtained by removing derivatives. In Sec. IV we con-
sider some examples of superpropagators with deriva-
tives. Calculation of these reduces to evaluation of
superpropagators of the type

(L. 8)

b,0(x) 4 olx) » &(y) 3 £9)
(Tey ooy e gy N (1.8)
In Sec. V we consider the evaluation of superpropaga-
tors of type (I.8) in detail. The last section contains
some concluding remarks.

Il. MATRIX SUPERPROPAGATORS WITHOUT
DERIVATIVES

In this section we review the method of Ref. 7 and
discuss its generalization for any matrix superpropa-
tor without derivatives. Let @,,(x), 4,j=1,2,...,n, be
an nXn Hermitian matrix field. ' Any such matrix
field can be written as

2 Ja
_ A
&= 531 L5 bale),

where ¢,(x) (@ =1,2,...,%% are »? independent fields
and A% are Hermitian matrices, the nXn generalizations
of Gell-Mann matrices, obeying

Tr(\°A%) =20 4.

(I. 1)

(11, 2)

We assume that all ¢ have the same mass and a two
point function given by
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(Tho(x)Da(y))o =0 g (x - y)
so that the matrix field & obeys (1. 3).

(I, 3)

Using the exponential shift lemma,!?!3 the VEV of
a time ordered product of functions of fields ¢, may
be written as

(TF($4(x), sy,

1 n? 2
= ﬁf (“ dua) exp (— 2 IuaIZ)J(cuuw chug),
sl a=l
(I1. 4)
where

CaCh =T (¥)9 ()}, (a is not summed).

If masses of all ¢, are equal, we can take ¢, =c)
=c¢, for all o.

Integrations over u, in Eq. (II.4) run over all complex
values. In matrix notation, the above representation for
the superpropagator

(TF(@(x), @ (3)),

takes the form!*

1 ((m :
?J( n dua>exp (‘ i |uai2>_7(c27\“u¢/¢-§ ,ch“u;;,,z>
a=1 asl o @

1
=— deexp(— Tr (U U)) 7 (cU, cU"), (I1. 5)
where we have defined
U=2Xgttas sy, dU=TIdU,,. (11. 6)

i,

Since u, vary over all complex values, integration over
U is on the set of all complex matrices.

In Ref. 7 we showed that the integrations in (II.5)
could be performed when the function 7 factorizes as a
product of two scalar functions W(®(x)) and W'(®(y)).
For such superpropagators we obtained following formu-
la'® in Ref. 7,

(TW(R )W (@(9))),
= fazn)z,- 2, ex (_ > |z,,|2) W(cZ)W'(cZ",
Kr kal

(.7

where integrations in (II.7) now run over all complex
diagonal matrices. We now show that the integral repre-
sentation (II.5) can be used to evaluate superpropagators
of the form®1°

(T{A @ )8 @)}, (1. 8a)
(T{A (@ ) B (@ (WNHT (@ ())D (@)}, (II. 8b)
(T{A@ENB (@ 3@ X)) (@), (11. 8¢)

for which (II. 7) is not applicable. The method of integra-
tion to be described is essentially the same as that of
Ginibre?® in a slightly different notation.

We will first give the details of the method of inte-
gration for superpropagator (II.8a) and the corre-
sponding results for (II.8b) and (II. 8c) will then be
written. For the superpropagator (II. 8a) we have!s
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(T{A@ENB (@ (1)),
2 [ dUexp(- {U"UD{A (c)B (cUM}.

As nXn matrices not having distinct eigenvalues
form a set of measure zero in the space of all complex
nXn matrices, we can restrict integrations in (II,9)
over the set of all complex matrices with distinct eigen-
values. For any complex matrix U with distinct eigen-
values, there exists a nonsingular matrix X such that

U=XZX", (I1. 10)

where Z is a diagonal matrix,

(I1. 9)

(2)i;=2,5;. (I1.11)

Changing variables from U to (X, Z) we obtain’®
jn X aX),  Ndz 11|z, - 2,|*
i#f i=1 <k
xexpl- {Z'(X'X)Z (X'X)}]

X{A(cZ)X'XY' B (cZ)(X'X)}
for the right-hand side of (II.9).

(I1.12)

A nonsingular matrix X can be written in the form
X=UYV, (IT.13)

where U is unitary, Y is upper triangular with the dia-
gonal elements equal to 1 and V is a diagonal matrix.
Performing the change of variable defined by (II.13)
and defining

H=Y'Y, (I1.14)
the integral (II. 12) can be written in the form
J del'(Ik |2, -2,|* [ dH exp(~ {Z"HZH"})
X{A(cZ)H B (cZ")H}, (I1.15)
where
dH:("dH,,) (n dH,,), iz =T dz,, (I. 16)
i=1 i<j i

H,, (i<j), z, assume all complex values, and H,, assume
all real values (since H is Hermitian). For details

of Jacobians of various transformations and of steps
leading to (II. 15) see Ginibre.® For later use it is
sufficient to note that the matrix H is Hermitian, posi-

tive definite, and obeys
detH=1, detH'*” =1, 1<p<n, (I1.17)

where H® is the matrix obtained by deleting the last
p rows and p columns of the matrix H. Defining

(H)y;=H,, g=H,, i,j=1,2,...,n-1,
we can write
o
H= (H'=H"D), (I1. 18)
g H,
We write H ag!’
H’ ol] I, H'-lg
H= . (11.19)
0 1| H,
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Then the inverse of H can be easily worked out to be

In.l_i__Hr-lggY _H/-lg H-1 0

H'=
._gf 1 0 1
H'"'+ H'"'gg"H'"* _H'"'g
= , (11. 20)
_ngl-l 1

where we have made use of (II. 17) to obtain
H,,=1+g'H'""g

and we have eliminated H,
we obtain

{ZTHZH-1}=IZ"|2+ Z"H'Z'H"l}

.- Using (II.18) and (IL. 20)

FHMNZ < NH (2 -2, )H g (IL21)
and
{A(c2)H* B (cZNH}
= a,b, +{A (cZ ' B (cZ"H'}
+g'H B (cZ") - b )H (A(cZ') - a )H''g,  (11.22)

where Z’ is the matrix obtained by deleting the last row
and column of the matrix Z. q, and b, are the nth dia-
gonal elements of the diagonal matrices A (cZ) and

B ez

a,=(A(cZ)),n=A(cz,), etc.
The integral (II. 15) then takes the form
J dZ T |z;-2,|* [ dH' exp(-|z,|*-{2"'H'Z'H'-1})
i<

x [ dgexpl- g'H'" (2’ ~ 2 H' (Z' - z,)H''g]

xlanb, +{4(cZH"'B (cZ'HH'}

+g"H Y B(cZ') - b )H' (A {cZ') - a,)H'g], (11.23)

where dg=I17.} dg, and g integrations run over all com-
plex values. The integration over g can be performed
uging'®

J dgexp(- g'Qg) ="/ detQ, (1. 24)

n-l.
J dgexp(-g'Qe)g’Ag= T dorg Trae™), (L. 25)

where @ and A are (n-1)X(z-1) matrices independent

of g. Carrying out the integration over g we obtain for
(IL 15)*

fdzg |2,-2,|* [ dHexp(-{Z' HZH™})

X{A(cZ)H* B (cZ")H}

=‘f dz 11 ,zl _Zk|4f dH’ exp(_ Iz” |2 _{ZIfHIzIHI-l})
<k
n=1
X1 |z;~ 2,|) @b, +{A(cZH'"1 B (cZH'}
J=1
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N {(;4 (E?L)z_,a“) H,.I(B (Zc,z'_')z} bn) H,} (1L 26)

The above equation relates integrations over an nXn
matrix H to integrations over an (n - 1)X (- 1) matrix
H'. Repeating steps from {II.18)—(II.26) {(z - 1) times
we will be left with integrations over Z alone.

Formulas similar to (II. 26) for the superpropagators
(II1. 8b) and (II.8c) can be easily obtained. For (IL.8b) we
have

(T{A@NB (@ N @ND @D
=[dzZ 1 |z,-2,|* [ dHexp(-{Z"HZH"})
Kk

x{A (cZ)H* B (cZ")H} { (cZ)H"() (cZ")H}. (IL. 27)

The traces {Z'HZH™'}, {/H'AH}, and {CH") H} are
again written in terms of H', g, etc, and integrations
over g are performed!® to obtain, for II,27)

(T{A @ () B@ONH (@ ())D (@ (),

2[dz 0 |z;-2,|* 11 |2,-2,|*
Kk iKn
X [ dH' exp(-|z,|?-{Z""H'Z"H'-})

( [b a, +{8'H'A H' '} +{(§r—’-’n;)11'

—Zn

(=) (5= )]
(Gt () (=)

“(&=2)1)

where for the sake of simplicity we have omitted the ar-
guments of A’,A’, (', and)’.

Finally for the superpropagator (II.8c) we have

(T{A @) B @ (»NC(@ (X)) @ N}

2[dzZ 1 |z,-2,|* [ dHexp(-{Z'HZH'})
Kke

8 (zi;a")’*}] X[dncn +{C'HD) H

(11, 28)

X{A(cZ)H B (cZ"YH((cZ)H ) (cZ")H}
=/ deglkIz,—zkl“‘l}"lzi-z"l'z

X [ dH' exp(- |2, |* - {Z'*H'Z'H'"'})
x [a,.b,.cnd, +{A'H B HCHY) H'Y

saal{ S22

v (Frz)er (G-
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H"l (g—f—bﬂf) H'C'H'Y) ’H’}

e R

{IL. 29)

We will now write down formula (II, 26), (II, 28), and
(I1. 29) for the case n=2 explicitly. In this cage the
matrices H, 4, B, C, /), and Z are two-dimensional
while the primed matrices are one-dimensional. Also
in view of Eq. (I1.8), H' =1, Therefore, the H integra-
tions in Eqs. (I1.26), (II.28), and (II. 29) take the form

J dHexp(-{Z'HZH*D{A (cZ)H™ B (cZ")H}

nexp(-lz 12-12,1%
Iz, _122t2 2 Lb2a2+bxal+321Azx];

(I1.26")

J dH exp(-{Z HZH ) A (cZ)H" B (cZ"H}
x{(cZ)HD (c2"H}

L I AL N +B,4,,)
12, =2, | 1

X(dyc, +dycp +D,,Cy)) +A21Bz1C21D21], (. 28")

[ atexp(-{Z'"HZH ) {AR A HCH ‘) H}

_ 7exp(~| z, 12 !z2! %)

Iz, — 2,12

(aybycady + 210,014,

+aydpB,, Cyy +0,0,D,,4,) + €, Ay By,
+a,0,Cyy Dy +24,,B,,Cy, Dy)) (I.29)

where we have defined

(I1. 30)

As an application of formulas (IT. 26)—(I1, 29} evaluation
of superpropagators (I.6) and (I.7) will be discussed in
detail in Sec. V.

1. REDUCTION OF SUPERPROPAGATORS WITH
DERIVATIVES

In this section we will show that Wick’s theorem for
time ordered products can be used to reduce the super-
propagators with derivatives to superpropagators with-
out derivatives, These superpropagators without deriva-
tives may then be evaluated using methods of Sec.Il.

The steps for reducing the matrix superpropagators
with derivatives tc scalar superpropagators without
derivatives are as follows:
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{#==

e
A== < i) (G o G o
{

(a) Suppose we are required to evaluate

(TH,,(@(x), 3,8 0))7},(2(v), 3,8 (). (1. 1)
The most general form for (III. 1) is*
6,,0,,5, +8,:0 5.
Then
9s, + 38,
=(T{} @), 3,2 NHF' (@), 3,2 W)},
and
3S; +3s,
=(T{ Hex), 3.2 ()7 (@), 3,&(»))},. (1IL. 2)

This means that it is sufficient to evaluate various sca-
lar superpropagators obtained by contracting internal
indices in all possible ways.

(b) If we consider the time ordered product of a field
¢(x) with a number of other operators, for example,

T(: oK, (d(x)): : K9 (v)):), (I11. 3)

then using Wick’s theorem for T products we get an
expression of the form

1o (0T K (o)) 1K ((3)): ):

+T: K, (D 00): K (9 (y)): (I11. 4)

where ¢(x)K,(¢(y)) stands for sum of terms obtained
by pairing ¢(x) chronologically with one of the ¢(y)
fields in all possible ways. Obviously

PNE(D () = (T x)O (), 57 KD ().

a¢>( )

Taking the VEV of (IIL. 4) we cobtain
(T: K, (6N (x):: K (d>(y)): Y

=(T: K (9(0):: < K (0(3)):)o{Td(x) by,

3d>( )
as the VEV of the first term in Eq. (III.4) is zero.

(c) For the case when a multiplet of fields ¢(x) is
present we have!®

(TK 1(‘§ (x))éu(x)K 2(<b (3’)»0
= (T2, 0 (T (0 0) 5 KON

{(I11. 8}
In view of Eq. (I.3) we obtain
TK @ () (K o ()
= 8= 9)(TK1 (806D 55— K2 0D, (L. 6)

Any superpropagator with derivatives can be reduced
to a sum of superpropagators without derivatives by
repeated use of Eq. (III.6) to pair off all fields having
derivatives.

(d) Let us now assume that fields with derivatives are
at the point x only. Let us further assume, for sake of
definiteness, that there is only one derivative present,
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i.e., we are considering the superpropagators of the
form

(TF(@ (%)), (x);,, 7 (@ ¥

~o5AG—y) <T} @6 5507 @6, @

If we replace 9,%(x) by ®(x) in the left-hand side ex-
pression we get

(TF(@0N@ (%), 7' (@M

=a0:-3) (1700 g5 =7 @0D),-

Hence

(TF (@&, o), 7 @M
= (0487 AXT F (2 ()2 (x),, 7' (@ ))o-

It is obvious that this result is a general one. For ex-
ample, we have,

(TF@ENDIeR); o D2 ), T (@GN
={D®A(x - y)DPA(x — y) - - - DIV A(x - y)/ AT (x — y)]

XTF@UND (), g+ @)y 7' (@GN, (IT1. 8)

where D{*...D{" are the differential operators at
the point x,

Thus superpropagators having fields with devivatives
at one of the points and no derivatives at the other are
related in a simple way to supevpropagators obtained
by replacing fields with derivatives by fields without
derivatives., As an example, we will have

(T(explr&(x)]2,.2(x) expl— A& (x)]),, e)0),
=(3,8/8)(T(expr2(x)] & (x) expl - 12 (x)]),,
X epf Mo
=(8,8/ AXTS (x)y; €42,
=(2,8/ ) TP (x), A D (y)y, )
=28,,6,(0.8/4),

IV. EXAMPLES FROM NONLINEAR LAGRANGIANS

In this section we consider some examples of super-
propagators with derivatives from nonlinear chiral
Lagrangians. Using the methods of Sec. III these are
related to scalar superpropagators without derivatives.

Let P,(x), @ =0,1,...,8 be a nonet of pseudoscalar
fields. Let us define the matrix P(x) by

Px)=2, %Pa(x).

sl

Then assuming the same masses for all fields we have
(TP(x); /P(3)) =5,6 p0(x - ). (Iv.1)

A typical nonlinear Lagrangian for pseudoscalar
mesons has the form?

L=~ {oud" M} +{a 01 + M), av.2)
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where A is a numerical matrix. In exponential param-
etrization®

M =explirP(x)] (Iv.3)
and for rational parametrization
M=[1+aP@)1 - P}, 1v.4)

If other fields, for example, fermions or gauge fields
are present, then (M'9,M),, and (M3, M"),, also appear in
the coupling. We will work with the exponential
parametrization.

Using®*

ol el= [ aremsl( - M) 27 exoltH ()]
0 (Iv.5)
for a matrix function #/(¢), we have!®

{2, expxP(x)]3, expl- AP(x)]}
=Jy 1" dt aufexpla(1 - )P)3 . P(x) exp(AtP)
X expl-A(1 ~#)PJ2 ,P(x) exp(— xuP)}
=fol fol dt du{d ,P(x)explr (=1 +¢+u)P)o, P

Xexpl—a{-1+¢+u)P]
and
exp[AP(x)] 3, exp[- \P(x)] = f01 exp(AtP(3, P(x)

Xexp(- AtP) dt.

Thus we only need to consider superpropagators involv-
ing the following functions:

2,P(x) exp[AP(x)]a,P(x) expl - AP(x)],

exp[AP(x)]3,P(x)expl- rP{x)], {tv.6)

expAP(x)].

For the superpropagators involving the fields with
derivatives at one of the points only, formula (III. 8)
directly relates them to superpropagators without
derivatives. Therefore we shall now discuss examples
of superpropagators with derivatives at both the points.

When derivatives are present at both the points x and
y we pair off all the fields with derivatives at one of the
points. Then we are left with a superpropagator with de-
rivatives at one of the points for which results of the
previous section are applicable, To contract fields P(x)
with the exponential function exp[xP(y)] we cast the
relation?®

1
Px), lexp0P(y))],, =ra(x -y)fo MPW MU-0IPs) gy

av.7
in the following two convenient forms:
{APx)Hexp[rP(y)]B}
=AA(x ~ y) fol{exp[htP(y)]/I exp[A (1 - )P(y) B} dt
(Iv.8)
and
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{P0)A explrP ()18}
=28 ~y) [ HexphtP(») 14 Hexplr (1 - 9P ()18},
Iv.9)

where A and A are any two operator or ¢c-number
matrices.,

Example 1: Let
(T(exprP(x)]o ,P(x) expl- AP (x)]),,

x (expln' P(»)10,P(y) expl~ " P(»)]), ),
=6,,0,;S5) +8,,8 1S5
Then
a5 + 35

(Iv.10)

= (T{explAP(x)]0 ., P(x) expl- xP(x)]}
x{expl-r"P(y)]3,P(y) exp[x" P(»)]},
=(T{3,,P(x)}{2,P(¥)}

=30%3%A(x ~ y)
and
35 + 952 — (7 {exp[rP(x)}0 .P (x) expl- \P(x)]

xexp(X P(y)13,P(y) expl~ A P(y) ]},

We first pair off 3,P(x) and then make use of the result
(I11. 8) of the previous section to get®

35 +95¢)

=0%307A(x - y){T{expl- \P(x)expl\ P(y)]}
x{expl~1"P(y)] exprP(x)]}),
FNo3AG-y) [ dt (Tlexpl-1Pl)Jexpln'tPO)]}
x{exp{r’t' Py}[a,P(y) expl- 1" Ply}]explr P(x}i}),
“N'FA(x — ) f: (Mlexpl- 2 P(x)]explr’ P(»)]0,P(y)
xexplr't P(y) T} {expl- 1 tP(y)JexpAP(x)]}),

=2%3%8(x ~ y){T{expl- rAP(x)]expl\'P(y)]}
x{expl- 2" P(y)]expAP(x)]});
+ @za028/8) [ (Tlexpl- AP(0)]explh/tP()]}

x{expl- A" tP(y)]P(y) expD P(x) Ve dt + 27 — = 2'].
(Iv.11)

Example 2: Now we reduce the superpropagator
Suvse= (T{explAP(x)]3 ,P(x) expl - XP(x)]3, Px)}

x {explr’P(y)18,P(y) expl- 1’ P(3)]8,P(»)})s

to the sum of superpropagators without derivatives.
First contract 3,P(x) and 3,P(y) in all possible ways by
making use of Eqs. (IV.8) and (IV,9), We thus get
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Supoe = 85030 (x = ¥)SE) +N'32A(x - y)SE),

R =<, pe—a), av.12)

where

S0 = (T{expAP(x)]3 , P(x) expl - xP(x)]
xexpl - A" P()]3,P(») explr’ P(») T},
=2%,3%A(x - y)(T{expl- \P(x)]expl- ' P(»)]}
x{explr’P(y)]explAP(x)]}o + 1" 854 (x - y)

x fol (expl- 2P (x) expl- ' tP(]}

x {expl- x"t' P(y)[0,P(y) expl\’ P(3) | explaP(x)1}), dt

-N23AG - ) [ Gexpl- 1P expl- 1 P()]2,P()

xexplA'tP(y)]} {explr '’ P(y)) explaP (x)1}), dt
=0%02A(T{expl- AP (x)] expl- A" P(y)]}

x {explr'P(y) ] explP() ]},

+ v nas8/a) [ aer{expl- AP lexpl - 3'tP ()}

x{exp[A tP()]P(y) explAPlx)]Ds +27 — —2’], (IV.13)
Similarly,

s =[(ex0z803a/A)

Hpo

x [ " at(riexpl-P(x)] expl-1'tP ()]}
x{exprP(x)] exp[r'tP(y)IP(y)}

+(p=—=0, X = <N)]+2(2% 403 AD28/ A?)

x\' [f dt ds t{T{expl~ rP(x)) exp[r"tsP(y)]}
x{expl— A"tsP{y) [P%(y) expxP(x)}), + 1 — = A]
-\ (05.0038034/8) [ [ dt ds(T{expl- AP(x)]
xexpl— ' (t - s)P(y)IP(y)}

x{explAP(x)]) explr’(t - $)P(3)P(»)},. (Iv.14)

One of the aims of the above exercise was to show that
for superpropagators involving any two of the functions
{IV.6) it iz sufficient to calculate the superpropagator

(T{explu,P(x)) explu P31} {explp P(x)] explu L) 1}-

(Iv.15)

It must be emphasized that the simplication achieved
by the use of result (III.8) is tremendous. If, for in-
stance, in the second example above we do not use (111.8)
and proceed to pair off all the four fields with deriva-
tives we will end up with the task of evaluating super-
propagators of type (IV.16) with m and »n ranging from
1 to 6, as compared to the present range 1 to 2 when the
result (I11.8) is used. The superpropagator (IV.15) is a
special case of matrix superpropagators
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By P(x) PP B Ply) e
<Te‘l"1 RN e e

mmP(-")>
wim R0 o

" (Iv.16)
which will be considered in the next section. If we start
with some parametrization other than the exponential
one, then we will encounter superpropagators of type
(IV.16) with some other functions replacing exponen-
tials. However, all such superpropagators can be cal-
culated once we know superpropagators of type (IV.16).

V. THE SUPERPROPAGATOR (#® W ® - - -Qgtm+n® )y,

In this section we first evaluate the superpropagators
(I.6) and (I.7) as an example of the method of Sec. II.

We will then show that the evaluation of superpropagators

of type (IV.16) can be considerably simplified by relat-
ing various superpropagators to each other.

Example 1. Let &(x) be a 3 X3 Hermitian matrix
field. Then

(T{explr, & (x)] exp[r, @ (v)]}),
2 [ dUexp(~ {U"UN{exp(r,cU) exp(r,cUM}

=[ dZdH Tl |z, - z,|*exp(- {Z'HZH"))
<k

x {explo,Z 0" exp(o,Z")H} (v.1)

where we have used (II. 15) and defined ¢, =x,c and
0,=21,,. Using (II. 26) we obtain

J aHexp(- {Z'HZH}Y{explo, Z]H™ explo,Z"H}
= (r%/ Izl ‘zalzlzz —23|2)

% f dH' exp(_ Izslz - {Z/THIZ/H/-I})

x|exp(o,2,) exp(0,2¥) +{exp(0,2’)H' " exp(0,Z'YH'}

+ { ( eXp(GIZZ'? : :&p(clzs)) e

Z'T_zF

x (exp(ozz ') - exp(0,2%) ) H,} _
(V.2)

Using (I, 26’) for the H' integration, we obtain for
(v.2),

T exp(=22, 12,12
N, lz,-2,1%

[exp(olzs) exp(0,23) +exp(o,z,) exp(0,2¥)

exp{o,z,) ~ explo,z,)
z, -2,

+exp(e,2,)explo,z}) +

x explo,z}) - explo,z¥) . exp(0,z,) — exp(o,z;)
z¥—z¥ 2, =2
1 2 2 3

X exp(o,z¥) — exp(o,z2¥ + exp(o,z,) - exp(o,2,)

2y -z} 2 -2,
x S¥P(0,2) ~ exp(0,23) | 1
z¥-zf lz, —z,1%
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x (exp(VIZ,) - exp(0,2;) _ exp(0,2,) - exp(olzs))
2 =24 2y~ %3

x (exv(azz;*) —exp(0,2) _ exp0,2}) - expla,zd) )] .

z¥~z¥ 2§ -2}
(v.3)
Using (V, 3), we get for (V.1),
(T{explr, @ (x)] explr ¢ (») ]},
"Ef az Il ,z,-zklzexp(- szlz"lzzlz-‘zslz)
i<k
x[2 exp(o,2, +0,2}) + 3E,(0,, 2)E, (0,,2%)
k
+E,(0,,2)E,l0,, 2*) +2E,(0,, 2)E,(0,, 2¥)2. 2}
Rk
+2E,(0,,2)E, (0,,2*)2 2, + E,(0,,2)E,(0,, 2*)
]
X QL |z,|2+ 2 (22, +232))], (V.4)
k Kk

where the functions E;, E,, and E, are defined in
Appendix A.

The integrals in (V.4) are similar to those discussed
in Ref. 7 and can be evaluated by using techniques de-
veloped in statistical mechanics.® We first note that
My, lz,-2,1% is the square of the absolute value of the
Vandermonde determinant,

11 1?2

Oz,-2,]%= |2, 2z, 2, (V.5)
i<k
z} 23 23
3z Lz
=2z, 2ztz, Lz¥z, |. (V.6)
22k 2izra? Diz)ia?
One of the integrals in (V,4) is
de!EIk Izj-zk]"’exp(-Izll"’—‘zzl"’—izslz)
X2 exp(0,z, +0,2}). (v.7)
3

We substitute (V.6) for I1,.,|z,~z,|% Since the inte-

grand in (V.7) is completely symmetric in z,, z,,

and z, we replace the first column of (V. 6) by 3,

3z,, and 3z%. We then eliminate 2z, from the other two
columns by subtracting suitable multiples of the first

column. This process can be repeated once again with
2, and z, to give

f dZ};Ik Izj—zklzexp(-,zllz-lzzlz-lzslz)

X2 explo,z, +0,2})
kR

=6f dzldzzdzsexp(—lz1,2—|22|2-|23l2)

1 zF ¥
x|z, 2}z, z2¥%2,| 2iexp(o,z,+0,2}). (v.8)
k
& afel 23l
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Each of the three integrals in (V. 8) can be evaluated by
integrating each column separately and using

J dzexp(-|z|)zmz* =7 T(m + 1), (V.9)
The integral (V.7) then becomes
6(6 +6¢ + £2)&,

where £ =0,0, =2\ ,c2 =2\ ,A ~y).

In the integrals involving E, and E, we use the for-
mulas (A6), (A7), and (V.6). For example,

Ez(on z)Ez(Uzs z*) I Izj - zklz
i<k

3 2.2k T eo2nh
=2z, Lafz, ez,
E 1% EZ: %1% Z e°2‘k* €515,

Again arguments, similar to those leading to (V.8)
from (V.7), give

f dz, dz, dz exp(~

(V.10)

ENIEN R END)

X (El zklz) I ‘z, - Zn‘zEz(ou 2)E,(0,,2%)
i<k

=6/ dz, dz, dz,exp(- |2,]2 =221 = |2, || 2, 2
3

1z €253
x|z, afz, W%z

*
%1% z;‘e”r’z €%2%3 ¢%1%3

26(¢ e +4ef -5 -4),

Other integrals in (V.4) are calculated in a similar way
and we finally get

(T{explr,@ (x)] explr,@ (1)1},

= (£ -3)+(6+4r + %/ 2)¢, (V.11)

where the normalization constant has been fixed by
noting that the left-hand side has value 3 for ¢{=0.

Example 2. The second example we wish to congider
is
(1{explr, @ (x)] explr,& (y) [Hexplr,@ (x)]exp(r,@ (y)]H
2 [ aUexp(~{U'UP{exp(r,cU) exp(r,c UM}
x{exp(rscU) expM e UN} (V.12)
= [ dzZ N \z;-z,|* [ dHexp(~{Z'"HZH})
i<k
x{exp(o,Z)H! explo,Z ) H}{exp(0,Z2)H ' explo ZYH}

:‘:f az 1 lzj'zk]‘}(l/n |zx-2312)exp(-|z3|2)
Kk i<S
xf dH' exp(_ {ZIYlelHI-l}
3 [exp(01z3+czz;)+{exp(o,Z’)H"1exp(oZZ")H’}

' { (exp(ulzz') -0, zs)) o
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X

exp(o,Z'") - exp(ozzg, )>H }]
ZITi

X [exp(0'323 +0,2%) +{exp(0,Z2' )H " explo,Z"H'}

+

(exp(o g 1 )_ :ﬁp (03z3)) Bt

z 9\ .,
x (exP(o"Z,r ;XP(%%))H }]

—z3

X

+{ exp(aZ) explo, zs)>H, -
(

exp(q,Z”) - e;s:p(or,izs))&r ( %% - e":s‘s)H,_t
k]

(v.13)

(exp(o LZ'") - explo,z¥ ))H,} ’

Z'T - z¥

where we have again defined ¢, =cX, and used (II. 28)
in the last step. The integrals, in (V.13), over the
2X2 matrix H' can be written down immediately by
making use of (II.28') and (IL. 29’). We define

p.=exp(0,2,), q,=exp0,2f), 7,=exp(0,2,),

(V.14)
s,=explo,z)), k=1,2,3,
and
zpi—Pk :qt_qg
Pn=mey T (V.15)
¥, =7, $;—8 .
Rjkzgj_—z-i-, ka= *-Z:, j*k,

Using (I1.28’) and (I1.29’) to write the H’ integration and
noting relation (A9) we obtain

(T{explr,@ (x)] explr,@ ()]}
x {exp[r@ (x)] expla @ ()]}
1 zk 'Z)T(z) ’

2 [dzZ 1 |z;-z2,|%exp(-22 (V.18)
i<k k

where the integrand 7(z), after some algebra, can be
written in the form

T(z) =[EP4€I¢ + Eijij + E,(0,,2)E,(©,, z*)]
i Kk
x [Zrisi + ZRH:S.H: + Ez(os, Z)Ez(cq’ Z*)]
i <k

+ 2P, R Ex0,,2)E,(0,, 2)
K

+ ER!kSIkEz(aU 2)E,(0,, 2¥)
i<

+ KZkPJkQJkRijJt

- = L = PisRes = PasRus) o=y (QusSaa = QasSia)

+3E,(0,, 2)E,(0,,2%)E,(0,, 2)E, (0,, 2*). (V.17
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The expression for T can be written as

T(z)=23T,(2), (v.18)
2
T,(z)= (2‘31’44() (?’ris()’
=2 explo,z, +0,2%) Lexplo,z, +0,.2F), (V.19)

T,(2)=2p4q ZRMS,I& +2278, ZPnQJk
i <r i K

= i} > [exp(clz, +0,2%)

i=1 Kk

x (eXP(ng,) - exp(%zg)) (exp(a.,z}‘) - exp(o4z;‘_))
2,~2 z¥ - z2*
i~ % i~ %

+ 0,—~0, ,
O, —0,

T,(2) =EP;CI¢E2(03, Z)E,(o,, z)+ 0, =040, —0,4),
i

(V.20)

(v.21)
T,(z) =4E,(0,,2)E,(0,,2%)E,(0,, 2)E, (0,4, 2%), (v.22)
T,(@)=2E,(0,,2)E,©,,2%) L R,S,, (v.23)
Kr
T,(2) =2E,(0,,2) E,l0,,2%) P @, (V.24)
<
T,(z):( ZP,,Q,,,)(ZR,ks,,,), (v.25)
Kkr KR
T,(@) = P QR uS s (v.26)
K
T,(2)= ]_zl:%zﬁ (P13Qas = P2s@5) (R3S, ~ stsla)-
(v.27)

Integrals involving T,—7, can be evaluated by methods
similar to those used in the previous example. For
evaluation of the integrals of T,~7, see Appendix B.

All superpropagators of type

Hidx) TIR-Y S TR Y Y PO B ® ()
Te !t cveg,m o, m vee g mm
( €3 € 4, " Emiy Coyly %

(v.28)
can be evaluated by contracting various indices in all
possible ways and then by applying the method of Sec. II
to the resulting scalar superpropagators. However,

we shall now give a simple method of getting some iden-
tities between the various scalar superpropagators so
obtained. These identities simplify the calculation of a
superpropagator of type (V.28) to a considerable extent.
We illustrate this by means of examples of (V. 28) with
m,n<s2.

(@) m=1,n=1

The matrix superpropagator

(T e} epz® My, (V.29)
can be written as

0440,15; 640 ,5,, (V. 30)
where
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95, + 38, = (T{explp,® (x)]Hexplu 2 (1)1},

= x,x(lh;“z) (v.31)
and
35, +95, = (T{explp, & (x)] explu,& ()]}
ES:,L“‘U T2 (v.32)

The superpropagator (V.29) was caiculated by Ashmore
and Delbourgo by first calculating S,',(;,L1 ; ly) and then
relating 31,1(#1, 4,) by solving a set of recurrence rela-
tions. Here we give another method of obtaining a rela-
tion between (V, 31) and (V. 32). Consider

Eﬁ—<T{exptu,¢(x>]}{explu24>(y)]}>°

=(T{® (x) explp, & (x)]}Hexplu,@ ()P,

= 1,80 - y)(T{explu, @ (x)] expli,@ (3)]}, (V.33)

where in the last step we have paired off the field &(x)
using Eq. (IV.8). Equation (V. 33) gives a simpler way
to evaluate S, ,(u,, p,).

Oy m=2,n=1

In the case of superpropagator

B10G) kalx) B3y
1 M2 39y
T €14, Ci4, Cu o

we must know the following scalar propagators:

(V.34)

Sy, 1 (45 1eg5 1hg)

=(T{explp,&(x)]} explu & (x)]Hexplu 2 (1),
(V.35a)

Sy, 1K1y Bgs bg)

= (T{explu, & (x)] explu @ (x)]Hexplu & (1)1Po, (V. 35b)
Sy, 1(Mas ig 1ty)

= (T{explu,@ (x)] expli,@ (»)]Hexplu , 2 W], (V. 35¢)
Sy, 1 (Kay g5 )

= (T{explu ;@ (y)] explu,@ ()]} {explu & ()]}, (V.35d)
So, 1 (fyy Mgy pg)

= (T{expln,® (x)] explu,® (x)]explu & ()1Po. (V.35e)

Of the five superpropagators listed above,
8,,1(15, 1,5 B5) can be calculated by using (IL 7).
Sy,1(Mys Uasug) and S, (g, 4y, Hy) are of the same form as
Sy, (i3 1;) and S, ;(u,, 1,), respectively. Finally, de-
rivatives of 52,1(“1? Poy bbg) w.r.t. i, and u, are seen to
be linear combinations of 3, ,{j1,, p4; 14,) and
S,,1(#t g, g3 B,), by an argument similar to that used in
derivation of (V.33). Hence one can solve for
Sy, 1 (e, kgs b)) and S, ;(khg, phy; o).

) m=2,n=2

For the matrix superpropagator

(r 190 LH20(x) B30ly)

wadiy)
‘1’1 e‘z’z ki >09

roty

(v.36)
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one can again write down the scalar superpropagators
which must be evaluated. Of these some can be evaluated
using representation (II.7) and some of the others can

be related to derivatives of these. The only cases which
are not covered in this fashion are

So,2(bhys gy Moy a)

= (T{explu, @ (x)] explp & ()] explu & ()] explu 2 ()1},

(V.37)
and

Sa, 2k s Mgy gy g}

={(T{explu,® ()] explu @ (v)] explu @ (x)] expli @ (1)I}o.
(V.38)

Evaluation of (V,37) has already been discussed and
(V. 38) can be calculated in a similar way.

Therefore all superpropagators of type (V.28) can
be evaluated. Of these only superpropagators with
m,n< 2 are needed for evaluation of superpropagators
with derivatives.

VI. CONCLUSION

All the matrix superpropagators with or without de-
rivatives needed for second order graphs can be eval-
uated by the methods presented here.

In the above discussion we have worked with exponen-
tial parametrization, However, one need not restrict
oneself to the exponential parametrization; the whole
discussion can be carried over for any other parame-
trization. The case when & (x) is a symmetric Hermitian
matrix is also of interest for its application to gravity
modified theories. In this case result (II.5) is valid ex-
cept that integrations will now be over all complex
symmetric matrices and the volume element will be
dU=Il;,dU;,. A method of integration over complex
symmetric matrices is therefore needed.
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APPENDIX A

In this appendix we derive some useful results. Let
U denote a 3X3 matrix. The matrix U will satisfy an
equation of the form

P+ p, U2 +p,U+pal=0 (A1)

where p,, p,, and p, are scalar functions of the matrix
U and can be expressed in terms of {U"}, n=1,2,3.
Hence any matrix function of U, such as exp(AU), can

be written as
exp(\U)=E, + UE, + UE,, (A2)

where E,, E,, and E, are functions of p;, p,, and p,.
Thus, for a diagonal matrix Z (Z,,=2,5,;),
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exp(\Z)=E,+ ZE, + Z°E,, A3

E,, E,, and E, will be functions of » and z, If the diago-
nal elements of Z are distinct, then the three equations

exp(\z,)=E, +z,E, +2%E,,
exp(A2,) =E, + 2,E, +22E,, (A4d)
exp(\z,) = E, + 2,E, + 23E,,

obtained by equating diagonal elements of both sides of
(A3), can be solved for E, to obtain

& oz, 22 1z, 22

E,\, 8= |e*2 2z, 23 1z, 22|, (A5)
s oz, 2% 1 2z, 22
1 o 22 1 2z, 2%

E(nz)=|1 &%= 23 1 z, 23|, A6)
1 et 22 1 z, 2%

and

1 2z, & 1z, 22

E,(\,z)=|1 2z, &= 1 2z, 2%]. (AT)
1 z, s 1 2z, 22

It must be noted that E, are completely symmetric
in z), z,, and z,.

For use in Sec. V we record the following formu-
las for the E’s:

exp(rz,) — exprz,)

=E, +(Zl+zk)E2, j#k, (A8)
Zj—~Zp
and
1 (exp(xzx) —exp(izy) _ exp(rz,) - exp()\z,,)) -E
2, =23 Z2)—2, 2y — 24 o

(A9)
These results follow directly from Eqs. (A4).

The left-hand side of (A8) can be written as (assum-
ingj=1, k=2),

explr(z, - 2,) - 1]
2, — 2,

exp(rz,) — exp(rz,)
Z, - 2,

=exp(rz,)

=xexp(rz,) [ explra(z, - 2,)) do

=x fol explraz, +A(1 = a)z,) da.
(A10)
Equation (A10) can be put in the form

eXP(Rzzl)—:Xp(AZz) =7\jdaldaz9(d;)9(dz)5(al+0¢z-1)
17 %2

Xexp(a,2; +a,2,)
:xfda 6, +a,+a,-1)8(a,)0(x,)5(a;)

Xexp(ra - z), (A11)

3
where -2 =2 a,z, and do =11, do,. Similarly,
k=1
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E,(\,2)=2% [ dab (if:, - 1) ,ﬁle(a‘)

A12)

If we expand exp(\a - 2) in powers of @ and integrate
term by term we obtain

Xexp(ha 'z).«

m+2
(Tn)\_'_—zjl—z;"lz;"'a’zg"a, m =Zm‘.
This power series expansion for E, can also be obtained
from Eq. (A7) directly. One can write down similar
power series for E; and E,,

E,(\,2)= 2 (A13)

mi)o

me

E\2z)=1+ Z‘,o e T3y 2252k (A14)
mil
and
¢w1

— i m m.

E(\z)= m{Z)o DT A 1202203
)‘m¢2
- (Zl +2z, +Za) Z w gMzl2zls (A15)
miao M

where

m=m, +m,+m,.

Formula (A14) and (A15) can be proved directly from
(A5) and (AS6).

In place of E,(A,2) we will sometimes write
E, (A, z,,2,,2,).

APPENDIX B

In this appendix we discuss the details of the evalua-
tion of integral (V.16) where T is given by Eqs. (V.18)—
(V.27). As we have already remarked, T,, T,, and T,
can be easily evaluated using methods of Example 1 of
Sec. V. Therefore, we first consider integrals of
T,, T, and Tg. In all these integrands there is a factor
of type

N [z, - 2, |2E,(0,, 2)E, (0}, 2*) (B1)
i<k
which can be replaced by
1 2} eo2ef
6|z, z¥z, e"z‘;z3 (B2)

*
%171 z;eul‘z %2%3 g%1%3

inside the integral, by arguments similar to those used
in writing Eq. (V.8) from (V,7). In view of Eqs. (V.15),
(V.22)—(v.24), (A11), and (A12) we first consider inte-
grals of the form

1 z¥ 2%
J dz,dz; dzgexp(- 2|z, | | 2,

x
%151 018 o1 s3topsd

*
2¥z, €2%3 z,4

Xexplo.a -2 +0,8-2), B3)

where & = (o, 0, ;) and & - 2=3 ,0,2,, etc. As each
column of the determinant in (B3) depends on only one
of the integration variables, each column can be inte-
grated separately to give
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[ dz,dz, dz,exp (= |z, |~ |2,]2 = |2,]?)

%
1 z¥ €°2%3

*
x| 2y z¥z, e’2"3z; | exp(oga -2 +0,8-2%)

*
11 21z gP2*3 701
1 9

=3, 5, [ dz, dz, dz,

Xexp(-]zl]"’—Izzlz—]z3]2+03a ‘2408 2%)

1 1 e
*
x| %1 z, %% 2,
L1 1% e°2‘:?"°1‘s
1 1 1
13
T 0,08, 0.8, 08, (0,+0,8,)
!

6010451 6010452 e01(0200483)

X exp(0,0,a * 8 +040,0,48,) (B4)

1 2
= 7. 55, 1001, 02,04, B explo0,a -8 +o0,as8y)},  (BS)
where
1 1 1
Dlo,,0,, 045) =10,8, (0, +o4B3) | . (BB)

%1948 e®1%P2  @91(a,v0,83)

048,

Hence using (A12) and (B1)—(B5) we get
Sz 1l |z,- 2, |* exp(- 242, %)
<

X Ey(0,,2)E,(0,,2*)E,(04,2)E,(0,, 2%)
=(00,) [ d86Q2i8, - VI16(8,)
k

x [ da 6(2a, - DI18(a,)
kR

x L —a—[exp(ostua B +0,0,0,8,)D(,,0,,0,, B)].
04 aBZ 037)

Integrations over o can be immediately written down by
making use of (A12). So the right-hand side of (B7)
becomes

0, ) dB8(ZIB, - 1)6(8,)6(8,)6(8,)

X i[D(O'u Gy,04, 5)Ez(°3,0431y 0485,0, +0433)]- (B8)

98,

The derivative 3/33, in (B8) can be transferred to the
& and @ functions to give, for (B8),

~0, [ dB D(0,,0,,0,, B)E,(05,0,8,,0,8,,0, +0,8;)
x[6'(L 8, ~ 1)6(8,)6(8,)8(8,)
+6228,~ 1)6(8,)5(8,)6 (85)]
=-0, [ dB6( B, - 1)5(8,)8(8,)6(8,)

XD(0,,0,,04,B)E,(05,0,8,,0,8;,0, +0,8,) (B9)
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where we have used the fact that the integrand in the
term involving 6’ is antisymmetric under exchange of
B, and B, and hence the integral of this term must be
zero. The two 5 functions in (B9) can be utilized to
carry out integrations over 8, and 8,, and (B9) can be
written as

1 1 1

1
"04,[0 dBl 0461
6010451 1 exp[.ol(az +04‘(1 - Bl))]

0 g,+0,(1-8,)

sz(°3r°431’ 0,0, +0,{(1-8,)). (B10)

Using the notation ¢ =08, and n =0, +0,(1 ~ 8,) the inte-
grand of (B10) can be written as®’

1 11
¢ 0 g Ez(%&,om)
e"x‘ 1 &

={-t[explom) - 1] +nlexp(o,8) - 11} E, (04, £,0,7)

=eXP(°'171)5 Ey(05,£,0,1) +ex9(°1£)'7 E,(05,£,0,7)
- (Tl -E)Ez(os,i,o,n)

=[exp(on) - 1] [explo ) - 1V/n - [explo,£) — explom)]
X[exp(o,t) - explogn)V/ (& -n)

+[exp(0,8) - 1](exploye) - 1V/k. (B11)

Defining ¢ = (£ —7)/2 and noting £ +n =0, +0, the above
expression can be put in the form

lexployn) - 1llexplogn) - 1V/n +[exp(0,£) - 1llexploqt) - 1V/¢
- 4explo, +0,)(0, +0,)/2]sinho ¢ sinho £/
=[exp(o,£) - 1]lexplogt) -1V
+exploy - 1llexplog) - 1V/n
- 2expl(o, +0,)(@, +0,)/2]lcosh(g, +0,)¢

-coshlo, 0,0tV ¢. (B12)

Each of the three terms in the above expression can be
integrated by choosing £,7n,{ as integration variables
and expanding the integrand in a power series.

Other integrals, T,—T, are evaluated by essentially
similar procedure as the above after making use of the
steps mentioned below.

(1) An integral involving T'; contains 3, RS,z
which can be written as

ZRjksjk= 2 explogz,) - exp(Oy2,)
<R Z2j—Zp

x explo,z}) - explo,z})
z¥-z¥ *
J k
Next we use Eq. (All) to substitute

R;,=0, [ da 8o, -1)6(a,)0(a,)6(a,) explosa - 2), i+j,k
(B14)

{B13)
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and use similar expressions for S;,. The rest of the steps
are similar to those for 7,. The integral of T, is exactly
similar.

(2) For T, we substitute for P,, and Q,, from Egs.
(V.15) and (A8) to get

2P Qs
Kk
= Z[E1(°U z) + (zj +Zk)Ez(01, Z)]
i<k

X[E (0, 2%) + (2} + 2})E,(0,, 2%)]
=3E,(0,,2)E, (0,,2%)
+ Z(Zzh)Ez(Vu 2)E,(0,,2%)

+ 2(2 Z:‘)Ez(o'z, z*)El (011 z)

+2 [Z |2, |2+ 2 (e 2 +z}“zk):}E2(al, 2)E,(0,,2%).
e i<k (B15)

Next we use (A6) and (A7) for products of E’s. The ex-
pression ., R;,S;, is simplified in the same way as
outlined for T, above.

The evaluation of an integral of T, is exactly parallel
to T,,

(3) Finally, for T, we use (A8)

1

1
Ty= m (P3R5 — Py ) (m (Q15523 ~ R25515)

=[E, (0,,2)E,(0,,2*) +0, — 0]
x{E,(0,,2)E,(0,,2*) +0, 0}

=E,(0,,2)E,(0,,2)E,(0,,2*)E,{0,,2*) +** (B16)

where dots stand for other terms obtained by inter-
changes o, — 0, and 0, —0,. We now use Eq. (A6) for
E, and Eq. (A12) for E, and retrace the steps of the
evaluation of T,.

15, Okubo, Progr. Theor, Phys. (Kyoto) 11, 80 (1954); R.
Arnowitt and 8. Deser, Phys., Rev. 100, 349 (1955); E. S.
Fradkin, Nucl. Phys. 49, 624 (1963); G.V. Effimov, Zh,
Eksp. Teor. Fiz. 44, 2107—17 (1963) [Sov. Phys. JETP 17,
1417 (1963)]; G. Feinberg and A, Pais, Phys. Rev. 131, 2724
(1963); W. Guttinger, Fortschr. Phys, 14, 483 (1966); H. M.
Fried, Nuovo Cimento A 52, 1333 (1967); M.K. Volkov, Ann,
Phys, (N.Y.) 49, 202 (1968), For a recent work on infinity
suppression in gravity modified Yang—Mills theories see,
M.S. Sri Ram, “Infinity Suppression in Gravity Modified
Yang—Mills Theories,” 1.1.T., Kanpur, preprint. For a
study of nonlinear conformal invariant QED see, Tulsi Dass
and Radhey Shyam, “Conformal Invariant Finite Quantum
Electrodynamics,” 1.1. T., Kanpur, preprint.
’For a review of nonpolynomial Lagrangian theories, see
Proceedings of Coral Gables Conference on Fundamental In-
tevactions at High Energies 1971, edited by A, Salam (Gordon
and Breach, New York, 1971).
33, Gasiorowicz and D.A, Geffen, Rev. Mod. Phys. 41, 531
(1969).
‘A. Hunt, K. Koller, and Q. Shafi, Phys. Rev. D 3, 1327
{1971); R. Delbourgo, J. Math, Phys. 13, 464 (1972); P.T.
Davies, J. Phys. A: Gen. Phys. 5, 1479, 1698 (1972),
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SWe use script symbols to denote matrix functions. Ordinary (det@)-1(Q-V24QV?), (@V?BQ VY, f dh exp(— hTR) R it by .
symbols denote scalar functions with no free indices.

i h is given b,
6J. Ashmore and R. Delbourgo, J. Math, Phys. 14, 176, The most general form for the integral over k is given by

569 (1973). ot 5 Ol 5
TA.K. Kapoor, J. Math. Phys. 17, 61 (1976). [ dh exp(— KRR bR, = C(0y 100 + 64105
8J. Ginibre, J. Math, Phys. 6, 440 (1965). Contracting the indices we get
M. L. Mehta, Random Matrices (Academic, New York, 1972).
0Curly brackets here, and, throughout the paper, denote the CN(N+1) = f dh exp(— hth) (W' h)?
trace over internal indices.
iwe agsume that components of & are linearly independent. If = | (Mdny) exp(= Ty | 1y 19 (2 1 1y 1?
they satisfy some condition, for example Tré =0 or &, =&y, _ _ 9

some of the considerations given here will require - I (TMydhy) exp(=Zp | hy | )

modification. " 2 2
2R, Delbourgo, A. Salam, and J. Strathdee, Phys. Rev. 187, X(Z 1 hel® + 25 By 121 Ry 1Y)

1999 (1969).
13Throughhout this paper we assume normal ordering for fields

=N 2N+2N(N-1)/2].

at the same point. Hence C=7". Any other integral involving exp(-g'g) and any
UIn Eq. 5) of Ref. 7, U* should be replaced by Ut [compare number of factors of g and g* can be evaluated in a similar
with Eq. (IL. 5) here]. Similarly «%; in Eq. (4) and Z* in fashion.
Eqgs. (7) and (8) of Ref. 7 should be replaced by u}, and Z7, 2The expressions such as [A4(2’) ~a,l/(Z' — z,) stand for a
respectively. (n—1) X (n ~1) diagonal matrix with kth element, on the diag-
15The symbol 2 indicates that an over all normalization factor onal, given by {(a, —a,)/ (2, — 2,).
has been omitted on the right-hand side. 21This follows immediately from invariance of the two point
16 or evaluation of Jacobians of matrix transformations see, function (I. 3) under SU(n) transformations ¢ — V@V“, where
W.L. Deemer and I. Olkin, Biometrika 38, 345 (1951). For V is any n Xz unitary matrix. The arguments will fail if all
the transformations considered in this paper all details can be components of & do not have the same mass.
found in Ref. 8 and Appendix A. 24 of Ref. 9. 22The constant C is fixed by demanding that the fields P(x) have
1171 denotes an (n—1) X(z —1) unit matrix. the correct kinetic energy term.
8[f, for example, A (Z) = exp(Z), then a,=exp(zy). 2gee, for example, J. A. Cronin, Phys. Rev. 161, 1483 (1967).
191f g is an N component column, 4, B, @ are N XN matrices 2gee, for example, H. M. Fried, Functional Methods and Mod-
independent of g, and @ is positive definite Hermitian, then els in Quantum Field Theory (M.1.T. Press, Cambridge,
the following results hold: Mass., 1972), Appendix A.
N BEquation (IV. 7) is obtained by taking ¢ =P{y};; in Eq. {IV.35).
fdgexp(—gT Qg) =d1r_’ %Here ' =1 —¢. In the rest of the paper we use this notation for
et@ R . .
N 27&?53532 ‘;: rcll?'albll;e ?”}aﬂ:::é ﬁéezé' tﬁfacfollowmg three alterna
1 _T -1 -
Jdgexpi-¢ Qg)g?Ag_detQ TriQ), tive expressions for Ey:
and
1 [e"‘l B )
E 2 (Ur Z) = - )
fdg exp(-£'Q2) (¢'Ag) (¢'Bg) Bm Al AT A 2= -I
N 1 1 . oo, 2= 1 [e"‘z—e"'i_e"‘s—e"‘l]
=3et0 [Tr(4Q)Tr(BQ) + TrAQ1BQY)], 2T ez | y—zy z,—21 )
where dg= I, dg, and the integrals are over all complex and
values for e;::lh%k. These results are easily proved by first E,lo,2) = 1 re°'3 - - e"z],
changing variables to &=QY2g and then reducing the resulting -zl G-z 2 -2
integrals to Gaussian integrations. For example, the third which follow from (A9) and the fact that E, (o, z) are completely
integral above becomes, on a change of variables, symmetric in z;, 2;, and 2;.
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The Boltzmann kinetic equation for a weakly ionized gas in the presence of a time dependent exterior

electric field and a static exterior magnetic field has been transformed into an integral equation. Existence
and uniqueness theorems have been proved for inverse power-law potentials of the form A/r° with s> 3
and for a large class of initial distribution functions. For soft potentials (3 < s< 5), these theorems have
been derived from the general properties of the integral operator. For hard potentials, 5 < s< + co, where
no general properties of the integral operator can be directly proved, an iteration procedure which

constitutes the main part of the present work has been developed. In each case, some important properties

of the solution have been established.

1. INTRODUCTION

The theory of ionized gases in the presence of elec-
tric and magnetic exterior fields,! leads to a system of
integrodifferential equations describing the evolution
of the distribution function of each type of particles.
Generally, these equations which are similar to the
usual Boltzmann equation in kinetic theory, are not in-
dependent. However, when the ionization is weak,? it is
possible to neglect in each equation the terms involving
the collisions between charged particles. It remains
then, for each charged component a reduced equation,
the general form of which is given by

_g§+v.vrf+ (P+V><'ﬂ)-v'f=ﬂ(f,fn)’
1.1)
B

R="
m

r=2&

b ’

where f(r,v,?), q, and m are, respectively, the dis-
tribution function, the elementary charge, and the
elementary mass of the type of charged particles con-
sidered, and where f,(r,v,, ?) is the distribution function
of the neutral particles, The vectors E and B denote,
respectively, the exterior electric and magnetic fields,

The present work is devoted to the resolution of Eq.
(1.1) under the following assumptions:

(i) the magnetic field B is uniform and independent of
time,

(ii) the electric field E(¢) depends only on the time ¢,

(iii) the velocity distribution function of the neutral
particles is a Maxwellian distribution function given by

fn(l‘, Vo t) =fn(vn) =a eXp(" ﬁnvﬁ%

M _\3/? M
a:N(Zﬂ‘kT) » P= T

1.2)

where N, M, T are, respectively, the density, the ele-
mentary mass, and the temperature of the neutral
particles, and where k is the Boltzmann constant.

The two-body interaction between a charged and a
neutral particle is described by inverse power force
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laws A/7°, where 3 <s <+, the limiting case s=+=
corresponding to the interaction of rigid spheres.

Moreover, for power-law potentials with s <+, an
angular cutoff has been introduced which excludes the
grazing collisions. This mathematical trick, which was
first used by Grad, ? allows us to split the collision
operator K, defined by Kf = y (f,f.), into two parts and write

Kf=-vf+ Hf, 1.3)

where f— vf is a multiplication operator by a function
and where H is an integral operator the kernel of which
is defined over AX A, where A is the whole three-di-
mensional velocity space. The Eq. (1.1) reduces then to

i3£+(l"+v><ﬂ).§L=—uf-i-Hf, 1.4)

ot ov

This last equation differs, however basically, from

the linearized Boltzmann equation in the kinetic theory
of neutral gases. Indeed, the integral operator defined
by the collision operator of the latter one, which has
been studied by Hilbert! and Hecke® in the case of rigid
spheres and by Grad®® and Cercignani’ in the general
case of power-law potentials with angular cutoff, is
completely continuous in the Lebesgue function space
L,(a), whereas for hard potentials (5 <s < + =) the
integral operator H of Eq. (1.4) verifies much weaker
properties,

In Part I of the present work, we investigated sepa-
rately the cases 3 <s <5 (soft potentials) and 5<s <+
(hard potentials).

After a transformation of Eq. (1.4) into an integral
equation, we establish in Sec, II the general properties
of the corresponding integral operator. For soft poten-
tials, these properties allow us to prove in Sec. III, the
existence and uniqueness of the solution of equation
(1.4) for a wide class of initial conditions.

On the other hand, for hard potentials, where no gen-
eral properties of the integral operator can be directly
proved, an iteration procedure similar to that given in
Ref. 8, has been developed. The proof of the conver-
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gence of this procedure which is based on a careful
construction of majorants, constitutes the main part of
the present work. The details of our method are given
in Sec. IV for the particular case of rigid spheres. In
this case, the basic theorems on the existence and uni-
uniqueness of the solution of the integral equation form
of the Boltzmann equation (1.4) as well as some prop-
erties of this solution in connection with those of the
resolvent kernel, have been established.

The general case of hard potentials (5 <s < +%) to-
gether with other important topics such as the proof of
the existence of the moments of the solution, will be
treated in Part II.

Ii. INTEGRAL FORM OF THE BOLTZMANN
EQUATION AND PROPERTIES OF THE KERNEL

A, Integral form of the Boltzmann equation

In order to set up solution procedures for a wide class
of initial conditions as well as for general laws of inter-
action between electrons and neutral particles or ions,
it is useful to transform the Boltzmann equation from
an integrodifferential to a purely integral form. The
simplest procedure to achieve this transformation is to
consider Eq. (1.4) and integrate both sides along the
characteristics of the differential operator D,

2 ]
— X)) e — .
D at+(I‘+v ) 3 (2.1

14

while taking into account the proper boundary conditions.

The equations of the characteristics of (2.1) are given
by the general solution of the differential vector
equation,

dv

Zi?=r(t)+vx“' (2.2)
One particular solution of (2.2) is given by
vilt) = f,;Rm,_,.,I‘(t') dt’, (2.3

where R q .y i8 the rotation operator of angle Q{t - ¢')
around the vector 1. The general solution of (2. 2) is
therefore

V=Rﬂ(t-t0)u+ ﬂ;RQ(‘_‘:)r(t’) dt’, (24)

where u is the value of v at /=%,

The transformation S,,, :u—~v==5; ; u defined by (2.4)
has an inverse. Indeed by applying the operator R g, o=t
to both terms of (2.4), we obtain

u=R etV j;:;R g(to - t’)r(t’) dt' = S,O',v

and hence S;l',ozs,o,,.

(2.5

By performing the variable change defined by (2.5),
the Boltzmann equation can be written in the form
a
Ef(s,',ou, t) =-v(| st,t0u| (S e M, 8) + 5(S, 4 u, 2),
(2.8)
where we have put

Hf (v, 1) =5(v, 8). (2.7
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The integration of (2. 6) with respect to ¢ yields
F(8y ¢, £) =1(u, 2)) exp[- f':) v(| S,,',Oul )dt']

+ ft;S(S,.,,Ou, t") expl— [} v(|S,w ,ul)dt"lat’.
(2.8)

By coming back, to (2.8), to the variables v and ¢
and according to the definition of § (v, ¢), we finally ob-
tain the following linear integral equation verified by

v, )
flv, t) =f(S,0',v, to) expl- ft; u(IS,.',vl ) dt’]

+ fi LRV R ) dv (2.9)

where A is the three-dimensional velocity space and
where the kernel k{v, ¢, v', ') is given by

kv, 1, V', ) = H(Sp, v, v) expl= [ v(| Spmev]) at”).

(2.10)

Conversely, now let F(v,?) be a solution of (2.9).
According to the properties of the transformation de-
fined by (2.5), F(v,?) also verifies Eq. (2.8). This last
equation may be written in the form

F(Sg,14u, ) = F(u, ty) exp[- f‘; v(| S"v‘o“l )dt']

+expl- [ v(|S,m , uD) at"1 [ Glu, 1) dt’,
{2.11)
where G(u,¢') is given by
G(u, t') = exp- ftt° V(| Sew e ul) dt"1S (Spoequs £).
(2.12)

According to a theorem due to Lebesgue, the deri-
vative of the function ¢~ [ g(t') dt', where g(t') is a
locally integrable function is equal to g(f) almost every-
where. Hence, the time derivative of F(S,',ou, t) exists
almost everywhere and is given by

0
a_gF(s'.‘ou’ t)=- V(‘ S,’,Oul)F(S,‘,ou, f) +S(Sr,:0‘k t).
(2.13)

In view of (2.4) and (2.2), Eq. (2.13) may also be
written in the form

S F(, 0+ (F +vX@) -%g(v, B) = — vV F(y, D) + 5(v, 1),
(2.14)

This last equation is just the original Boltzmann equa-
tion. It must be noted however that this result does not
imply that the partial derivatives of F on the left-hand
side of (2. 14) exist and are finite separately. Only the
sum of the two terms on the left-hand side of (2. 14)
exists almost everywhere. The original integrodifferen-
tial equation is therefore satisfied in a generalized
sense.

In order to set up solution procedures for the integral
equation (2. 9), we will study in the next section, the
basic properties of the kernel of this equation.
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B. General properties of the kernel k{v, t, v', t')

The properties of the function v(v) and of the kernel
H(v, V') which have been established in Append1x B im-~-
ply related properties of the kernel k(v,,v’,¢'). In the
Lebesgue function spaces L,(4), where A is the whole
velocity space, a highly interesting property is given
by the following theorem.

Theorem 2.1: For soft potentials (3 <s <5), the lin-
ear operator K, ;», generated by the kernel k(v,¢, v, t'),
(ty<t'<t<#) is uniformly bounded on the function
spaces L,(4), 1<p <+ and B,(4a). In order to prove
this theorem, we consider the inequalities (B29) and
(B37) of Appendix B. Using the fact that ¥(v) is a posi-
tive function, we obtain

[, kv, t,v', ') dv <v(0), (2.15)
J kv, 8,7 ) av' < Cy(0), (2.16)

where C, is a positive constant.

Letfe L,(A). For 1<p <+, we have

”K:,uf”,, = (fA dvl fAk(v, LV, ) v dv' | PL/p
Making use of the identity

kv, t, v, t)f@) =[k(v, t, v/, )]V ¥ [R(v, ¢, v/, ) ] 2A(V)}

and of the fact that #(-) is a positive function, then, by
Hélder’s inequality, we see that

|K:,t'f

P= l fék(v’ t! vl’ t,)f(V') dv,‘ s
< ([ kv, t,v', 1) dv')!

X f/.\ By, t,v", t") | f(v)|? dv'.

Inserting the preceding inequality into Eq. (2. 15), we
obtain

|Ke oo [P < [Co(0 P [k (0., v, ) [ A7) [P v’
and finally, according to Fubini’s theorem, we can write

1K ¢F M, < C, 822 20 (O)IF T (2.17)
Similarly, according to the definition of the norm in
L (5), we obtain for p =+,

K, eof Mo < Cor(O)If . (2.18)

Inequalities (2.17) and (2. 18) hold for all values of
t and ¢’ belonging to a finite interval [¢,,#]. Thus, since
C, and v(0) are constants, independent of £ and t, it
results that the linear operator K, ,. is uniformly bound-
ed on the function spaces L,(4), 1<p <+,

If the function f belongs to the set BR(A) of all bound-
ed transformations onR to 4, then, by (2. 16) and the
definition of the norm in 8 (), we have

Ky, e fll=sup | [ k(v,t,v', A" dv'|
vca
<|iflisup f, k(v, £,v', ) av’ <Cu(0) lIfll.
vea
(2.19)
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Inequality (2.19) completes the proof of Theorem 2.1,

For hard potentials (5 <s < +=), v(v) is a monotonical-
ly increasing function of v. Consequently, Eqs. (B29)
and (B37) as well as Egs. (2.15) and (2. 16) no longer
hold. The procedure used above to prove Theorem 2.1
can therefore not be applied to the present case. More-
over, for s =+ (rigid spheres), by using Eqs. (B14)
and (B19), it is easy to disprove that K, ¢ is uniformly
bounded on L,(4) (1<p <+4=), Nevertheless, as it will
be seen in Sec. IV, the resolvent kernel of the kernel
k(v,t,v',t)), verify, in the case of hard potentials, some
highly interesting properties, the proof of which con-
stitutes the main part of the present work.

11l. METHODS OF SOLUTION OF THE INTEGRAL
EQUATION FOR SOFT POTENTIALS (3 <s < 5)

A, Existence and uniqueness of the solution

Let S7(A) be the set at all bounded transformations on
A=(ty, t]to F=L,(8), 1sp <+ and let If
=8upcry, t1]”f¢||, be the norm defined on 87(4) which
is a Banach space. Furthermore, let f; :v—f; (V)
=f(v, ¢;) be the initial distribution function (at t_ o).
We now present a proof of the following:

Theovem 3.1: If the class f,o defined by f;, belongs to
the Lebesgue function space L,(4), 1<p <+, the in-
tegral equation form of the Boltzmann equation, Eq.
(2.9), has a unique solution in the function space 8 r(4),
A=[ty, 4]

Proof: Applying the method of successive approxima-
tions to the integral equation (2. 9), we obtain the follow-
ing sequence:

ho(v, t) = )+ f,; [ 6, ¥ Vg (v )y dt

(v, ) =0, (3.1
where

@, 1) =f(S;,ev, o) exp[- ft: v(| S,.'tv| ydt']. (3.2)
We will first prove that

Wy ot = iy ll, < (N,/2%) exp[2a(t - t)], (3.3)

where N, = “f:o”p and where @ is a positive constant.

In view of (3.2), we have llgll, < IIf, Jp=N,. Thus, in-
equality (3.3) holds for n=0. We w111 assume now that
(3. 3) is satisfied at the order » — 1, Then, according to
Eq. (3.1) and to the theorem of Sec. II. B, we have

e s = B lly < Jy: @K oy = Ty )l

< f,; allfy u= g pall, dt’

< (N,/2" expl2a(t - ty)],

and therefore inequality (3. 3) holds.

If we denote the transformation £~ 71,',, by ﬁ,,, it fol-
lows from the inequality (3. 3) and from the definition
of the norm on the Banach space 5 z(A) that the series
(Hh,,,l -h 1) are convergent. Hence, the sequence k,
converges on Br{4) to a limit fe3r(A) which is a solu-
tion of Eq. (2.9).
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Let us suppose now that f and f' are two different
solutions of Eq. (2.9), belonging to Sz(4). Then, if we
apply the method of successive approximations to the
homogeneous integral equation verified by the differ-
ence g=f —f', we obtain

~ t o~ £~
g, mall, < LOIIKt,t'gt,n”pdt,s ] f,,0||gt,n||» dat’
and, by repeating the same process,

~ a” ¢ Al|] ™
||ge.m1”p$(7:'1—)";/;0 (t = O™l 1ll 6.
Furthermore, Ig; 1, =1ig,!l, <ligll <+, Hence

gl < gty - t)"/nt,

which implies that limlig,,,!l =0 as n == and therefore
f=r"
Corollary: If the function f;  belongs to G =83(4), the

integral equation form of the Boltzmann equation has a
unique solution in the function space 8¢(A), 4 =1[t, 4 ].

Proof: Since f,oc-:BR(A) and K, ;. is uniformly bounded
on 8,(8) (See Sec. II. B) we get in a way similar to the
above that

172 a1 = Pog all <N/2"expla(t ~ ty)], (3.9

where N=1f; Il is the norm of f; in Br{8). Hence, if
we denote the transformation ¢~ #, , by #,, it follows
from (3. 4) that the sequence %, converges on S¢(A) to
a unique limit f belonging to /3 ¢(A) and verifying the
integral equation (2. 9).

B. Properties of the solution

In order to establish some interesting properties of
the solution, we start with the proof of two important
lemmas.

Let us consider the series of the iterated kernels of
kv, t,v',t'). I we denocte the sum of the « first terms
of this series by R“™)(v,f,v’, "} we have

R™(y, t, v, )Y =25 k® (v, t,v', 1), (3.5)
pel

where &%’ is the iterated kernel of order p.

Lemma 3.1: The sequence R")(v,¢,v', ') converges
for all (v,?) € AX[¢y, # ] and for almost all (v/, ') e &
x[ty, ], to a limit R(v, ¢, v/, ¢'). For all (v,#) € AX[ty, 4],
this limit is integrable on the set of all (v/,¢')c A
X[ty #;]. The limit is also integrable on the set of all
ve A for almost all (v/, £’y e AX[ty, £,].

Proof: According to the results of the preceding sec-
tion, the sequence 4,(v, ) defined by (3. 1) is uniformly
convergent on 4, provided that ¢ belongs to Sz(4). In
addition, by the definition of the iterated kernels, we
have

IV, ) = @(v, ) + fib [ ROw, 8,97, 8 Vv, ') v .

(3.6)
Thus, since R™ >0, if we choose ¢(v, ) =C, where C
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is a constant, we find that
1"12 ft; LROG, v thav' at' <Ayt 1) <+=. (3.7)

Hence, according to the theorem of Beppo Levi, ° the
ascending sequence R'™(v,t,v’,¢') converges for all
(v,t) € X[ty ] and for almost all (v/,#') € Ax[t, 4] to
a limit R(v, ¢, v', #') which is integrable on the set of all
(v, tye ax[t, 4]

In order to prove the last statement of Lemma 3.1,
we choose ¢(v, f) >0 and integrable. By Theorem 3.1,
the sequence 2, a1, is uniformly convergent on the
space R . Hence,

[ av ft; SBM, 6, olw!, t)dv' dt’ <Ayt t;) < +=.

Furthermore, according to the first part of Lemma
3.1, we have

im [;} [, R, 1,V (v, t") dv’ at’
o

=i [\ RUw, &,v, ) olv', ) av' dt’,
Hence,
NG f,; LR, 6, o' t)ay' at’

= ft; fA o', t) dv’d;f’fA R(v,t,v', 'y dv <Aty t).
The last inequality implies that

[LR(v, t, v, t') dv < Aglty, ty) < +

for almost all (v, t') e ax[¢y, 4, 1.

Lemma 3.2: For almost all (v', ") € AX[¢y, ], the
resolvent kernel R(v, ¢, v', ') verifies

fA R(v, t,v’, tav=v@').

Pyoof: By Lemma 3.1, the following equality holds
for almost all (u, 8) € AX[¢t,, t,],

R(v,t,u, 8) =2, k®(v,t,u,6).
p=1

Multiplying both sides of (3. 8) by k(u, 6,v’, ) and in-
tegrating with respect to (u, 8), we obtain

(3.8)

Js ARG, t,u, O)k(u, 6, v', ') dudb
=2 ff L0, t,u, O)k(u, 6,v', ') dudb. (3.9
Pl

Furthermore, according to the definition of the iterated
kernels, we can write

Joe [ R v, t,u, O)k(u, 6, v, t") dudé
= [ [ kv, t, 0, 0k, 6,v', t') dudb

=k®D(y, 1, v, t'). (3.10)

Substituting (3. 10) into (3. 9) and using (3. 8), we obtain
the following integral equation, verified by the resolvent
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kernel for almost all (v', ") e ax[¢, 4 ]:
R{v,t,v', t)

=k(v, t, V', )+ [, [, k(u, 6,v',t"\R(v, t,u, 6) duds.
(3.11)

By Lemma 3.1, R(v,¢,v', ') is integrable on the set of
variables ve A for almost all (v, #'). I, therefore, we
integrate both sides of (3.11) with respect to v and apply
Fubini’s theorem, we obtain

9, v, Y =olt, vt + [} [ klu, 6,v/, 1)

xJ(t,u, 6) duds, (3.12)

where
g(t’ V’, tl) = fA R(v! t; V', t') dV,
o6, v, ) = [ kv, 8,v",t)) dv.

According to Theorem 3.1, the integral equauon (3.12)
has a unigue solution / (t, ', t') verifying ﬂ(t v, t)
<A, for almost all (v,#) e AX[to, t] since, by Eq.

(2. 15) @ < v(0). We will prove now that this unique
solution is ¥(v'). For this purpose, substituting v(v’)
for ${t,v’,t") in the second term on the right-hand side
of (3.12) which we denote by @, and using (2.10), we
obtain

Q= [ [, v)H(S;  ou, v

x expl- [7v(| S, eul) dr]dude. (3.13)

Let w=S;, gu. According to (2.4), we have
8
u:SQ"'w =R00-")W+ L,R n(p_tn)r(t') dt'
and
I“l = IRn(t'J)“lz lw‘ f"“/{mt,_:.)r(t")dt'l, (3.14)
lR Q“:_,,.)S.,.'gul = IW— j;"/{n(to_tu)r(t”) dt"l .

(3.15)

‘S'r,@ul =

Hence,
Q= [ Hw,v)dw [tv(w= ["Rgqmen T () dt"])
xexpl- [(|w= [*"Ragrcn, L") dt”]) dr]db.

(3.16)

Performing in (3. 16) the integration with respect to 6,
and using (B14), (3.15) and (2. 10), we finally obtain

Q=v@) -

[ W, 8,7, £") dw.

This shows that v(»’)
plies that

is a solution of (3.12) which im-

RO, 8V, ) dv=v(¥)

for almost all (v/, ¢ e ax[ty, 1.
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The last result completes the statement of Lemma
3.2.

Now, we want to prove the following:

Theovem 3.2: X f, o 1S a nonnegative function on 4,
belonging to the function space [ { (A) then for all ¢
€ [tO) tl]

[aftv, 0 dv= [, flv, ) dv.

Proof: By (3.2), fi,> 0 implies ¢ > 0. Hence, accord-
ing to Theorem 3.1, if f;| el 4(8), flv,#) is the limit for
almost all v 4, of the ascendmg sequence

h, D=0, )+ fit [ROD(v,t,v', Vo', t) avidt’.

(3.17)
This implies that for almost all ve A,
Jo AR, 6, v, oW ) av' at’
<f(v,t) = o(v, ) < B{ty, t,) < + <, (3.18)

Consequently, according to the theorem of Beppo Levi,
the ascending sequence B¢ converges to a limit R¢
and for almost all ve 4,

lim LR, v o', ) av' dt’
= [ [ RO, 4V, e, ) av' df’
and
e, )=, 0+ [} [ R, v, o t)av'dt’.

(3.19)

Furthermore, since f{v, ) and ¢(v, {) are integrable
with respect to v, the second term on the right-hand
side of (3.19) is also integrable on A, Hence, using
Fubini’s theorem and Lemma 3.2, we obtain

fAf(v, Hav= [, o(v,0dv+ f:; fA v oW’ t')dv'dt’.
(3. 20
Now, in view of (3.2), we can write

fet, Lv@hew!, ¢ dv' dt

’ V(‘Sg,tov,l ) d8lav’ dt’
(3.21)

Finally, using the same variable change S, 0,,,v’ =w' as
above (see Eq. 3.13), we have

= ft; S @S, v, 1) expl - Jot

0

ft;fA v oW, t)dv' dt' = [, f(w, t)dw = [yo(w,t) dw,
(3.22)

which implies
L, )dv= [, f(v, ) dv. (3.23)

Corvollary: If f, is a nonnegative function on 4, be-
longing to [,(4), then, for almost all ve 4, f(v,t) has
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a finite upper bound for ¢ [¢, + «[.

Proof: Follows immediately from Theorem 3. 2.

IV. METHODS OF SOLUTION OF THE INTEGRAL
EQUATION FOR RIGID SPHERES (s =)

It has been shown in Appendix B that for s > 5, the
collision frequency is a monotonically increasing func-
tion of v. As a consequence, Theorem 2.1 no longer
holds. Thus, the procedure of the previous section can-
not be used in this case. However, it is still possible
to prove the existence and uniqueness of the solution of
Eq. (2.9) for a large class of initial distribution func-
tions. Qur method, which is based on the construction
of “majorant” series of the series obtained by applying
the iteration procedure to Eq. (2.9), will be illustrated
here in the particular case of rigid spheres. The gen-
eral case 5 <s <= will be treated in Part II.

A. Properties of the resolvent kernel

In order to derive the basic properties of the resol-
vent kernel for rigid spheres, we first prove some
lemmas.

Let k4(v, ¢, v', ') be the kernel of the integral equation
(2.9), for rigid spheres. In view of (B20) and (B21), it
can be easily shown by applying the Schwarz inequality
to the iterated kernel defined by

kv, 1, v, t")

= foy Ja kel 2,0, kP, 6, v/, ') dudb (4.1)
so that for p > 2,
2(p=2)
kP (v, 8,V F) < (%f::) as (4.2)

However, the majorant series defined by (4. 2) diverges.
In order to get 2 more useful majorant, we consider the
sequence of integrals

Lv,0)=J;; [\ k@@, 1, V', 1) exp(- av'd) av' dt’, (4.3)

where « is a positive constant.

If we replace B, by (M/m)a in the expressions of
Hy(v,v'), vy(v), Y(v) without changing the other coeffi-
cients, then, according to (B10), (B14), (B19), and
(B22), we have

Hy(v,v’; a) exp(- av'®) =H,(v',v; &) exp(- 0¥, (4.4)
fAH,,(v',v; o) dv’ =v(v; @), {4, 5)
., [M4+m\?
futae, v's @ ao’ = (52) viw; ), (4.6)
v <vlv; 0 <0+, (4.7)
[+ 1 (/3
where

172 _ 1/
(9 e le)
2
v(v; @) =47a, (Fjg—m—) Y(v; a).
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Now let ¥,, p=> 0, be the sequence of functions defined
by

¥, (v; @)
=20 + M, + |M, - v| +20,)" exp[- a/4(v + M,

+|M,-v] -2n)%, (4.8)

where

n=Culty=t), Ly= sup [C@)],

tcltg.tyl

and where
MP = sup[hp(v)]

v 0

=3(n—vy) +lE(n +v,)2+p/2a] 2> (4.9)

with
Ry(v) = (v +v,)? expl- alv = 1)?].
Now, we want to prove the following:
Lemma 4.1: For a<(2r,)", a constant C, >0 ex-

ists such that

Sk, 6,9, 90, (0" ) av' < Co ¥, (0; @), p> 0,

(4.10)
where k,(v,t,v', t'; @) is defined by
kalv, t,v', 1" q)
=Hd(st',tv’ v’; a) exp[- f,t ”a(l So,t"' ) dé]. (4.11)

Proof: We consider separately the cases v < M,,, and
V> Mp#l .

(@) v< M,y
According to (4.8), we have
V1 (0; @) = (M +0,)"" expl- &M, - 1)?],
O<sv<sMy
and
T, (v'; @) < (M, +0,)° exp[- a(M, - %)?], »'c[0, +=[.

Then, by (4.6),

LHASpo v, v"; @)Y, (0'; @) av’

M+m ? -
< Wom Vel Sy vl @M, +72,)? expl~ (M, - 1)?].

(4.12)
Furthermore, according to (2.5) and (4.7), we may
write

|S,.',v| Sp+Dylt-1), Vd('st',tvl; @)

<11, [ va(v; @) + Dyl = 1) + 14
and since
Va('v; a) Ed Vd(oy' (1) :;a /Zau Vd(l Sa,tvl) > Vd(o) Z-Z;n/l’

we have

Va(|See ov; @) <v(v; a)[2+ (T4 /00) (2 = )], (4.13)
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expl- [\ vo(|Ss,,v|) d6] < expl- (@,/D(t - )]
Let / o =8up,, [/ (x)], where §/ (x) =[2 + (T4 /7,)x]
Xexp[- (v,/D)x]. It is easy to verify that

(4.14)

ymu - - oy a7

er (Zv,,va > - Z’U,,’Ua

o, exp Tl -1)=b,, I'y> 7

Hence, according to {4.13) and (4. 14), we have for v
=0,

expl— [ ve(| S5 v]) dolv([S,. ,v; @) < a,v,(v; @),
(4.15)

where a, = max[2, b,], Furthermore, since v < <Mp+1’ we
have v4(v; @) <(1/1,)(M,. +5u) and, by (4.9) M,., +7,
<K, (M, +7,) with K, = (M; +71,)/(My+72,). Hence

va(v; @) < (K, /1,)(M, +7v,) and since M,,; > M, >,
v(v; &) (M, +7,)° expl - a(M, - n)?

K —
<_lf (M, +7,)*! exp[— (M, - 1)?]

2 — \pe K,
<Z_ (M1 +7,)° ! expl- a(M,, - 72 :T"i\llpd(v; a).
o [+

Inserting this result into (4.12), we obtain the inequality

[y kalv, £, %', t'; @)%, (0"; @) dv’

<flf_(%+::) .Y, 4 (0; @) (4.16)
which is of the form given by (4.10).
() v>M,,
According to (4. 8), we now have ¥,(v; @) = (v +7,)*

><exp[— a(v - %)?]. For v' >v, this implies that
¥,(v'; @) <¥,(v; a). Hence, according to (4.86),

fdﬁ/ Hy(Se, v, v'; @)L, (0"; Qv dv’
s

<<%jm) V(lst' V|5 @ +7,)? expl- ew - )2,

(4.11
where the integral of U is taken over the unit sphere S.

For M, <v'<u, we may write ¥,(v’; @) < exp(- ar})
X (v +va)" exp(- a(w'?- 2% v)]. Then, by (4.4) and (4.5),
we have

j;dﬁ jMv, Hy(Sye v, V5 )0, (075 dv'2do’

< exp(— @) (v +T,)Pvy(| Sy 4v|; @)

xexp[- a(|S,. ,v|2-2nv)]. (4.18)

For v’ < M,, we have
a(Mp - .},1)2],

¥, (v'; @) = (M, +7,) exp[-

(M, +7,) < (v +7,),
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and
exp(= aM}) [, a8 [)" Hy(S v, ¥'; @' v’

< fs da foM" exp(~ av’® Hy(S;, (v, v'; &)o' dv’

<, St'.tvl; ) exp(~ alst',tvi 3,
which implies
fs[dﬁ fOM" Hy(Syo 4, v'; @Y, (0" Qo dv’

< exp(- @) (v +7,)v,(| Sy vl ; @)
oS0 v} 2= 2] (4.19)
(4.18), and (4.19), together with

X exp

Inequalities (4.17),
(4.15), then give

fkd(v,t,V', t)¥, (0" a)dv’
A

1{M+m\?
<E<M" m) aa‘llpol(v; Ot) + Zexp[— a('yf- ZVIU)]
X(v + Ty )Py, ( \S,, tV| a) exp[- a‘st' tV‘

(4. 20)

—_/t" Vd(lse,tv|)d9]-

Furthermore, for [S;. vl >v and in view of (4.15),
we have

ve(| Sy ¢v|; @) expl- t,vd(lse wv|)do— als,. wvl|?]

< ayVy(v; @) exp(- av?).,

I IS, vl <v, then v,(|S;. ,v|; @) <v,(v; @) and since
v >M,., >, it follows immediately from (2.5) and
(B22) that

‘St',tv|2= ‘Rn(t-t')st',tv| 2

W=1LiRa syl (0)d6])2>[v -0yt~ )P,

Ve So,ev) > 1/ v > (1/D(w = ).

Hence
expl- [!vy(|S; v]) d6- @[S, ov|?]

< expl(n /Dt - t)]exp(- av?) exp[(2ary, - 1/Dv(t - t)].
(4.21)

Now, for a< (2C,0)™, the term on the right-hand side
of inequality (4. 21 is lower than exp{(y/D{t - t,) - av?].
Hence, by (4.20) and (4.7),

fkd(v, LY, )8, 05 @)

A
2
<i[a“(%f7mn> +2do] ¥,a(0;0), p=>0,

where d, = max|a,, exp[(n/0){t - t)]}. This result com-
pletes the proof of Lemma 4. 1.

Let us now consider the sequence of integrals I, de-
fined by (4. 3).

Lemma 4. 2: For any positive @, the series },.17,
converges uniformly on ax[ty, 4.

(4.22)

Frédéric A. Molinet 990



Proof: We consider separately the cases a>8 and
a<B (B=m/kT).

(@) a>8

K a>pB, exp(- o’
follows that

%) < exp(- Bv'?). Then, for p=1, it

L, 0 < [ [ R0, 1,¥, 1) expl= B0"%) V' dt” =iy(v, ).
(4.23)

We will first prove that for 8< (20D and p= 1, we

have

(t~t)
1

i,(v, £) < exp(- B%)C} ¥, (v; B =UE. (4.24)

According to Lemma 4.1, we can write

iy (v, t):ft'0 Sy ka(v, 8, V', 1’5 B) exp(= Bo'?) av'dt’

< exp(B¥?) ft:) f‘A kv, t, v, t"; B0’ B) dv’ dt’
< exp(Br})Ca¥,(v; B)(t ~ ty).

Thus, inequality (4.24) holds for p =1. We will as-
sume now that (4. 24) is satisfied at the order p — 1.
Then, according to Eq. (4.1) and Lemma 4.1, we have

i, (v, 1) =ﬁﬁkd(v, 6Vt B, 4V, ) dv’ dt’

R
< exp(Br2) L™ / (t- to)p dt

/ Ro(v,t, v/, t'; B)¥,,(v"; B) dv' < UP

and therefore, inequality (4.24) holds.

Consequently, if 8 <(2I,), we obtain from (4. 23)

and (4.24), for p=1

L(v,t) <U®. (4. 25)
Similarly, if 8> (2T,I)"' =5, we have
000 < 1 [y kv, 8, ¥, 175 0) expl= 60'3) dv’ dt’,
and by repeating the same process,
L(v, 1) <U®. (4.26)
(b) a<p

In this case, we can write
L, t) < ft; [k, t, v, t'; @) exp(- av'®) dv’ dt’
which yields for p>1,
ILv,)<UY, v=min(e, ). (4.27)

Furthermore, according to (4.8) and (4. 9), the se-
quence U’ where i =min(a, 8, 6), verifies

th—t -
v < explurct Bt ar, 45, expl- (M, - )
= V;” ),
This shows that the infinite series § ,, I, has the ma-

jorant 7 ,,1 V;*?, where the convergence of the last
series can be easily proved by applying d’Alembert’s
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criterium. Indeed, by (4.9), we have

M“_<‘b_ﬂ
M,+v, P

and since M,,; > M,, expl— u[(M,, - %)% - (M, - %)*]

<1. Then, obviously

s
lim ~L‘) =0.
e (V,

Consequently, since I, >0, the series } ,.1/, converges
uniformly on AX[¢, t,], for any positive a.

The previous results allow us to establish some prop-
erties of the resolvent kernel which are similar, but
not identical to those given by Lemmas 3.1 and 3. 2.

Theovem 4.1: The sequence R{"(v,t,v',t’) converges
for all (v,#) € AX[t,, t,] and for almost all (v',#') e &
X[ty t1] to a limit Rylv,¢,v’,¢'). For almost all (v, ?)

e AX[ty, #,], this limit is integrable on the set of all
ve A,

Proof: By Lemma 4. 2 and the definition of R{™, we
have, for any positive a,

nmf LR, 1, v, ") exp(- av'®) dv’ dt’

<Cltg, ) <+,

Hence, according to the theorem of Beppo Levi, ® the
ascending sequence R{"'(v,t,v', ¢’} converges for all
(v,8) e AX[t,, 4] and for almost all (v/, ") € Ax[t, 4] to
a limit R,(v, ¢, v', #) which verifies
S ; JuRa(v, £, V', ') expl= av'®) dv' dt' < + . (4. 28)

In order to prove the second part of Theorem 4.1,
we use the porperties of the majorant S, (v, t) =3 ,,, U¥?,
u =min(q, B, 8) of the series 3 ,,1/,. It is obvious that
the infinite series J ,,,U/*’, which has the majorant
YoV, is absolutely and uniformly convergent. This
allows the integration of the series U;*’ term by term,
Then, according to (4. 8) and (4. 24), we have

Jy Suw, ) dv =47 exp(~ pA)(4, +4,),
where

M
Ay=2) Cp 0 (¢ = £g)° Pvz\ll,(v; a) dy
0

»>l pl
_Z)l ch b (= t°) —Z(M +7,) exp[- u(M, - n)?},
p>
A= ¢ =t t") f (v +2,)? exp[- (v - 1)*P?dv
p»1

My

<ﬁ ‘exp[- w(w = 7)2exp(C,(t - to) (v +v,) ] v2dv.

The proof of the uniform convergence of the series
A, is similar to that of the series V,‘“ ), Consequently,
the majorant S, (v, f) as well as the series § ,,1/,(v, t)
are integrable with respect to v. Hence, according to
the first part of Theorem 4.1, we have

fZ)I(v t)dv

*f dav fRd(v,t v/, ') exp(— av'?) dv’ dt’ <+,
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Furthermore, since R; is a positive function, it fol-
lows from Fubini’s theorem that
ft; fA exp(- av'®) dv’ dt’ [, Ry(v, t,v', ') dv <+,
(4.29)

which implies that R,(v, ¢, v, ') is integrable on the set
of all ve 4, for almost all (v, #') e aX[¢t,, 1.

We note however, that Ry(v,t,v',#') is not integrable
with respect to v’.

Theovem 4.2: For almost all (v, ') e aX[t,, t,], the
resolvent kernel R,{v, {,v’, t') verifies
L Rd(v: t’ V’, t') dy = V(Ul)

Proof: Applying again the method used to prove Lem-~
ma 3. 2, it can be shown in a similar way that for al-
most all {v', '), R,(v,t,v',t') verifies

fA Rylv,t,v', t") dv
= [, kalv, 8, V', t" dv+f,f ky(u, 6,v', t') dud®

X fA Ry(v, t, u, 6) dv (4. 30)

and that »{(v’) is a particular solution of this integral
equation, satisfying (4.29).

We will prove now that for almost all (v/, '), v(v’)
= [y Rylv,t,v’, ") dv. For this, it is sufficient to prove
that if j(¢, v/, £’} denotes another positive solution of
(4.30), which verifies (4. 29) for any positive o, then
Jt, v, t'y = [y Ry(v, t,v', t") dv for almost all (v', ¢').

According to our assumptions, we have

gt v, ) = fa kv, t, v, ") dv
+ [0 [ k(n, 8,v',2)j(t, u, 6) dudd (4.31)
and
f [,3¢, v, ') exp(- av'®) dv' dt' < +=, ¥ a>0,
(4.32)

Next, we apply the method of successive approximations
to (4. 31) which yields

jE, v, ) = [y R, 4, 1) dv

+fj0 [ ", 6,v',t)j(t, v, 6) dudb. (4.33)

We then multiply both sides of (4.33) by exp{~ av’®) and
integrate them with respect to (v',#'). By applying
Fubini’s theorem and using (4. 3), (4.23), (4.24), and
(4.8), we obtain

f::) Ll v, )= [ R, t,v',t") av] exp(- av'?) dv’ at’
< for L3 w, i, 0) dude < [ [, 3(t, u, O, G; W)dud?
(4. 34)

< exp(- u¥{C,+D,),
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where

C,=Cj ——* (t (M +7 )”f fa 3(t, u, 8) expl— p(M, - »)?*du,a

D,=C} E—t—o)—-f fA_A"](t u, O (u+v,)

X expl- u(u~n)¥ldu do,

and where g =min(q, 8, 6) and &, ={ul0<wu<nm}.

Using (4.32) and the fact that j(?, u, 6) is a positive
function, we have

ft; fA"j(t, u, 8) exp[- 1(M, - )] dude

SART

=A(t) <+,

expl— u(u - %)?]du do

(4. 35)

Thus, the term C, is analogous to the general term of
the series V) and consequently lim,...C,=0.

The same result holds for D,. Indeed, since j(¢,u, 6)

>0, we have D, <E, where
t=t
E,,:C"( 0) ftof( w+v,)"§{t, 1, 8) expl- plu—n)lduds

Moreover, the ascending sequence B,=) ., E, has the
majorant

= ,g [3¢,u, 6) exp{C, (u +0,) (t = t)) - 1w — %)% dp d6
and, in virtue of (4.32), M < +«_ Hence B, is conver-
gent and consequently lim, .. E,=0, which implies that
lim,..D,=0. Finally, according to Theorem 4.1, if we
take the limit n -« of both sides of (4. 34), we obtain
f L i, v, ¢y = [ R(v, 6, v', ') dv| exp(- av'®) dv’ dt’=0,
which implies that j{t,v', ¢') = [ R(v, ¢, v', t') dv for al-
most all (v/, #').

B. Existence and uniqueness of the solution

The properties of the resolvent kernel given in Sec.
IV.A. (Theorems 4.1 and 4. 2) allow us to prove the
following existence and uniqueness theorem:

Theorem 4.3: If the class f tq Of initial distribution
functions f, belongs to the Lebesgue function space
Ly(A) and if f,o(v) >0 on A, the integral equation form
of the Boltzman equation for rigid spheres has a unique
solution f, in L,(a), having the properties f,(v) >0 and

Iafivydv=j, 1, (v)dv.

Proof: Applying the method of successive approxima-
tions to the integral equation (2.9), we obtain the follow-
ing sequence:

Cua(V, ) = (v, 1) + f,: Ja RO, 6, v, (v, ') dv' dt’,
(4. 36)
where ¢V, t) = ¢(v, t} and
t
@V, ) =Sy, v, to) expl- [, va(|Ss vl (4.3D)
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Obviously, @l =V, Iy and since f, (V) =/(v, p) >0,
@(v,t) > 0. Consequently, since R{™(v,t,v’,¢’) is bound-
ed for all finite n (see Eq. 4.2), RM(v,t, v/, t) (v’ t")
is integrable with respect to (v, t) € AXx[ty, 4 ].

Furthermore, according to Fubini’s theorem and
Theorem 4.2 (Sec. IV.A), we have

Judv [} [ RO, 4,V 1) o', ') dv' dt’

t I
=Joo Jootv' e av'at’ [[RP, 1V, 1) av
= f,f) [y otv', ') dv' dt’

= [ v, t) dv— f, ov,t)dv <+,

Hence, by virtue of the theorem of Beppo Levi, the
ascending sequence Ji! [4 R{(v,¢,v', ') dv’dt’ converges
for almost all ve A, to a limit which is integrable with
respect to v. Moreover, since this limit is a majorant
for the different terms of the preceding sequence, for
almost all v, it follows from a further application of
Beppo Levi’s theorem, that for almost all ve A,

lim ft; fA R{M(v, t,v', Yo', t') dv' dt’
new

= gto fA Ry(v, t,v', ) e(v’, ') dv’ dt’
which implies that 1im,,.¢,,<p"(v, t) =f(v, ), where

fo, =@, 0+ [ [ R(v,t,v', Vo', ') dv' at’.  (4.38)

Obviously, f(v,#) >0. Moreover, f(v,#) is a solution of
the integral equation (2.9) for rigid spheres. Indeed,
according to Theorem 4.1, it can be shown in a similar
way as in Sec. III. B, that R, is a solution of the integral
equation (3.11) where k, must be substituted for k&,
Hence, if we multiply both sides of (4. 38) by %, and
integrate them with respect to (v, ¢’), we obtain

Job Jy kalw, 6,9 A, 1) a' i’

= f,; J Ralv, 6, )0V, t)) dv'dt’ =f(v, 1) - (v, 1)
which proves our assertion. Furthermore, if we in-

tegrate both sides of (4. 38) with respect to v and apply
Theorem 4.2, we have

J v, ) av

t
=fA @(v, ) dv+ft0fAv,,(v’)qo(v', tydv' dt’

= [, fv, ty dv. (4.39)

Let us now assume that g, € 1(4) is another solution

of (2.9) for rigid spheres, having the properties g(v, ¢)
>0and [,g(v,t)dv=J; f(v,t;) dv. Then, for any positive
n, we have

¢t ’ ’ ’ 7 ’
g(v,t)=<p(v,t)+f,0fAR,,‘"’(v, t,v', )’ t') dv’ dt
+ f SRV Pgle ) v at! (4. 40)
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and, by (4. 36),
t ? 7
ng(v, ) dv =fA @1 (v, D) dv + ftong(v',t )dv' dt’

X [ kfm v, 8, v, t) dv. (4.41)
As stated before, the ascending sequence [x @, (V, ?) dv
has the limit [, f(v, #;) dv. Hence, from (4.41), it follows
that

Bm{ f, |(v,8) = @uutv, O] dv} = |, | atv, 8) = flv, )| dv =0

which implies that for all e [¢,, 4,1, g:=f;.

C. Properties of the solution

The existence and uniqueness theorem given above,
shows that a solution does exist for any value of the
exterior electric and magnetic fields, provided that the
initial distribution function is positive and summable
over A. We will prove now, under similar initial con-
ditions, some important properties of this solution
which are directly connected with the properties of the
resolvent kernel. Other properties, such as the ex-
istence of the moments of the solution, which need new
assumptions on the initial distribution function, will be
investigated in paper II.

Theorem 4.4: If f; is a positive function, belonging
to £ ,(a), the solution f(v, t) given by Eq. (4.38) is
bounded on AX[t, + %[ for almost all (v, #).

Proof: We first prove the following inequality:
Ry(v, t, v/, ) <kM (v, t, v, ) + v, t,v', ') + A v ('),
(4.42)
where A, is a positive constant.

As it has been noted above, R,(v,?,v’,#') is a solution
of the integral equation (3.11), with %, substituted to %.
Hence, if we write this equation in the form

Rd(v, t) V’, t')
=k{(v, t, v, t") +RE v, t, v, 1)
t
+ f,, fA B, 8, v, tR,(v, t, u, 8) duds, (4. 43)
we see that in order to prove inequality (4.42) we have

to find a majorant for the last term on the right-hand
side of Eq. (4.43). Using the classical transformation

S8 L R, 6,V #)R,(v, 1, u, 6) duds

= fi [ BP0, 1,0, OR, (0, 6, V', ) dudé (4. 44)

and applying Theorem 4. 2 we obtain for almost all
(v', #') the following majorant:

5 [ B, 6, V', ") Ry(v, t, u, 6) dudb

< v’ :f[ sup (4. 45)
¢

v, u)C AX A

(@, 1, u, e))] as.
Furthermore, according to the definition of the iterated
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kernels, we have
kv, t, v, 1)
= ft fa kd(vy t; u’ e)kd(u, 9, V’, t,) dude
= t: aé fA Hd(sa,tv: U)Hd(S,._gu, V’)

xexp[- [ v(|S, v|)dr - f: V(| 8; pu]) dr]

< expl- v(0) (¢~ )] [1 d6 [, Hy(Ss v, )

xH,g(Sga’ou,V’)du. (4. 46)

Using Schwarz’s inequality and taking into account Egs.
(B20) and (B21), gives

MO\ 12
fAH,,(S,,‘,v, WH,(S;. pu, v)du<a (M- m) . (4.47
Hence
sup [k®v,t,u, 0)]< al( M ) 1/a(t- )
(v,u)C AXA M-m

X exp[— »(0)(t - 6)]. (4. 48)

Now we consider the general form of the solution
flv,t) given by Eq. (4.38). Since f(v, #,) is positive and
summable, we have ¢(v, ) >0 and [,@(v,t)dv <#n, where
n= [y f{v, ty) dv. This implies that for almost all (v, #),
¢(v,t) <C, where C is a positive constant. Hence, ac-
cording to Egs. (4.42) and (B19), we have

2 172
f(v,t)<¢(v’t)+;;%§<M+m) 2ayn (_M_) ,

M= m +v,,(0)2 Mem
(4.49)

which implies that f(v, ) is bounded on & x{#,, + <[ for
almost all {v, #), as was to be shown.

Covollary: If f,o is a positive function belonging to
BR(A) NL1(a), flv,t) is bounded on A X[ty +=[.

Proof: Follows immediately from the inequality
(4.49).

BRIEF CONCLUSION TO PAPER |

The main results which have been obtained in this
article are the existence and uniqueness theorems for
inverse power-law potentials of the form A/»° with
3<s<5 and for rigid spheres. Other useful results con-
cerning the properties of the resolvent kernel of the
integral equation form of the Boltzmann equation and
the properties of the solutions for a wide class of ini-
tial conditions, have also been derived.

The method for dealing with rigid spheres will be ex-
tended to the case 5 <s <+, in Part I, where a com-
plete discussion of the various results obtained and
some indications on the possibilities of further develop-
ments will be given. An application to the perfectly
Lorentzian case will also be studied.
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APPENDIX A: GENERAL FORM OF THE COLLISION
INTEGRAL

The collision integral on the right-hand side of (1.1)
may be written in the form (see Ref. 1, pp. 258 and
565)

1) = fA J;}z'f;)' I, v', 1) £ l0l) = flx, v, O)f (0]

X B(8, g) dv,deds, (A1)

where the integration with respect to v, is performed
over the whole three-dimensional velocity space A and
where the polar coordinates (6, €) are defined in Ref. 1,
p. 565.

The velocities v’ and v, of the particles after the in-
teraction are respectively related to the velocities v
and v, of the same particles before the interaction by
the following equations:

M o~
vi=v-2 E{k-g),

M+mm . (A2)
v,,:v,.+2M+mk(k-g),

where £ is a unit vector in the direction of g - g’ with
E=V-v,, g'=v -v), and g-k=gcosé.

APPENDIX B

1. Construction of the kernel of the integral operator 4

By performing the variable change g=v - v,, the first
term on the right-hand side of (A1) can be written in the
form

(Hfl(x, v, t)

== afA fOzr fo' a exp(— anr'zz)f(r: V', t)B(O, g) dg de de’
(BY)

where f,,(v,',) has been replaced by the Maxwellian dis-
tribution £, (v)) = a exp(~ B,0.2).

The transformation % — ~ % does not change the Eqgs.
(A2). Hence, if we state B(r - 6, g) =B(8, g), we have

(Hfl(r, v, 1)

=-a/2 [ exp(- B A7, v\, )Q(6, g) dk dg, (B2)

where Q(8, g) = B(8, g)csch.

To find the kernel of H requires some manipulation.
We will follow a procedure proposed by Grad® and ap-
plied by Cercignani’ (p. 70-1) to the linearized colli-
sion operator of the Boltzmann equation of neutral
gases.

Let g=¢) +g,, where g and g, are respectively paral-
lel and perpendicular to 2. After integrating over the
plane g, which is perpendicular to 15, we may combine
the one-dimensional g3 integration in the direction 2
with the integral of E over a unit sphere to give a three-
dimensional integration over the components of the vec-
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tor g =g £. Then, Eq. (B2) can be written in the form
(Hfl(x, v, )

=~a/g} [ exp(- B flr,v', 1) (g, 82) dg1 dgs, (B3)

where Q1 (31, gz) = Q(G, g)-

Furthermore, since g =Fk(k- g), the first equation
(A2) allows us to introduce in (B3) the integration vari-
able v’ instead of v. It follows immediately that

M+m 1
H{v,v') = T Tv=vT _/p exp(- Bv9)

X Ql(M;Mm lv—-v'l, gz)dGz, (B4)

where the domain P is the plane perpendicular to v- v’
and where v, is given by

viev + 2 Gy g, (B5)

2M
In addition, since g, (v~v’}=0, v/% can be written as
1{ m? m ' )
ra_1 _'l2 _ M a2
vn —2(2—M§|v v'|%+2]|g, wl+M(v v'®)), (B6)

where w=4(v +v’). If we state w=w; +w,, where w, is
parallel to v~ v’ and where w, is in the plane P, we have

’ 2 2 144Y
2 . (V-V)) _l(v -2'?
“’“(“’ Vvl Tilv=vT (B7)
and therefore
H(v,v) =k v,v) exp —E(vz—v’z)) B=—t_ (BB
? s k) 2 ? 2kT7
where kv, v’) is a symmetric kernel given by
ks(v’ v)
_aM+m 1 " &, mzlv_v,la+(v2_1)'2))]
=0T Tv—vzSP [T\ lv=v 12

M ’
x ./P‘eXP(— Balgz - w2 |20, (’_‘—Z-Jt,lm lv-v ,; gz)dgz-
(BY)

When M =m, kv, v’) is equal to the kernel %, introduced
by Grad.®

2. General properties of the kernel H{v, v’)
Interchange of v and v’ in Eq. (B8) shows that
H(v',v)=H(v, v’) exp[B(v? ~ v"3)]. (B10)

Furthermore, if we consider the second term on the
right-hand side of (A1) and proceed in a similar way as
before, we obtain

v(v) = [ f.(v,) B(6, @) dv,de d6 (B11)
= g ,/; :v-lv’Pd"'fP exp(= fyt)
X Ql%ﬁ?; (v-v), ga) Aags,

where
v,,=v—%;w—wi(v—v’)-gz (B12)
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and
1/ m? m
‘Uﬁ:é(mz |v—v’|2+2|gz—w|z—ﬂ(va-v'z)) . (B13)
Comparigon of (B11) and (B13) to (B4) and (B6) yields

v(v) = fAH(v', v)dv’. (B14)

3. Special cases
A. Rigid spheres

If we denote the sum of the radii of the interacting
particles by D, the expression of §,, in the particular
case of rigid spheres, is given by @; =D?g,. Hence,
Egs. (B8) and (B9) yield

Hylv,v")
_ 1 B,,(vz-v'z m ,2)
e L e (e R AL | R
where

() Y o
%=\gmrT M » 9=

Furthermore, by performing the variable change
u=v’'~v, Egs. (Bl4) and (B15) give

M 2
Vd(v)=4ﬂad(m> Y(v), (B16)
where
Y(v)—(v+ 1 ) 2vex (—&x2 dx+l xp(~ B,0%)
=VU%sss) ), P\ 1 B, BXPi= Pat
(B17)

Integration of the two terms of (B15) with respect to v’
yields in a similar way,

M 2
/;Hd(v,v')dv':4na,, (M—m) Y(v). (B18)
Hence, according to (B16),
M +m\?
/A-Hd(v’v,)dU’:(M—m> Vd(l}). (Blg)

Similarly, if we integrate the square of the term on
the right-hand side of (B15), we obtain

PN | (M+m>4< M)”zz
‘[[H,,(v ,v) [Edv <W ) a7 =q, (B20)
nile ’ M
l[Hd(v,V VR dv <37

where [ = (47No)™,

m ay, (821)

Furthermore, by (B17), it can be shown that the col-
lision frequency is monotonically increasing and that

llv <v(v) sll(v +7,),

where v, =1v(0) = (82T /1M)* /2,

(B22)

B. Power-law potentials

If we consider force laws of the type A/7%, s >0, we
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have

B(6,g)=g"B(8), v=(s-5)/(s-1). (B23)

It can be shown by introducing an angular cutoff in (B23)
which excludes the grazing collisions (see Grad®) that
for s >3 and for all (v',#) € AX A, the following in-
equality holds:

kv, v <bk@(v, v, (B24)
where £ denotes the symmetric kernel defined by
(B9), for rigid spheres, and where b is a positive con-
stant. According to (B8), inequality (B24) yields

Hiv,v’) <bHy(v,v') (B25)
and, in view of (B19), (B20), and (B21),
Ny M +m\?
[, vrav <p(3E2Y v, (B26)
LB, nEav' <ab?, (B27)
[H(v,v)Pdv' < M_ b (B28)
A ] M—m 1 .

Another property, which is very easy to prove (see
Grad®), is that the collision frequency v{v) is a mono-
tonic function of v which is decreasing for s <5 and in-
creasing for s >5. For s =5, v(v) is a constant. As a
consequence, for s <5,

JLHW', v) =av' =v(v) <v(0). (B29)

Furthermore, according to the angular cutoff, we
may write

8(8)
< <
sind ¥

a, (B30)

where a, and ay are positive constants. This implies

azg{<Q1(g1,gz)<a4gi’a a4:C’ (B31)
and, by (B9) and g, = (M +m)/(2M)(v - V'),

a (v, v') <H(v,v') <aldlv,v'), (B32)

where

I(vv,)_<M+m)""1rg_ 1
TN eM B, z

lv—v"1%7
2 2
X exp [—B" B2-v® )+%lv—v'§a].

a Tv-v'] (B33)
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In addition, according to (B14), (B32), and (B33),

a, fAI(v,v’) av' <v(v) <ay [I(v', V) av’, (B34)

[ Iy, v)dv' = M m MfI( Lv)dv' 3

A2 V=l ) LWIVhvav. (B35)
Hence

Civ() < [, H(v, v') dv' < Cpr(v), (B36)
where

c. 0 M+m)M A M+m>7"1

o \M<m/ ? T a,\M-m/
In the case s <5, (B36) yields

S Hv, v) dv’ < C(0). (B37)
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As with the boson field, the creation and annihilation operators for the paraboson field are unbounded,

and the usual paraboson relations, therefore, cannot be rigorously satisfied. There are no Weyl relations for
parabosons, and so the paraboson relations must be treated in unbounded form. A new approach for
treating such unbounded relations is developed, and it is found that the paraboson field is determined by
the requirement that the appropriate operator is the one-dimensional number operator. A similar result is

shown to hold for the boson field.

1. INTRODUCTION AND STATEMENT OF MAIN
RESULTS

The free boson field which is sometimes referred to
as the zero-interaction boson field, the positive energy
boson field, the Fock boson field or the Fock—Cook
boson field, was first described by Fock! in 1932, The
first mathematically rigorous treatment was later given
by Cook? in 1953. The boson field is characterized by a
pair of commutation relations, (1.1) and (1.2}, involv-
ing the creation operator C(z), and its adjoint, C*(z),
the corresponding annihilation operator. The range of
z is a Hilbert space H, the single particle (state) space.

[C*@), C(n]=(y,2), 1.1
[Ce), C(¥)]=0. 1.2)

The free boson field has additional structure given by a
representation, I', of the unitary group of H by opera-
tors on K and a distinguished vector v € K which rep-
resents the vacuum or zero-particle state, The impor-
tant relationships among C, I', and v are described in
the hypotheses of Theorem 1,

Relations (1.1) and (1. 2) are satisfied only in a for-
mal sense since operators satisfying (1.1) must be un-
bounded. Because of the difficulty in dealing with un-
bounded operators, ¥ uniqueness results (especially when
H is infinite dimensional) are usually stated in terms
of the operators? W(z)=exp[iR(z)], where R(z) is the
closure of v1/2[C(z) + C*(z)]. The relations (1.1) and
(1. 2) are formally equivalent to the following relation
which was introduced by Weyl®® in 1927:

W(z)W(y)=exp[3i Im((z, y))]W(z + ). (1.3)

The operators W(z) are unitary and so one need not talk
about unbounded operators at all.

In 1953, Green® introduced the paraboson relations
([C*(2), C(3)]., C¥)] = 2(x, 2)C(y), 1.4)
[[Cl), C(M],, C)] =0, {1.5)

which generalize the relations (1.1) and (1, 2) in the
sense that operators formally satisfying (1.1) and (1. 2)
also satisfy (1.4) and (1. 5), As in the boson case, these
relations cannot be satisfied by bounded operators® and
therefore cannot be rigorously satisfied. Unfortunately,
there are no known formally equivalent relations which
involve only bounded operators as with the Weyl rela-
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tion (1. 3) for bosons. The relations (1, 4) and (1, 5) are
usually too difficult to work with mathematically, but a
partial simplification can be made,

It will be shown that the operator
n(z) = 3[C(2)C*(z) + C*(2)C(z)] 1.6)

is self-adjoint and can be interpreted as the operator
representing the “number of particles in the state z,”
up to an additive constant. (1.4) implies that

[n(z), cM] =, 2)C(2), (1.7
which is a necessary condition for this interpretation.
[Other conditions are also necessary, such as that n(z)
is bounded from below and has integral spectrum when
z is normalized. ] For Iz =1, Eq. (1.7) is formally
equivalent to

explitn(2)]C(v) expl - itn(2)] = Clexp(itP,)y], (1.8)

where P, is the projection on the one-dimensional space
spanned by 2. Since explitn(z)] is unitary for each real

¢, this relation is much easier to handle than (1.4). The
relation (1.5) cannot be so treated, but it will be handled
in a simpler manner, It will be part of the conclusion of
our uniqueness result, rather than the hypothesis.

Our goal is a uniqueness result for parabosons similar
to the result of Segal® for ordinary bosons in which the
Weyl relation is replaced by a relation similar to (1. 8).
We first look at a new boson result along these lines.

Of course, {1.8) will have to be supplemented by ancther
relation which tells us that we actually have bosons and
not some other form of parabosons. This is done by in-
cluding a particular form of (1.1}, For this theorem we
use a slightly simpler form for #{2z), which is the same
as the definition given in (1. 6) (up to an additive con-
stant) when (1. 1) is satisfied.

Theovem 1: Suppose H and K are complex Hilbert
spaces; C is a map from H into the set of closed, den-
sely defined operators on K; T is a continuous unitary
representation of the full unitary group of H on K; and
v is a unit vector in K such that for all vectors v and 2
in H, all unitary operators U on H and all nonzero com-
plex numbers ¥,

Clz +y)>Clz) +Cy),
C(rz) =vC(2),

(1.9)
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(D =v, (1.10)
T(UC(2)D() = C(Uz), (1.11)
C*(2)C(2) =C(2)C*(z) + ||z, (1.12)

dr= 0,

v is cyclic for the algebra generated by the C(z) and
C*(z) as z ranges through H.

Suppose further that the operator n(z) defined by

n(z) =C(2)C*(2) (1.13)
satisfies
explitn(2) JC() exp|- itn(z)] = Clexp(itP,)}v] (1.14)

when z is a unit vector and that v is an analytic vector
for each n(z). Then{H, C, K, T, v} is unitarily equivalent
to the free boson field.

dr'> 0 is interpreted as follows. If A is a {possibly
unbounded) self-adjoint operator on H, then exp(itA) is
a continuous one-parameter unitary group on H and since
T is a continuous unitary representation, I'[exp(it4)] is
a continuous one-parameter unitary group on K, By
Stone’s theorem, there exists a self-adjoint operator on
K, denoted by dI'(4), such that T'[exp(itA)] = explitdl*(4)].
We write dT > 0 when A = 0 implies dT'(A) = 0. “v is cy-
clic for the algebra generated by the C(z) and C*(z)”
means that if 4 is the algebra with unit generated by all
the operators in the form C(z) and C*(z) as z ranges
through H, then Av is a dense subset of K. It will be
shown that the other hypotheses of the theorem imply
that v is in fact in the domain of all operators in 4. An-
alytic vectors were first introduced by Nelson!'® in 1959.
v is an analytic vector for n{z) means that the series
expansion of explitn(z)] when applied to v term by term
converges absolutely for sufficiently small values of ¢.
The relation {1.12) states that C*(z)C(z) and C(z)C*(z)
have the same domain and that on this domain their dif-
ference is the scalar z1%, Notice that it is not neces-
sary to assume any form of the relation (1.2),

There are only three differences in the hypotheses of
the boson and paraboson theorems we will prove. Two
of these are minor. The difference in the definition of
n(z) has already been noted. The paraboson theorem
needs the extra hypothesis that the single particle space
H is infinite dimensional. This additional hypothesis is
actually necessary since even in the one-dimensional
case spurious representations are possible.!! It is in-
teresting that the infinite dimensional case is in this
sense more regular than the finite dimensional case.

The third difference, and the only one of consequence,
is that the relation (1.12) is replaced by the condition
that C*(z)C(z) and C(z)C*(z) commute, a fact which fol-
lows from (1.12}, Thus the major difference in the hy-
potheses of the two theorems is the weakening of condi-
tion (1.12).

Since there is not one free paraboson field, but a
countable collection of them, the conclusion of Theorem
2 is not one of uniqueness, but that the given field can
be expressed in terms of the different free paraboson
fields.
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Theovem 2: Suppose H and K are complex Hilbert
spaces with H infinite dimensional; C is a map from H
into the set of closed, densely defined operators on K;
I' is a continuous unitary representation of the full uni-
tary group of H on K; and v is a unit vector in K such
that for all vectors y and z in H, all unitary operators
U on H, and all nonzero complex numbers 7,

C(z +y)2C(z) +C(y),
Clyz) = vC(z2),

r(Uv=ov, (1.15)
rc = =c(Uz) (1.16)
C*(2)C(z) and C(2)C*(z) commute, (1.17)

dr> 0,

v is cyclic for the algebra generated by the C(z) and
C*(z) as z ranges through H.

Suppose further that the operator n(z) defined by

n(z) = 3[C*(2)C(z) + C(z)C*(2)] (1.18)
satisfies
explitn(z)]C(y) expl- itn(z)] = Clexp(itP,)y] (1.19)

when z is a unit vector, and that v is an analytic vector
for each n(z). Then{H, C, K, T, v} is unitarily equivalent
to a direct sum of free paraboson fields of distinct
orders.

In Sec. 2 we give a proof of Theorem 1. Section 3
gives the definition of the free paraboson field of order
p and here we show that the free paraboson fields satisfy
the hypotheses of Theorem 2. Section 4 is devoted to the
proof of Theorem 2. Slightly stronger results are dis-
cussed in Sec. 5.

2. THE FREE BOSON FIELD

That the free boson field satisfies the hypotheses of
Theorem 1 was first proved by Cook.!? v is analytic for
n(z) since n(z)v =0. We will now prove Theorem 1.
{H,C,K, T, v} denotes the collection satisfying the hy-
potheses of Theorem 1 and {H, C, K, Ty, vo} denotes the
free boson field over H, We will construct a Hilbert
space isomorphism ¢: K - K, such that

DV =y,

T (o =T|(1),
and

¢C(2)p™ =Cy(2).

Let A be the algebra (with unit) generated by the op-
erators in the form C(x) or C*(y) where x and y are
arbitrary elements of H, and for zc H, let A, be the
subset of A consisting of those elements for which the
x and y are restricted to be either parallel or ortho-
gonal to z. 4’ will represent the subset of 4 whose ele-
ments do not involve any annihilation operators.

(2.1)

v e Dom({n(z)) so v € Dom(C*(z)).

explit dT' (P,)1C*(z)v = C*[exp(itP,) z v = exp(- it)C*(z)v
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dT(P)C*(2)v =~ C*(z)v,
and since dI'(P,) = 0,

C*(z)v =0. (2.2)

Thus, n(z)v =0, Since this implies that v is (trivially)
an analytic vector for n(z), the hypothesis that v is an
analytic vector for each n(z) can be replaced by the
weaker condition that for each 2z, v is in the domain of
C*(z)., In fact, (1.10) and (1.11) imply that it is suffi-
cient to require that v is in the domain of C*(z) for some
nonzero z.

We next show that each element of 4 has v in its do-
main, It is sufficient to show this for A, since by (1.9),
each element of / extends an element of A,.

In fact, if A, is 2 monomial inA4,, using (1.14) it fol-
lows by induction on the length of A, that A,v is an eigen-
vector of n(z). It is therefore in the domain of C*(z) and
by (1.12) also in the domain of C(z).

Let /) =Av. [ is invariant under each C(z) and C*(z)
and is dense since v is cyclic. For each z, every ele-
ment of /) is a finite linear combination of vectors in the
form A,v with A,c4,. Thus, each member of /) is a
finite linear combination of eigenvectors of n{z) and
therefore is an analytic vector for n(z). If we/), then
polarization of (1, 12) gives

C*(2)C)w=Cy)C*(2)w + (v, 2)w. (2.3)

If A<, then (2,2) and (2. 3) can be used to eliminate
all annihilation operators from Av and express Av as a
vector in the form A’y with A’cA’. T A’cA’ and A’ is
a monomial, (1.10) and (1.11) imply that A’y (if it is
not zero) is an eigenvector of dI'(/) with eigenvalue equal
to the number of terms in the product A’. Thus, A% is
orthogonal to v unless A’ is just a multiple of the iden-
tity. This shows that (Av, v) is determined by (2. 2) and
(2.3) whenever AcA. I Ay and A, are inA, and A}
represents the “formal” adjoint of A, (the product of the
adjoints of the terms of A, in reverse order), then

(Alv’ A2v> = (AgAlvy U) .

Since AJA; €A, (Ayv, Aw) is determined, Thus, if w;
and w, are elements of /), (wy,w,) is uniquely deter-
mined by (2.2) and (2. 3).

We are now ready to define ¢. For AcA, let A, be
the operator on K, obtained from A by replacing each
C(z) by Cy(z) and each C*(z) by C§(z).

We then define
d{Av) =Aw,

and extend ¢ to/) by linearity. ¢ is well defined because
it preserves inner products, as the discussion above
has shown. Thus, ¢ has a unique extension to K =/) (the
closure of /), giving a Hilbert space isomorphism.
Clearly, ¢v=v,and ¢I'(U) =I'((U)¢ since ¢I'(U) and
T'y(U)¢ agree on the dense set ). Ingtead of establish-
ing (2.1) directly we show that

C*(z) = ¢"'C¥(2) 8.

Here we must be careful since C*(z) is an unbounded
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operator so it is not necessarily sufficient to show that
these two operators agree on a dense set. However, the
set/ is quite special since it is a dense set of analytic
vectors for each xn(z) and thus also for Vul(z). /) is there-
fore a core for Vn{z). [A core of a closed, densely de-
fined operator, 7T, is a dense subset of Dom(7) such that
the restriction of T to the core has closure equal to 7. ]
¢™ny(2)¢ and n(z) agree on/) which is a dense set of
analytic vectors for n(z) so

o ng(2)p =nl2).
Thus,
o WVanol2)p =Valz).

If C*(z) = VS and C¥(z) = V,;S; are the polar decomposi-
tions, then

S=[Cz)C*(@)] 2 = Vnlz)
and
So=[Co()CH () 2 =V ().
$'C%(2)¢ has polar decomposition
(@7 Veg)(97Se9) = (07 Vo).

C*(z) and ¢"'C§(2)¢ agree on/) which is a core for S.
D is a common core for C*(z) and ¢~ C¥(z)¢ by the fol-
lowing lemma. Thus,

C*(2)=¢7'Ct(2)¢.

The proof of the lemma completes the proof of Theo-
rem1,

Lemma 2,1: Suppose S is self-adjoint, V is bounded
and VS is closed. If /) is a core for S, then/) is also a
core for VS,

Proof: Let § =S, s0 (VS)l)=VS;. V8, C VS so VS,
C Vs,

(VS,)* = SF v+
since V is bounded, and
(SFV*)* D VrkSE* = VS, = VS,
VS, = (VS )*¥* = (SFV*)* D V**§f* = VS, = VS,
Thus VS, =VS so/) is a core for VS. ]

3. THE FREE PARABOSON FIELD

We now construct the free paraboson field of order p
and show that it satisfies the hypotheses of Theorem 2.
Let {H, B, K, I", 7} be the free boson field over H. We use
B(z) to represent the creation operators which were rep-
resented by C{z) in Sec. 2. Let K be a finite dimension-
al Hilbert space with bounded self-adjoint operators 4,,
1< a<p, satisfying

[Aa, Agl. =284,
as in the Clifford algebra. Let v, be a fixed unit vector
in K. Define
~ I
K'=K® (® K),
a=l
, b~
rw = fw),
®al
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’ ~
) =v0®( ] 1)),
aal
B,(z)=4,® (I® .. .®I®B(2)3I®++-®1I),

where there are p terms in parentheses and B(z) occurs
in the @ position,!*

v i8 in the domain of each polynomial in the operators
B,(z) and B%(z). Let[)’ be the set of all vectors in K'
which are in the form of some such polynomial applied
tov. i a#pB, thenon/)’,

(B, (2), B,(»)]=0, (3.1)

[B%(2), B,(») 1=y, 2), (3.2

[Ba(2), By, =0, (3.3)

[B2(2), Bs(»)), =0, (3.9
and

B¥(2)v =0, (3.5)

Let XK'=/, Since
(0B, (2)T' (1) = B, (U2)
and
(M=o,

0’ is invariant under I’ (1) and so is K'. We will now
consider the operators B, (z) and I''(I)) as operators on
K.

Let
C'(2) =B,(2) + B(z) + -+ - + B,(z).
Relations (3.1)—(3.4) imply that on D’,
[[c™(x), ¢'()],, C'(2)] = 2e, 0)C" (),
[c'tx), ¢’ ., C'(2)]=0.

(3.6)

These are Green’s paraboson relations. We also have
C'*(2)v =0, (3.7
C*(9)C'(2)v =p(z, y)v. (3.8)

Let 0 be the set of all vectors in K’ which have the
form of some polynomial in the operators C'(z) and
C'*(z) applied to v and let K be the closure of /). From
(3.6), (3.7, and (3. 8) it follows that vectors in/) can
be expressed as the image of v under polynomials not
involving any C™*(z).

Since

(T (0 =c'(U2),

[, and thus K, are invariant under I''(I). Let I'(U) be
the restriction of I''(U) to K. The restriction of C'(2) to
D (as an operator on K) has /) in the domain of its ad-
joint, and is thus closable. Let C(z) be its closure.
{H,C,K, T, v} is the free paraboson field of order p.

Define
n'(2) =z[C"*(2), C'(2)],,
n(z) =3[C*(2), C(2)]..
onp’,

["'(z); Ba(y)]=<y’ Z>Bd(z)’
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[n'(z), Bﬁ(y)] == (Z, y>B:(z))

and

n'(2)v=13po.

If Izl =1, then also on/)’,
[dr'(P,), B, () ]={y, 2)B, (2),
[ar'(P,), BE ()] =~ (z, y)Bi(2),

and
dr’(P,)v =0.

Thus, on/)’, dT'’(P,) and n'(z) - 3p agree. D' is a set of
finite linear combinations of eigenvectors of dI''(P,) and
so/}' is a dense set of analytic vectors of dI'(P,), and
thus of n'(z). Therefore, n'(z) is essentially self-adjoint
on/)’ and the closure of #*(z) is dT''(P,) + 3p. Similarly,
n(2) is essentially self-adjoint on/) and the closure of
n(z) is dT(P,) +3p. In fact, n(z) and »'(z) are already
closed as we shall see.

Oonp’,

[4L" (D), By (2)] = B, ().
Thus, the spectrum of dT'’{J) is contained in the set of
nonnegative integers. This is similar for dI'(/). Let

Di={we K: dv’'(Dw = ku},

Dp=twe K: dT{(Dw = kw},

01:,0 =0DynD’,

Dwo=0r0D.

D k,0 i8 a dense subset of Dy and the linear span of the
union of the sets J; ¢ is J'. This is similar for J, ,,

Dy, and .

In the following, z is a fixed unit vector. Let C'=C'(2)
and C =C(z). We note that C'*C’ and C’'C’* are bounded
operators from /), into ), while C*C and CC* are bound-
ed operators from /), into/),. We exhibit the proof of
this for C*C.

It is sufficient to show that (C*C)'/2 is bounded on/),.
Assume w ey . Since wel,

2dT(P,)w + pw=C*Cw + CC*yp,
2dT(P Jw, w) + pllwli® ={C*Cw, w) +{CC*w, w)
2dT(P Jw, w) + pllwl>= (C*Cw, w).
Since dI'(P,) < dC (D),
(2% + p)wll2 = {C*Cw, w) = 1(C*C)*/ 2wl|2.

Therefore, (C*C)*/? is bounded by V2k +p onl, ¢ and
since [, o is dense in/J,, (C*C)'/% is bounded on D.
Thus, each vector in/),, and so each vector in{, is an
analytic vector for C*C and CC¥, It follows from {3.6)
that for vectors in/), C*C and CC* commute. Thus they
commute on a dense, invariant set of analytic vectors.
This implies that they are commuting self-adjoint opera-
tors. Since C*C and CC* commute and are positive,
their sum is self-adjoint. Thus n(z) is closed and

nlz) = 3p =dT'(P)).
Similarly,

Steven Robbins 1000



n'(2) = 3p =dT'(P,).

Let P, be the projection on /), and P, the projection
onl,. For weK', let w,=Pw. If we K, then w,=Pyw.
Oonp’,

lar’'(d, ¢'(2)]=C"(2),

[dr’(D), C™*(2)] ==~ C"*(2).
Kuck’,

P, C'Plu=C'Plu, P,C"™*P u=C"™*P, u.
From these it follows that

P C'w, uy =(C'Pyw, u)
s0

P C'w=C'Plw=C"w,.

If weDom(C’), C'w=73,C'w,. i w is also in K, then
w, €0y and since C and C’ agree on/f),, Cw,=C"w,.
Thus, J,Cw, converges so we Dom(C). This shows that
if we Dom(C’) N K, then w<cDom(C) and C is the restric-
tion of C' to Dom(C") N K,

Relations (3.1), (3.2}, and (3.5) imply that for each
fixed @, {B,, K"} is isomorphic to a direct sum of free

boson fields and the relations
B,(z +9)D B,(2) + B,(y), B,(y2)=vB,(2) if v#0

follow from the corresponding properties of free boson
fields.'* Thus

C'(z+9)2C(2) +C'(y), C'{yz)=7C'(2)
so

Clz +9)2C(2z) +C(y),

if y#0

C(vz) =vC(z) if v+0.

n(z) satisfies (1.19) because dI'(P,) does and v is analy-
tic for n(z) because n(z)v =zpv.

We have now shown that the free paraboson field of
order p satisfies the hypotheses of Theorem 2.

4. PROOF OF THEOREM 2

Suppose {H, C, K, ', v} satisfies the hypotheses of The-
orem 2. n(z) is self-adjoint because C*(z)C(z) and
C(z)C*(z) are commuting positive self-adjoint operators.
Let A be the algebra of all polynomials in the creation
and annihilation operators. Our first goal is to show
that the vectors in Av are analytic vectors for each
n(z), Suppose z is a fixed unit vector in H. Let C=C(z)
and n=n(z). Let n= [XE(d}) be the spectral resolution
of n.

Lemma 4, 1: Suppose A is a bounded interval of real
numbers and E(4)w=w. Then for each nonnegative in-
teger k, Cwe Dom(n*), C*we Dom(n*) and we have

n*Cw=C(n + 1)*w, (4.1)
E(A+1)Cw=Cuw, (4.2)
n*C*w = C*{n - 1)*w, (4.3)
E(A-1)C*w=C*w, (4. 4)

Proof: Since E(A)w=w, w<Dom(n) so w<cDom(C).
C is bounded on E(A)K since
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ICwli2 ={C*Cw, w) < 2{nw, w) < 2(supa)llwll?,
exp(itn)Cw = exp(itn)C exp(~ itn) explitn)w

= exp(it)C explitn)w,
explitn) =1 _, . (exp(z'tn) - 1)
— Cw = explit)C —
 (emt2=1,
Since
(exp(z'm) - 1>we E(a)K
it

and C is bounded on E(A)K,

lim C(M)w: Clim (fx—p(’—t"—):—l) w=Crw.
t-0 it t =0 it

Thus,

lim (ﬂ)—(—zg—ll:l)Cw=an +Cw=C(n+ 1w,
£+0

so Cw e Dom(n) and nCw=Cn+ Dw.

Let Ky={uec K : E(A")u=u for some bounded interval
A}, KuekK,,

(ne, C*w) = (Cnu, w) = {(n - 1)Cu, w)
=Cu, C*(n - 1)w).

Since » is essentially self-adjoint on K;, C*we Dom(1)
and nC*w=C*{(n - 1)w. This establishes (4.1) and (4. 3)
for k=1, The proof for general % is accomplished by
induction; the induction step to prove (4.1) is almost
identical to the proof for £=1. The important points
here are that #*w e E(A)K and #*C is bounded on E(A)K.

Let K, be the closed subspace of K generated by the
eigenvectors of n, (4.1) and (4.3) imply that if we K,
then (4, 2) and (4. 4) hold and K, is invariant under C
and C*. Now suppose we Kd‘. Under this condition, (4.2)
and (4.4) have been proved" using slightly different hy-
potheses. We give a simpler proof here based on the
following fact about self-adjoint operators.

Lemma 4.1a: Let T be a self-adjoint operator with
spectral resolution 7= [AE(d)). Suppose that E([0, ))x
=x and for each positive integer #, x € Dom(7%). Let

b=lim|l4*|*’* and a=5-lim||(b - A)*x|* /%,

k~w B

Then [a, 5] is the smallest closed interval such that
E(la, b)x=x.

The proof of this is straightforward and is similar to
the proof that on a finite measure space the L, norms
of a function approach the L. norm.

Suppose weK:, a=(a,b), and E(A)w=w. Then

I Cowll =IC(n + 1)*wll
=[(C*C)' 2(n + 1)*will
=1( + 1}(C*C)* 2wl

Since (C*C)'/2 commutes with #+1, Lemma 4. 1a im-
plies that
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limll (7 + D*(C*C)* 2wl ™* < limll(n + 1)*wll* X < b + 1.
Thus, for some 6= 0,
Lmll*Cwl'* =b+1-6<b+1.
Similarly,
16 +1 =8~ n)*Cwll = 1(b - 6 = n)*(C*C)* 2|
and
Hmll(® - 6 = n)*(C*C) 2wll* /* = Liml| (b - n)*
X (C*C) 2l t /X ~ &
< limll(d - n)*wl* * = &
Sb-a-0.
Thus,
b+1-8~1limll(d+1-56~n*Cuwl’*
2b-0+1=-(b-a-08=a+1,
s0o E(la+1,b+1))Cw=Cuw. Since Cwe K,
E(fla+1,0+1))Cw=Cuw.
Thus, (4.2) holds and a similar argument yields (4.4). »

Lemma 4.2: ¥ we Dom{n** /%), then Cwe Dom{#),
C*we Dom(?),

*Cw=C(n+ 1w,
and
W C*1w=C*(n - 1.

Proof: Let @, =E([j-1,j)) and w; =Q;w. We first show
that § ,C(n +1)*w, converges.

(Cln+ V*wy, Cln+ 1wy =(C*Cln + D*wy, (n+ Vfw,),
which is 0, if i #j, since C*C commutes with n.
IC G + DR, |2 ={C*Cln + 1w, (n+ 1)*uw,)
<2(j + 1%, |12,

Since we Dom(**/3), @u** /2w =n*""%y,,
3 1 2,12 converges .

Il 7220112 > (5 = )% lan, 12,

and so ¥ ,(j - 1)®" 1w, converges, which implies that
T4+ 1% w12 converges. Since T ,(n + 1)*w, converges
(by a similar argument),

(n+ DV*w=23(n+ 1w,
]

and so

and
Cln+1lw=72Cln+ Vw;.
By Lemma 4,11,
Cln+ 1Y w; =n*Cuw,

and so 3 #*Cw, converges. Since §, ;Cw, converges, Cw
=Y ,Cw;, Cwe Dom(n®) and

nkcw :anij.
$
Thus, #”*Cw=C(n+1)*w. A similar argument works for
C*, =
Lemma 4.3: I w is an analytic vector for », then so

are Cw and C*w,
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Proof: Assume w is an analytic vector for #. Since
we Dom(n®) for every k, by Lemma 4.2,

7 Cw=Cn+ 1w,

ll#*Call = 1IC(n + 1)*a0ll
= l(C*C)* "%(n + 1) wl
< V2l + 1) 2|
<V2ii{n+ 1 wil.

Thus,
I Cwlii
2
Y]

converges since

V2 + 1)*wnt?
D

converges. The same reasoning can be applied to show
that C*w is an analytic vector for n. n

Our next goal is to show that a certain subset of the
analytic vectors of n(z) is invariant under C(y) and C*(y)
when v is orthogonal to z. Assume now that y and z are
orthogonal unit vectors in H and let C =C(z}, n=nlz),
D=C(y), and m=n(y). Let n=J2E(d)) and m = [ \F(d))
be the spectral resolutions.

Lemma 4.4: ¥ w is analytic for » and we Dom(m),
then Dw and D*w are analytic for n.

Proof: (1.19) implies that n, m, and D*D are com-
muting self-adjoint operators. Let

Q;=E({i~1,5)
RJ:F(U‘ l,j)),
PHZQiRJ'

Q; and R; commute, so P, is a projection. Let w,;
:‘—P”w, so that w:z §gWyge We first show that E,,Dw“
converges, The terms in this summation are orthogonal
since

(Dw;, Dwy,) = w;y, D* D)

and D*D commutes with P;;. As before
”DW{jllz = 2]““)”“2

and 3 jllw,lI® converges since we Dom(vm). Thus Dw

:ZDw”.

We now show that ,Dw;;=Dw;,;. DP;; is a bounded
operator with bound v 25,

exp(itn) DP,, exp(— itn) = exp(itn)D exp(- itn)P;; = DP,,.
DP,; commutes with » and so it commutes with &,
Dw” = DP”w =DP“Q‘1A) = QiDP”w = Q,Dw” o

Our next step is to show that for each &, ¥ ,,#*Dw;,
converges. Since @;Dw;; =Dw;;, Dw;; € Dom(#*). The
terms in the summation are orthogonal and

||nka”||2 < l&(ZJ)Hw””za

If N is the set of natural numbers and p is counting mea-
sure on NXN, then since w< Dom((z +1)%), the double
sequence {72 liw,; i} is in Ly(NXN, u). Here, k is fixed,
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7 and j are the indices of the sequence. Since w
eDom(m +1), {jtw;,1} is also in L,(N XN, u). Therefore,
the product of these two double sequences, {ia"jllw“llz}

is in Ly(NXN, p) 80 § ;;n*Dw,,I? converges. This shows
that Dw e Dom(*), and

Il Dull? < quw,,||2>”2 Zi*knw,,m)”a
iJ i4

Il Daoll < a(Z)i*"llw,,llz) 14
i

< afl{n + 1)%wl /2

for the appropriate constant, a. Thus, the radius of
convergence of

in*Dwi*
T

is at least as great as that of

Z‘/“(n+ 1)2 111 /242

A ) 4.5)

We now use the following elementary fact about power
series: If J,(a,t*/k!) converges for |¢I<B, then
¥ o[ (@) 2* /1] converges for |t1<3B.

This can easily be proved using Stirling’s formula.
Applying this result, we get that the radius of conver-
gence of (4.5) is at least half as great as that of

I+ 1*wn £
plesfpat
k
which is positive since w is analytic for n+ 1. A similar
argument for D* completes the proof of Lemma 4.4, =

We are now ready to prove that Av is a set of analytic
vectors for each n(z). We first note that since

Clx+9)DC(x) +C(y), (4.6)

if z is fixed, we may assume that the operators in A
involve only vectors y € H which are either parallel or
orthogonal to z. Since v is analytic for n(z), Lemmas
4.3 and 4.4 and a simple inductive argument give the
result,

Our next step is to show that the paraboson relation-
ship, (1.4) is satisfied on Av. We first note that if w
cAv, we have shown in Lemma 4. 4 that nDP,w
=DP;mw, so nDw;;=Dnw,;. A now familiar argument
shows that all relevant summations converge, so nDw
=Dnw. We now have that if z and ¥ are orthogonal and
weAuv,

[n(2), C(2)Jw =lzII12C(2)w
and
[n(2), Cy)lw=0.

If y is now arbitrary, we can write y as a sum of two
terms, one parallel to z and one orthogonal to z and use
(4.8) to get

[n(z), Cy) Jw =<y, 2)C(2)w.
Polarization of this (in z) then gives (1. 4).

Let z be a unit vector in H. For the free paraboson
field of order p, n(z) and dI'(P,) differ by 3p, a scalar
which is independent of 2, We now show that we have a
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similar result here. n(z) and dC'(P,) are commuting self-
adjoint operators and so

B(z) =2[n(z) - dT (P,)]

is a well-defined self-adjoint operator which has Av as
an invariant set of analytic vectors, We will show that
B(z) is independent of z. It is sufficient to show that
B(z)w is independent of z for each wcAv since Av is a
core for B(z). Since

explitdT(P ) ]C(y) expl - i L' (P,)] = Clexp(itP,)y],
explitB(z) |C(y) expl- itB(z)] = C(y),
and
explitB(z)JC*(y) exp[- itB(z)]=C*(),
soif AeA,
explitB(z)]A exp[- itB(z)] = A4,
explitB(2)JAv = A explitB(2) I,
and
exp[itg(z)] - lAv :A(exp[itib;(z)] - l)v.
As t approaches 0, the left side approaches B(z)Av and
so the right side converges.

(4.7

i—t‘[exp(itB(z)) -1l

approaches B{z)v and since A is closable (4v is in the
domain of A*), the right side approaches AB(z)». Thus,
B(z)Av =AB(z)v, and therefore it is sufficient to show
that B(z)v is independent of z. The proof of this fact is
identical to a proof previously given.'® We sketch it here.
If y is orthogonal to 2, then

dr(P,)C*(z)C(y)v = - C*(2)C(»)v
s0 C*(2)C(y)v =0 since dI'(P,) = 0. Thus, if y and z are
(not necessarily orthogonal) unit vectors,
C*(z2)C(y)v =C*(2)C(P v
=y, z)C““(z)C(z)v
=(, 2)B(2)v
and similarly,
C*(2)C(y)v =y, 2)B(y)v,

thus, B(y)v =B(z)v if (y, z) #0. Therefore, B(z)v is in-
dependent of z. Let B=B(z).

The next step is to show that the spectrum of B con-
tains only nonnegative integers. B commutes with each
() since

I(B(z)I'( = B(Uz) = B(2),

and so B commutes with each d['(P,). We will use the
following lemma:

Lemma 4.5: Suppose [ is a subset of K which is in-
variant under each C(z) and C*(z), and (1.4) holds on/).
Suppose we/) and {2y, z,, ..., 2.} is an orthonormal set
of vectors in H such that for j=1,2,...,4, dl“(P,J)w=0.
Let S; be the symmetric group on j elements and define

&, = 2 (- 1)C(2,)C(2zy 4, - * + Clzg)w.
reSJ
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Then
19,112 = GDXB(B = 10(B = 2) -+ + (B~ j + Dw, w).
Proof: We set C;=C(z,).
1,112 =234C¥®,, (= 1)"Cya, -+ + Crut),

L4

but each term in the summation is independent of 7 since
9, is already antisymmetric, so

1,l12=51{C¥®,,C;4 -+ - Cyw).
Similarly,
(Cf‘i’j, (- 1)’01 (4-1)°°° C,;w)

is independent of 7 S, 4, so
N1 =j(CTe,, &,,4).
Since
C1C,w=6,;Buw,

if we use (1.4) to eliminate C} and C, from

C1d,=2(~1)'C¥C,; -+ - Cpu,

the result will consist of terms linear in B and terms
independent of B, Since the result must be antisym-
metric in Cy, Cy, ..., C;4, there are scalars a, and B,
such that

Cte,=(a, +BB)®,.,.
Thus,
12,112 =j{(a; + BB;)®, 4, &,

and similarly,
kR
H<I>,2H2=k!</rl (a, + B8,) Bw, w>
22

since &, =C w.

The scalars a, and 8; have been determined'” for the
case in which B was a scalar. The result and proof are
the same here:

a,;+ BB, =j(B-j+1).
This completes the proof of Lemma 4.5. ]

Since H is infinite dimensional, for any w ¢ Av and
positive integer k, there exists an orthonormal set
24,23 .+ 1, 2y SUch that dT'(P, )w=0. Thus, ) =Av and
w satisfy the hypotheses of Lemma 4.5. X P is any
spectral projection of B, then P commutes with each
dr'(P,) and by (4.'), for each AcA, PACAP, Thus, if
we take /) =PAv and any we PAv, these also satsify the
hypotheses of the lemma. Therefore, for all we PAy
and all nonnegative integers, %,

(B(B-1):++(B-Rw, w)=0,

The union of the sets P4v as P ranges over the spectral
projections of B corresponding to bounded sets is a
dense set on which each polynomial in B is essentially
self-adjoint. Thus,

B(B-1)B-2):-+-(B-E)>0

and so the spectrum of B is contained in the set of non-
negative integers.
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Let K, ={w € K : Bw=pu} and let P, be the projection
onto K,. K,=P,Av=AP,v so that if P,y#0,

v, =P,v/IIPull
is cyclic for X,.
C*(z)v, =0

and since I'(U) commutes with B, K, is invariant under
T'(U). Therefore,

(v, =v,
and
C*U)C(Z)Up = (z; y>va =P<Z, y>vp-

Each K, reduces C(z) and (1.4) holds onAv,. It is now a
simple matter to construct an isomorphism (as in Sec.
2) between {H, C,K,T, v,} and the free paraboson field
of order p.

5. EXTENSIONS

We have already remarked that the hypothesis of
Theorem 1 that » is analytic for each n(z) can be re-
placed by the condition that v is in the domain of C(z2)
for some nonzero z in H. Given the other hypotheses of
Theorems 1 or 2, the condition

r(Dv=v (5.1)

for all unitaries, U, on H can be replaced by the weaker
condition that there exists a nonnegative self-adjoint
operator, A, on H whose discrete spectrum does not
contain O such that

T{exp(itd) v =v.

That this condition implies (5.1) has been proved in a
previous paper.18 The proof relies heavily on the posi-
tivity of drI'.

In Theorems 1 and 2, it is also possible to weaken
the positivity condition, dI'= 0, if the full invariance
condition (5.1) is kept. In Theorem 1, dI"'> 0 is used
only to prove that

C*(z)v=0 (5.2)

for all z€ H. In Theorem 2 it is used to prove (5.2) and
C*(y)C(z)v=0 (5.3)

when y is orthogonal to z. (5.2) and (5. 3) are implied

by a weaker positivity condition. (5.2) holds if d['(A)

> 0 for some nonnegative self-adjoint operator, A, other
than 0. (5.3) also follows if this operator is not a mul-
tiple of the identity. These statements have been proved®
for parafermions using the condition that C(z) is a
bounded operator.

We now modify the proof given there to include the un-
bounded case, First we remark that because of (5.1)
and

D(UC*(2)T(U) = C*(Uz),

HC*(z)v! depends only on izl and so there is a constant
a, such that

lIC* (2)oll = allzll.

Similarly, there exist constants 8 and v such that
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fIC* () C(z)vll =8Bliyll llz]]
when y is orthogonal to z and
flC*(z)C(2)vll = Yzli2.

Thus, there exists a constant d such that for arbitrary
y and z,

IC*()C(2)vll < bltyll llzll.

In particular, C*(2)v is a continuous function of z and
C*(y)C(z)v is continuous in both y and z.

Suppose A is a self-adjoint operator on H and 2z
€ DomfA),

explit dT(A)]C*(2)v = C*[exp(itA)z v,

(exp[it dr)] - 1) C*(2)v = - C* (exg(itA) -1 z) Y
it it

5.4)
As t approaches zero, (
exp(itd) - 1 2 ~Az
it ’

so by the continuity of C*(z)v noted above, the right
side of (5.4) approaches — C*(Az)v. Thus, C*(z)v is in
the domain of dI'(A) and

dIr'(A)C*(z)v = - C*(Az)v,

Suppose A= 0, 7#0 is in the spectrum of 4, and
dT'(A)> 0. For each € >0 there is a unit vector z
e Dom(A) such that (4 - ¥)z1l <,

0 <{dT(A)C*(2)v, C*(2)v),
0<=(C*(A~-7z)v, C*(2)v) = r{C*(2)v, C*(z2)v),

0< dPe~rat=a?(e-7).

(5.5)

Since € is arbitrary, a=0, This gives (5.2).

If y and z are in the domain of A, then in a manner
similar to the one used to derive (5.5), we get that
C*(y)C(2)v is in the domain of dI'(A) and

dT(A)C*(y)C(2)v =C*{y)C(Az)v - C*(Ay)C{(z}v. (5.6)
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Now, if A>0, A+0, A is not a multiple of the identity
and dT'{4)> 0, we choose two numbers » and s in the
spectrum of 4 with »r<s, For each €>0 there are or-
thogonal unit vectors y and z such that II(A - s)zil and
(A = 7)yll are less than €. Using (5.6) we obtain

0= {C*(y)C{Az)v, C*(y)C(2)v) - (C*(Ay)C(2)v, C*(y)C(2)1)
0s 28%¢ + (r - 5)8%.

Again, since € is arbitrary and »<s, B=0, This gives
(5.3).
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Covariant canonical formulation and centers of mass and
motion for a relativistic two-body problem
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Fokker has given a multitime action principle yielding the equations of motion for a relativistic two-body
system in which the first particle responds to the retarded Liénard—Wiechert field of the second, while the
second responds to the advanced field of the first. The present paper exhibits a single time parameter
Lagrangian which avoids the no-interaction theorems and leads to a manifestly covariant and canonical
description of this system via Dirac’s generalized dynamics. Within this formulation the system possesses a
manifestly covariant and canonical center of mass and a separate manifestly covariant but noncanonical
“center of motion” which moves with the constant 4-velocity corresponding to the conserved total 4-
momentum. In the one-dimensional case the two centers coincide, and the differential equation for the
internal motion reduces to the classical Kepler problem. In the general case the motion lies in a plane, and

the center of mass moves in a circle about the center of motion.

INTRODUCTION

This paper presents a single-parameter Lagrangian
which avoids the no-interaction theorems=% and leads
to a manifestly covariant and canonical formulation, a
manifestly covariant and canonical center of mass,
and a manifestly covariant “center of motion” for a
relativistic action-at-a-distance two-~body problem due
to Fokker®: One spinless electrically charged particle
responds without self-action to the retarded Liénard—
Wiechert field of a second, while the second responds
similarly to the advanced field of the first. Although
this problem is time asymmetric, the fact that it has
ordinary differential equations of motion has led authors
to examine it as a close approximation to the difference—
differential equations of the time-symmetric Wheeler—
Feynman problem, *® or in the hope that it will illumi-
nate more physical problems, =

Fokker® derives the equations of motion and the con-
served total 4-momentum vector P* of the two-particle
system from a multitime action principle and the ex~
ternally imposed constraint that the particles maintain
null separation »*, Due to the constraint, the coordi-
nates of the particles are not independent. The result-
ing equations of motion express the proper acceleration
of each particle in terms of the proper acceleration of
the other, the proper velocities, and the coordinates.
Bruhns, ! proceeding in the same manner, finds the
conserved total angular momentum tensor J** and sim-
plifies the equations of motion to express the proper
accelerations in terms of the proper velocities and the
coordinates.

Staruszkiewicz!® finds a single-parameter canonical
formulation for the theory by introducing the spatial
components r of the separation vector and the compo-
nents of a center of mass as independent generalized
coordinates. Neither the particle coordinates nor the
time component 7’ of the separation vector are canoni-
cal. The center of mass has a complicated equation of
motion and is a canonical position variable only if P*
is replaced by its numerical value.

Kiinzle!! gives a differential geometric multitime
formulation of the general problem of two interacting
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relativistic particles and finds that the spatial com-
ponents of the particle coordinates can be independent
canonical variables if the particles have null separa-
tion, He studies Fokker’s problem as an approximation
to an interaction he derives within his formulation from
the Liénard—Wiechert fields with the acceleration terms
ignored. 1 After finding P* and J*” and their Poisson
brackets via Noether’s theorem and their properties as
generators of the Poincaré group, he uses them to con-
struct, following Synge, % a center of mass defined up

to an arbitrary term parallel to P*. Although this center
of mass has constant velocity and the appropriate
brackets with the spatial components of J*¥ and P*, it
is not a canonical position variable because its spatial
components do not have zero Poisson brackets with

each other.

Working within the frame defined by his center of
mass, Kiinzle!? reduces the problem to quadratures and
gives numerical results for the case of equal rest
masses and for the case of circular motion for arbitrary
mass ratios. Rudd and Hill, ® Staruszkiewicz, ' Bruhns, !
and Kinzle!? give solutions for the special case where
the motion is confined to one dimension by the initial
conditions. Bruhns also gives circular motion solutions,

The first section of the present paper exhibits a
single-parameter Lagrangian with a Lagrange multi-
plier term which yields simultaneously the light-cone
constraint and Fokker’s and Bruhns’ equations of motion
in forms containing derivatives with respect to the
single scalar parameter s instead of the two proper
times of the particles. It also yields definitions for the
particle momenta and, via Noether’s theorem, the con-
served momentum P* and angular momentum J*¥; each
of these contains interaction contributions in accordance
with the general theorem of Van Dam and Wigner. s The
Lagrangian guarantees the existence of a canonical
formulation of Fokker’s problem in which the Hamilto-
nian is a scalar and the temporal components as well
as the spatial components of the particle positions and
momenta are independent canonical variables in the
sense of Dirac’s theory of generalized dynamics. **'7
This guarantee justifies the definition of a manifestly
covariant Poisson bracket, from which results the ex-
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pected basic brackets and the Lie algebra of the
Poincaré group. The world-line condition brackets
fundamental to the no-interaction theorems=® do not
arise here because of the independence of the
components,

The “center of motion” 4-vector defined in the second
section is the Synge—Kiinzle center of mass!? modified
to include a specification of the time component. Al-
though its does not lie on the line joining the particles
and is not canonical, its derivative is the constant 4-
velocity corresponding to P*. It thus provides a natural
frame, the “center of motion frame, ” for describing
the motion of the particles, and its proper time pro-
vides a natural choice for the parameter s. The name
“center of motion” distinguishes it from the separate
center of mass and suggests its relation to the motion
of the system.

The third section defines a center of mass for the
system. It lies on the line joining the particles and is
a covariant position variable canonically conjugate to
P*, Although it is functionally more complicated than
Staruszkiewicz’s center of mass, 3 its motion is
simpler. This is most apparent in the center of motion
frame, as discussed in the fourth section. If J*¥ is not
zero, the particles move in a plane, the center of mass
moves in this plane in a circle about the center of mo-
tion, and r remains tangent to this circle at the center
of mass. These geometric relations and the specifica-
tion that s be the center of motion proper time simplify
the reduction of the problem to quadratures. If J*V is
zero, the centers of mass and motion coincide, the
motion is (excluding an exceptional case) one-dimen-
sional through the center of motion, and the reduced
equation for the internal motion has the simple inverse
square form of the classical Kepler problem.

LAGRANGIAN FORMULATION

The symbol x,” represents the Minkowski space co-
ordinates of particle n, where Greek indices ranging
from 0 to 3 denote the components of 4-vectors and
%, =ct,. The particular subscripts »n, f=1,2 always
refer to the two particles and are never equal when
they appear in the same equation. All other small Latin
indices range from 1 to 3 and denote the components
of the spatial part a of a 4-vector a*, The metric tensor
isglt=—g%=1, g**=0for u+v. The form a°b de-
notes the scalar product a*b, of two 4-vectors. A dot
above a variable indicates differentiation with respect
to a single scalar parameter s subject only to the non-
holonomic constraints that the velocities x,* be timelike
and future pointing:

2, %, <0, A7>0. 1)
The first object of this section is to show that the
equations of motion for Fokker’s time-asymmetric two-

body problem result from the single-parameter
Lagrangian

Ls_zn) (mpcw, +gE/20,) + rrev, (2)
where g=eqe,/c is the coupling constant in Gaussian

units, m, and e, are the constant rest mass and electric
charge of particle n, the scalar X is a Lagrange multi-
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plier, and
riExt —xt, Es—4%4,>0,
W, = (=X 22> 0, 0,==4,7.
By the Lagrangian equations the particle momenta arel®
bo 2OL/0%y = mychy" /0, + ghf (071 + 0,71)/2
- gtr* /20,2, (3)
and the momentum conjugate to the Lagrange multiplier
is
7=0L/dM=0; (4)
their derivatives are
Pa* =0L/0x,, = (= 1)"[ gt (07" + 0504 )/2 - 207*]
(5)
and
T=OL/ =77, (6)
Fokker’s externally applied constraint
rr=0 (m

now appears as a consequence of (4) and (6). With the
assumption that %> 0 for definiteness, the derivatives
of (7) imply

0=20,=0,>0 (8)
and
Feor=— <0, 9)
Equation (8) simplifies (3) to

ba" =maCh [y + i [0~ gyt /2, (10)
where $=£/0,0,> 0.

Equating the derivative of (3) with (5) and taking the
scalar product with %,, lead to an expression for the
Lagrange multiplier:

2l/g°=¢2+(551 °$\?2-3?1°5Ez)/2°3- (11)
The elimination of A now reduces (3) and (5) to the

single-parameter equivalent of Fokker’s equations of
motion® 10;

mye d % EE dfEer
g0 ds w, _Ofr
Hu(ﬂfé!_f_%{& (_l)n%%(zg_w).

v

(12)
Equation (12) implies
myer, d H* _ (=1)
g ds w,  pf 13)

and

mtin d A i (4 37)
g ds w, =3t ds w,
£

(14)
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where p,=0,/w,> 0. Using (13) and (14) in (12) yields
d %" g 1 ¢
(-1 L & Zn _ 2(___7__> <___n-)
Wp ds Wy £ mnCPf Pn Py Wy

MCP,E 1 P
+g £CPn ( g - d)pfr“——L>7
Py MgCPy" P Wy

(15)

where 7 # mym,c®pyp, — g%. This is the single-parameter
equivalent of Bruhns’ equations of motion,!? which are
expressed in terms of the proper times 7,, the proper
velocities v,* =dx,* /dT, satisfying v,*v,=-c?, and the
proper accelerations a,* =dv,” /dT,. The translation to
the proper time form follows from the identities

w,ds=cdT,, %"/w,=v/c,

P==vy 0y/C*P40y, Py=-v,°7/C.
Since both (12) and (15) satisfy

2, , d@/w,)/ds=0

identically, each of them contains only six independent
equations for the eight accelerations #,*. Equation (9)
provides a seventh equation, leaving one acceleration
arbitrary in accordance with the arbitrariness of the
parameter s. The initial conditions must satisfy (7)
and (8).

Within this single-parameter formalism the invari-
ance of L under the space—time translations and rota-
tions of the Poincaré group implies, via Noether’s
theorem, that the energy-momentum 4-vector

p* .=_p1” +p2u :Zn> (mnc +g/p,,)a?,,“/w,, _g‘p,ru (16)

and the angular momentum tensor
JHV = Z; (xnup"u _ x"vP"u) (17)
n

are conserved. Equations (3), (7), and (8) and the
proper time notation reduce P* and J*¥ to the expres-
sions given by other authors, 8:1%:12:13 The interpretation
of P as the 4-momentum of a composite particle and
the definitions of the centers of motion and mass given
in the next sections require that the initial conditions
determine P* to be timelike and future pointing. The
scalar m > 0 defined by

mict= = PoP=7, (m,c +g/p,)* +2md (18)

is conserved and represents the rest mass of the
composite particle. Simultaneously, mc? represents
the total energy of the system in the frame where
pi=),

The following incomplete discussion of the single-
parameter canonical formulation of Fokker’s problem
suffices as justification of the Poisson bracket used in
the next sections to study the centers of mass and
motion. The definitions of the particle momenta in (3)
yield

rn E~pn°r
= MaCPy + & +1) E1/2 + g3 o /2, (19)
AYI = _pn *Dn
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=my’ct +[g(t +1) ¢1/2p,F - (gpt>n/2) v o ¥
+8macogd - gL +1) L4-3/2, (20)
and
E=-pi'hy
= Mymy? o4y + (my/ Pyt + my/py)
gt +1) c/2 - (mypy/E + mypy€) g /2
- (g/2R 77, (21)

where ¢ =0,/0,. [At this point in the Hamiltonian analy-
sis (7) and (8) are unavailable. ] The elimination of the
four velocity dependent variables p_, #, and ¢ from these
five equations yields one scalar constraint ¢,(p,", x,*)
=0. Alternatively, the existence of ¢, is guaranteed

by the zero-degree homogeneity of the p,* of (3) under
simultaneous variation of the #,*. Equation (4) is a
second scalar constraint: ¢, =7 =0. Hence the
Lagrangian is nonstandard in the sense that the elimina-
tion of the velocities %£,* and X in terms of x,*, X, p,*,
and 7 and the usual transition to the Hamiltonian are im-
possible. Nevertheless, the transition is possible with-
in Dirac’s theory of generalized dynamics, *'!7 which in
the present case prescribes the scalar Hamiltonian

H5v1¢u1+vz¢2-L+; D %n

=01¢ t 0y = Ar e, (22)
where v; and v, are scalar functions of #,* and A only.

The Poisson bracket of two variables A and B in
this formulation is

_0A 0B ©0A 9B dA 0B 9A 0B
[A’B]_ Y +}”3(axna Pna ap”a axna) ’

(23)

where x,*, p,%, A, and 7 are independent canonical
variables , and the constraints ¢; =0 and ¢, =0 apply
only after the derivatives have been taken, The only
nonzero basic brackets are

[x"u ’ pnv] :guu (24)
and
(A, 7]=1. (25)

The brackets of P* and J"* produce the Poincaré
algebra:

(P, P*]=0, (26)

[g#v, Pl =g*op¥ - g¥op*, (27)
and

[Juv, J*) =gheJvl — gPPJhO + gVIJHe — ghogve, (28)

A CENTER OF MOTION

The “center of motion” discussed in this section is

2 ={J*'P,-bP*)/P-P, (29)
where
bE-p1°x1—p2°x2. (30)

It is a modification of the center of mass defined by
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Synge'* and applied to Fokker’s problem by Kiinzle!?;
they specify only b =—- x ° P so that their center is defined
only up to an arbitrary term parallel to P*, and their
time component x° is undefined in the frame where

P* =0, The definition (30) does not fit the general ap-
proach exemplified by Lorente and Roman, 1 because b
is constructed from the individual particle variables
rather than the generators P* and J**. The new name
emphasizes that the role of ¥* is distinct from that of a
center of mass.

Since P* and J"¥ are conserved, the derivative of the
center of motion is

#* =bP*/mict, (31)
where
b =mycwy +myc wy> 0 (32)

follows from (5), (7), (8), and (10). Hence x* is, like
P* timelike and future pointing. The equation
mw=m(= 5+ 52 =myw, +mywy =b/c, (33)
resulting from (31) and (32), implies that the proper
velocity of the center of motion is constant:
v} =dx* /dT,=cx*/w,=P"/m, (34)

where the definition of the center of motion proper time
T, requires v, ° v, = - c¢*. Using w,=0/p, in (33) leads to

(35)

Since w,=c#%,, etc., (33) with an appropriate choice of
the initial values of the proper times integrates to

o= mw,/(mipii + mzpfi)-

MT,=myTy+myTy=b/ct. (36)
Equations (16}, (19), and (34) give
I’ =mep, =Ty + Ty =mycpy +mycp, +2g, (37)

where p,=0,/w,=-%°7/w,and ’'== Pey,

The conservation of P* and J*¥ implies the conserva-

tion of the Pauli—Lubanski vector
Wy EJ:»PV: (38)

where J%, =€,,,57*?/2 and €,,,4 is the completely anti-
symmetric tensor with ey,3=-¢%3=1, Equations (10),
(16), and (17) give

(39)

Numerous orthogonality relations result from (38) and
(39), including

WeP=0

_ 5 o oo
W = €upap? D1 D0" =16 o s 7V % 0% %/ 02,

and
(" - x*) W, =0. (40)

Since P* is timelike, W* must be spacelike or zero,
Equation (39) with the elimination of ¥ from (18) and

7+¥/0 =29 - p - p (41)
yields
We W/n=n¥°¥/0* =m*c? ~ mep (mycpit + mycpsh).
(42)
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Equation (35) then yields
(43)

The spin angular momentum tensor associated with x*

0 =mictw,p,/(m*c? - We W/n).

is

S =gt — (a* P¥ - x"P*). (44)
By (29) and (38), S)¥ is conserved and satisfies

SHP,=0 (45)
and

W, =S.*,, P".

The Poisson brackets of x* are

[x*, P*]=g"", (46)

[79%, ) = g*Ox¥ — g*ox* (47)
and

[, #]==82/P+P, (48)

Hence, although x* transforms properly under the
Poincaré group, its components are not independent
canonical variables.

A CENTER OF MASS

According to (23), any form 2* =d,x* +d,x,*, where
dy and d, are numbers such that d; +d, =1, is a canoni-
cal position variable conjugate to P*. The correspond-
ing internal canonical variables are »* and pl=dyp*
~dyp,*. The Newtonian specification d, =m,/(m, + m,)
provides an example. Staruszkiewicz’s center of mass!®
with

dy=[1+ (= 1)"(md — m})/m*]/2

also fits this prescription, under the condition that

m?=— P P/c? be replaced by its numerical value. How-
ever, the motions of these centers of mass are
complicated.

Some simplification results from choosing the follow-
ing definition with nonnumerical weighting factors:

2= é} T,x#/T, (49)
where I'y == p, *»=m,cp, +g by (1), (8), and (19). Equa-
tions (7), (16), and (17) yield an expression for z* in the
general form proposed by Lorente and Roman for posi-
tion operators in quantum mechanics!®:
2 ="y, +x,°rP*)/Per, (50)
But this definition does not fit their approach, because
its is constructed from the individual particle coordi-
nates and because 7" is null, not timelike, (Since P* is

timelike by assumption, the denominator cannot be
zero, )

This center of mass resembles the Newtonian center
of mass in that it lies on the line joining the two parti-
cles, yields the inverse relations

2t =2 - (-=1)"T,r*/T, (51)

and has the Poisson brackets of a manifestly covariant
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canonical position variable conjugate to P*:

[2*,22]=0, (52)

[, P ]=g", (53)
and

[T, 2] =g" %2 — g¥oz". (54)

In the limit of small velocities and coupling constant,
both z and X reduce to the Newtonian center of mass,
while ¢, and £, reduce to the instantaneous Newtonian
time.

The spin angular momentum tensor corresponding
to 2* is

SEV=JHY — (2EPY - 2 PY) (55)
=n{r*»¥ - r'#*)/oT, (56)

where the equality follows from (16), (17), and (49).
Hence it obeys

S Y, =0, (67

S, =0, (58)
and

W, =S,*,, P’. (59)
Its Poisson brackets are

[s27,2°]=0, (60)

[, P]=0, (61)

and
[s‘uv’ S‘po] = [Juv’ Szpu]
zguoszw - gvnS‘uﬂ +g"°S,“’ _guos‘vo. (62)

Since
f‘,, =M 0By = (= 1)" 0(mcp) — mucp;t + go7t (63)
by (5), (8), (10), and (19), the derivative of z* is
2*=0(P* —= W Wr* /mepm)/mepy. (64)

Hence, 2" is not constant nor even necessarily timelike:
(42) provides W e W/n < m?*c? but is insufficient for deter-
mining the sign of

2°2=(0/mcp,F(2W- W/n - m*c?). (65)

Nevertheless, the motion of 2* is simple in the center
of motion frame discussed in the next section. The basis
of this simplicity is the general relation between the
centers of mass and motion, which follows from their
definitions:

2 =x* +J%y,/Poy—-JPP, /PP

- J**P, v, P*/(P¥)(P * P). (66)
This equation implies
(2" =)z, —x,)=W - W/(P-P}=0 (67)
and the orthogonality relations
(z* —x*) P, =0, (68)
(2 —x*)7, =0, (69)
(2 -x*)P, =0, (70)
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and

(3 - )z, - x,)=0. (71)

CENTER OF MOTION FRAME

Since P* is timelike and future pointing by assump-
tion, (34) and the Poisson brackets of x* and P* guaran-
tee that a Lorentz transformation followed by a space
translation suffices for reaching the “center of motion”
frame, where P'=mc, P=0, x=0, x"=c7,, and x=0.
This frame differs from Kiinzle’s center of mass framel?
in that x° is specified in terms of the particle variables.

In the center of motion frame the definition of p, and
(7) yield

p=r'=r=|r|; (72)
(29) yields

Ju0=0; (73)
and (38), (44), and (55) yield

S% =0, S=mczt, (74)

w%=0, 8,=8,=d=-W/mc, (75)
where J; = 4€,,,J,,, etc. Hence, (66) implies

2= z=JIXr/mer. (76)

These equations describe the geometry of the system

in the center of motion frame. If J=1J1#0, (40) and (75)
show that the particles move in the plane perpendicular
to the conserved spin S,=4J, and (76) shows that the cen-
ter of mass moves in this plane in a circle of radius
J/mec about the origin, while r moves so as to always
pass through the center of mass perpendicular to z. If
J=0, (76) implies that the center of mass and the center
of motion coincide.

The choice s =7, is natural and convenient, especially
in the center of motion frame. Although this specifica-
tion simplifies the equations of motion to forms which
may be interesting in themselves, in combination with
the conservation laws it already provides a formal
reduction to quadratures simpler than that obtained by
Kiinzle!?; Egs. (43) and (75) with w,=c yield

o=cpm/(m-J*%). (1)

Solving (37) and (42) simultaneously for the p, as func-
tions of p, also provides expressions for 1, ¥, and 0 as
functions of p, via the definition of 7, (18) or (41), and
(77). Employing these expressions in (37) and (63)
yields p, = f(p,), which integrates to give p, and the
above scalars as functions of 7,.

Equations (56), (75), and (77) yield the expression

Q=mc*J/(n-J?) (78)

for the angular velocity of r. Since 71 is already known
as a function of 7,, this equation integrates to provide
the direction of r, Finally, (51) and (76) provide the
particle coordinates,

If J#0, (8) and (77) guarantee n#0 and n~J2#0, so
that the demoninator in (78) cannot be zero. The case
J=0, 7 =0 is discussed by Kiinzle.
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If J=0 and 7+0, (78) implies that the direction of »*
is constant. Since z=0 for J=0, the motion is one-
dimensional along a line through the origin in the center
of motion frame. Although solutions for this case have
been given by several authors, 1+%1%12 3 particularly
simple method of solution results from the present
formalism: In any frame (41) and (42) yield

29 =py +P7 (79)
and

mp; =myp7l + mp;t, (80)
while (77) yields

0=cp,. (81)
Employing these equations with (37) and (63) gives

which is simply the inverse square law differential
equation of the classical Kepler problem. Its well-
known solution, (37), (51), and (80) yield the particle
coordinates as explicit functions of 7.

DISCUSSION

The distinguishing feature of the present treatment
of Fokker’s time-asymmetric two-body problem is that
the temporal components of all 4-vectors have equal
status with the spatial components as independent func-
tions of a single scalar parameter, despite the con-
straints v, ° v, =— ¢ on the proper velocities and the con-
straint that the particles have null separation. This
feature is based on the Langrange multiplier term in the
Lagrangian and on the generalized theory of Hamilton-
ian dynamics, which Dirac devised for such constrained
systems. !® One consequence is the avoidance of the no-
interaction theorems, *™® which is possible because the
Hamiltonian is a scalar rather than a component of a
4-vector, and because it is the generator of the system
motion with respect to the scalar parameter rather
than with respect to the proper times or the time com-
ponents of the particle coordinates.

A second consequence of the single-parameter
Lagrangian formulation is the availability of the mani-
festly covariant canonical particle coordinates and
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momenta for the construction of the centers of mass and
motion.

The light-cone constraint causes the separation of the
centers of motion and mass; with the constraint in force
the separation persists, and the particles and the center
of mass have nonzero accelerations with respect to the
center of motion proper time even for zero coupling
constant, Constraints can have similar effects in
Newtonian mechanics. The center of mass appears to
act as an information center: it receives information at
the speed of light from the two particles about their ad-
vanced or retarded positions and momenta to correlate
with the center of motion proper time.

Although the centers of motion and mass and the con-
servation laws already provide a reduction of the prob-
lem to quadratures, the simple form of the reduced
equation for the one-dimensional case suggests that
there is still more structure within this system remain-
ing to be discovered.

*Supported in part by the Commonwealth Campus Scholarly
Activities Fund of The Pennsylvania State University.

D, G. Currie, T.F. Jordan, and E, C.G. Sudarshan, Rev.
Mod. Phys. 35, 350 (1963).

D, G. Currie, J. Math, Phys, 4, 1470 (1963),

33.T, Cannon and T. F. Jordan, J. Math, Phys, 5, 299 (1964).

‘H. Leutwyler, Nuovo Cimento 37, 556 (1965),

SFor discussion and a collection of articles on the no-inter-
action theorems and on progress in action-at-a~distance
particle dynamics, see The Theory of Action-at-a-Distance
in Particle Dynamics, edited by E.H. Kerner (Gordon and
Breach, New York, 1973).

A.D. Fokker, Physica 9, 33 (1929).

TA. Staruszkiewicz, Ann, Physik 25, 362 (1970).
8J.A, Wheeler and R. P, Feynman, Rev, Mod. Phys, 21,
425 (1949),
°R.A. Rudd and R, N, Hill, J, Math. Phys. 11, 2704 (1970).

g, Bruhns, Phys, Rev, D 8, 2370 (1973),

Uy, P, Kinzle, J. Math. Phys. 15, 1033 (1974),

124, P, Klinzle, Int. J. Theor. Phys. 11, 395 (1974),

137, Staruszkiewicz, Ann. Inst. H, Poincaré 14, 69 (1971),

145. L. Synge, Relativity: The Special Theory (North-Holland,
Amsterdam, 1965), 2nd ed., pp, 219--22.

154, Van Dam and E.P. Wigner, Phys. Rev. 142, 838 (1966).

16p, A, M. Dirac, Can. J. Math, 2, 129 (1950),

UDirac’s generalized Hamiltonian dynamics is discussed in
detail in E.C.G. Sudarshan and N. Mukunda, Classical
Dynamics: A Modern Perspective (Wiley, New York, 1974).

18when n=1, referring to particle 1, the subscript f assumes
the value 2, and vice versa.

15M. Lorente and P. Roman, J. Math, Phys. 15, 70 (1974).

Donald E. Fahnline 1011



Asymptotic behavior of Feynman integrals with zero mass

particles

Edward B. Manoukian
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The asymptotic behavior of Feynman integrals when some (or all) of their external momenta become
small and/or some (or all) become large in Euclidean space nonexceptionally (and the power counting
theorem) are derived for integrals involving, in general, zero mass particles as well as a subset of their

masses.

We derive the asymptotic behavior of Feynman inte-
grals when some (or all) of their external momenta be-
come small and/or some {or all) become large in
Euclidean space nonexceptionally (and the power count-
ing theorem in Minkowski space as well) for integrals
involving zevo mass particles as well. This analysis is
a generalization, in a very general way, of the pre-
vious classic work! (and Ref, 2) dealing with the large
momenium behavior of Feynman integrals with only
nonzero mass particles. 3

We consider integrals of the form

j_: dk, ./_.:dkz °° “f_: dk:ﬂpn.bzf B XY T ) (1)

where k; e (ky, Ry, ") for i=1,2,...,fand f is a function
of n real variables considered as the components of an
n-vector in an n-dimensional Euclidean space R". Let
Ibe an arbitrarily chosen subspace of R" associated

with the integration variables. Choose E to be any sub-
space of R" such that E and [ are disjoint and R"=I1+E,
Let A(]) be the projection operation along the subspace

I, The integral (1) may be conveniently rewritten as

f(P)= [ dP' (P +P), @)

and the absolute convergence of the integral (2) implies
that f;(P) depends only on the projection of P along the
subspace I, Let P be a vector in R" of the form

P=:i7mem *omyt L
=1

+ ﬁLﬂ\j,z)\hs“')\i, (3)
i=j+2
where m <n+1and Ly,...,L;,L;s,..., L, are indepen-
dent vectors and the subsets L,,L;,...,L,; -+ - span
subspaces S=1{L,,L,,...,L,}; -+ . L, is a vector con-
fined to a finite region W in R", The parameters
Nise==sMy Ajuzse«os A, are real and nonnegative.

Definition: A function f(P) is said to belong to a class
A if and only if, for any nonempty subspaces §,S'C R"
there exists two pairs of agymptotic coefficients
al(S), a®(S", B(S), 8°S’), with the latter two nonnega-
tive, such that

f( ZL}L{'? s My +LJ+1 + ﬂ Li)'hzxjos' . )\£>
i=1 tajo2
=0{n1a({lq)). . -n;‘({l'l'“"Ll”kf‘,oa(“‘-“z"“'l‘_m”' . x:o((bm})

x 2

1’1.....7;

(g, )72« -« (ry, )74
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0
X 2y (lnl/)\,j p7ee e (Inl/x, Y
7?02,...7’%, " "

for My,Mesee ey =~ and Ao, X yyay 00054, —~ 0, indepen-
dently, where the sums are over all nonnegative inte-
€erS Y1, ..y 55 Y2y« + - ,7%, such that

i:‘yrsﬁ({Lh LR )Lq})5 1 $i$j,

ral

i) yis B"({L,‘, o, LD, j+2<ism,
r=j+2
with the asymptotic coefficients ({L,}), ..., B({L,,...,

L;D; A{Ljzs ooy Lnb, oo, AL} arranged in in-
creasing order,

adLy, ..., L,P})s B{Ly, ..., Lep <o 8Ly, ..., Ly D,

BLir gy -+, LD <ULy oo, L D<o
< BO({LI',", ey Lm})’
and (my,...,7,); (75,2, ...,7,) are a permutation of

1,...,7); (i +2,...,m), respectively.

Theorem: If a function f(P) belongs to class A,
and for any given IC R", is integrable over any finite
region of [ or of any of its, arbitrarily decomposed,
subspaces excluding the origin and simultaneously
a’(§8") +dimS” >0, a(S') +dim$’ <0 for all 8, S" C1,
then f;(P) exists and belongs to class A, with
asymptotic coefficients

;8= max_[a() + dimS - dim5'), (4)
A(I)S=8

@%S")= min_ [a®(S) +dimS - dimS”],
ALy S=5n (5}

for all §’ and $” CE (with §’ and S defined with respect
to the vector P in f;(P), etc.) with Eqs. (4) and (5) de-
fined in reference to the parametersn and x», respec-
tively. And

8= max 88+ p, ®)
maximizing i=1
- 3

BIB™M = _max BYS)+2J Y, (M
smtnlmz.inz #=1

where in (6) max runs over all S maximizing the ex-
pression (4) and in (7) max runs over all § minimizing
the expression (5). The parameters p,;, p$ take on the
values 0 or 1. Write I as a decomposition into £, arbi-
trarily chosen, one-dimensional disjoint subspaces
L,L,...,,:I=0[ +L,;+---+1,. If all the minimizing
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subspaces for an I; integration, after performing the
I, +1,,,++-.+1, integration, relative to any one of the
minimizing subspaces for the I, integration after per-
forming the I, +1,, +.--+I, integration have the same
dimension then p$=0, and 1 otherwise, for i=2,...,¢.
If all the minimizing subspaces for the I, integration
relative to S” in (7) after performing the I, + I, + -+ - +1I,
integration have the same dimension then p=0, and 1
otherwise, Similarly p, is defined by replacing mini-
mizing by maximizing and $” by § in the definition
just given for p.

To prove the theorem we proceed by induction® and
suppose that f when integrated out over any chosen
1 <j<t of its variables, or any of their linear recom-
binations belongs to class A _; and together with all its
subintegrals satisfy the criteria of the theorem. Denote
such a j-fold integral by F, We then show that an inte-
gral of the form [, dky F(P+ Lk,) enjoys the same
properties and belongs to class A,_,.4, where & is
arbitrarily chosen. The asymptotic coefficients of F
will be denoted by a’, ', a%, g%, P is a vector of the
form in (3) with 0 Sm <z -j-1, By the Heine—Borel
theorem such an infinite interval {#;: — © <k <} may
be covered! by a finite number of subintervals of the
forms:

J1={k1:k1:2"71772'“7)1; lzfzbn

for some number b,>1, z=2|z|},

Jj b= {kl thy= ElAilizﬂﬂisnsnsﬂ B I PO I
8=

Wity = lz[? PO

for some numbers b, ,,,; >1 and
1.
0 <“’41..-1, <1 AipAiliz! e :Agl...ngR y €=z ,ZI},

1<7<j,

Jireeedy = {kl Tk = ilAix‘Z"' iddlser* 1y tz;
8=

wtl...fﬁj>|zl>bzl...,-j,
for some b, .,.;,> 1 and 0<‘*’4p-~¢,<1?

Ay Ay od

iyip? fyreeiy

c R, z=i|z|},

Jheti= {kl ik = i}A;I...isﬂs ey tE
S=

bil--dj? Iz 1 z Cgl...ihl;

for some b;,,..;,>1and 0<C, ..., <1,
AgreenrApn, e BY, Z=i|2|}:
ng.-oir:: {k1 k= tEAfl""sns Ny
8=

+ 35 Y- VIR W PR Y

8ajel

s

X pa s A2 Ay =1,
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Cgl...gna Izlzwtl-..t,)‘nn
for some 0<C, ... <landw, ., >1,

AgyeeisAyg €RY z=i|z|}, j+lsr<m,

Jain= {kl thy = éAil-nlsns Tty +Ail---i,.1

+ i Aal...tshjoz MR WL PR AP W 4
S=j+2

Ciynns, > 12|20 for some 0<Cy...s, <1,

ApyevasAy €RY z=2]2]

The properties of the parameters in each subinterval
are dictated by the covering process of the Heine—Borel
theorem, and more information on them than the one
given above is not essential here, The integration over
k, then reduces to ones belonging successively to each
of the subintervals above with the positive integers

1y ¢..,1, taking on a finite set of values. Integrations
over subintervals such as J,,Ji1 " tr Jheoody Jheoets
have been treated in Ref. 1, and, if o’({L}) +1 <0,
then the integration over J, is absolutely convegent

for ©>|z|>b,. It is easily seen that if o ({L}) +1>0,
then the integral over the subinterval J} 1*e*im is abso-
lutely convergent with C, ., >1z1=0, ‘0< Cinns, <1
The integrations over the submtervals Ji fLeelr'are
carried out essentially in the same way as the ones
over the J{i1***¥r gubintervals (by making the formal
replacements A, 1zl—1/x,,, 1/121) with izI
<Ci,...;, for some 0<C, .., <1, 1,/ 12l

< 4, for some 0<C <land @, ..,

:,{ eee “co.‘
2C7! yigeeri,s With the range: C‘ -ty /Izlzwil, ,‘AM

Let I’ be written as the disjoint union of two sub-
spaces I{ and I}, where I} is a one-dimensional subspace
asgociated with the integration over k, and where I is
associated with j +1 integration variables, According
to the induction hypothesis o’(§) + dim3%’ < 0 and
o (3") +dim3” > 0 for &', 3" C I; and

ap(S)=a'(8)= mag [oz(S)+d1mS dims’],
2 AULS =8

af(s")=a%(s")= min [a%S) +dimS - dims”].
Ay 8a5m

From the above, the infrared convergence criterion

a®({L}) +1> 0 through J¢' " *® and the ultraviolet con-
vergence one a'({L}) +1 <0 through J; we readily obtain
the result stated in the theorem, by induction, in a
standard manner by the same reasoning as in the ear-
lier case! since, in particular the j variables, the as-
sociated integration subspaces are arbitrary and the
joint (j +1)-dimensional integral is absolutely conver-
gent with the easily derivable results

min [a%(S) +dimS]>0
SCr

and?!

max[a(S) +dimS] <0,
sCr

in particular, and the iterated integrals all yield a
unique result by Fubini’s theorem; and* A(L})S’ =S,
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AI)S" =8 are equivalent to A(l')S" =S with I, I} and
S disjoint. Proof of (6) and (7) is identical to the one
given in Ref. 2 with elementary modifications, notably
in Lemma 1, and will not be repeated.

The above analysis is to be applied to Feynman inte-
grals with integrands of the form

L,=P/IQ}+u)", ui=0,y,>0 ®)
i
with
P=2.A}

T(p)™ T res Tl e, (9)

MyjeecesNilroeesTyy

where the sum is over nonnegative integers m,;,
M4 Tysy &5 and

Q,=2ialp, + flb;k,.
J =1
For every term (@} +p3)"i we introduce a vector V, in
R" such that V,- P =@, (4-vector indices are suppressed)
and P is a vector in the form in (3) with j replaced by i.

Similarly we introduce vectors V, to define p, and k&,
in (9). We readily see that

10=0{nfz((1.1)) . -17;"(“"1""'1‘1))

0 0
x)\?*z((buz.-..bm)) .o .x: ((Lm,)}’
a{L,...,L})=- sz)yj +max(§}m” +;n“> )
i
1sysi, 10$)

where the sums are over all j’s such that V, is not or-
thogonal to {L,, ..., L,} and max is taken for i in the
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expression (9). And
a0({Lr, ey Lm}z— 2;’-};, +min(;m“ +En”> ,
i i

i+2<syrs<sm, (11)

where the sumes are over all j’s such that the V,’s are
orthogonal to {Ly,...,L,,}and L,,, (if L,,, is not the
zero vector) but not orthogonal to the space {L,,...,L_},
i+2 <7 <m with L;,; excluded in {Lg,..., L,.;}; min is
taken for 7 in the expression (9) and the first sum is re-
stricted only to those s with u2=0 in IT, (@} + pd)".

The vector Ly, (for L,,; #0) is a characteristic of the
momenta which are not asymptotic (i.e., neither p —«
nor p—0), As the parameters 7y,...,7; are taken, inde-
pendently, large and the parameters A;,9,..., A, are
taken, independently, small, no partial sums of the
asymptotic momenta p,q, py,***, some of which becom-
ing small (#0) and/or some becoming large can vanish,
i. e., the asymptotic momenta, are nonexceptional,

Application of the above work and especially to re-
normalized Feynman amplitudes will be given in subse-
quent work.

13, Weinberg, Phys. Rev. 118, 838 (1960).

%J. P, Fink, J. Math. Phys. 9, 1389 (1968).

3For a different approach to the power counting theorem,
alone, in general see: W, Zimmermann, Commun. Math.
Phys. 11, 1 (1968); Z.H. Lowenstein and W, Zimmermann,
Commun, Math, Phys. 44, 73 (1975) [also J.H. Lowenstein
and E. Speer, ibid. 47, 43 (1976)] the conclusion of which
agrees with the part of our work restricted to the power
counting theorem. By writing a propagator carrying a mo-
mentum Q; by a polynomial in @; times [Q}+p} i (@} +pud1-!
for u,? =0 the limit e—~ 0, in Minkowski space, as a covariant
distribution may be then also carried out.
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It is shown that merely the decision to represent the fundamental events of quantum theory by vectors in
a Hilbert space uniquely determines the form of any probability measure over the set of events. The proof
proceeds by showing that any nonnegative measure on the vectors of a Hilbert space, for which the sum of
the measures on the vectors of any complete orthonormal set is 1, takes the usual form demanded by
quantum theory. This result represents a considerable strengthening of one of the consequences of

Gleason’s theorem.

I. INTRODUCTION

The proof which will be presented here incorporates
an unpublished suggestion for a proof by Dorling.1 In-
deed several moves made in our proof correspond to
moves sketched at points by Dorling, as well as by
other authors in the literature (see later). 2

The central theorem which we shall prove is:

Theorem T: Let m be any measure on the unit norm
vectors of a Hilbert space H, separable, and of more
than two dimensions, for which

(1) 0 s m(¢) <1 for any ¢ in H of unit norm,

(2) if {¢,} is any complete orthonormal (c.o.n.) set
of vectors in H, then Ym(¢,) =1,

(3) there is a ¥ in H for which m(¥) =1, ¥ of unit
norm.

Then m(¢) = (T, )13, for any ¢ in H of unit norm.

Before proving this theorem—which will occupy us
in Secs. I-—III-we shall discuss the physical signifi-
cance of the theorem for quantum theory Q. T.).3

In Q. T. we associate with each system S at time ¢
a separable Hilbert space H. And with each nondegen-
erate variable A for S at f we associate a c.o.n. set of
vectors {¢,}, the “eigenvectors” of A, one for each of
the values of A. We shall let a; be the value of A asso-
ciated withthe eigenvector ¢; of A, We associate a prob-
ability with each value a; of A for S at . We denote it
by P[A, i] (suppressing S, ¢ indices). How this prob-
ability is interpreted does, of course, vary from one
treatment of Q. T. to the others—sometimes it is the
conditional probability of measuring A to have value g,
in S at £, conditional on A being measured in S at #;
and sometimes it is the probability of A having the val-
ue g; in S at {. But, in whatever way it is interpreted,
the following hold:

(1) 1= P[4, il= 0,
(Z)I ziP[‘A; Z]=1-

Moreover, if S at ¢ is in a “pure state”, then, by
definition,

(3)’ P[B,jl=1 for some B, j.

It is important to note that (1)’ and (2)’ hold just as a
matter of probability theory—and not of Q. T. This is
because we so define a “measurement” that the events
of measuring A to have value a; in S at ¢, for various
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i, are mutually exclusive and exhaustive—as are the
events of A having value g; in S at ¢, for various i.

Now we introduce the central tenets of Q. T.:

(D P[A, i]=m(s,) for some function m ¢,

(I) every c.o.n. set of vectors in H is the set of the
eigenvectors of some nondegenerate variable.

What (I) says should not be underestimated—it says
that not only is there an eigenvector for each (4, a,),
but also, if {4, a;) and (B, b;) share the same eigen-
vector—despite A and B being different variables—then
P[A, i]=P[B, j].° In other words dependence on (4, i)
can be taken as dependence on the representative eigen-
vector ¢;.

(1) says that eigenvectors provide a 1:1 representa-
tion of the variables and their values—it says that not
only is there a c.o.n. set of vectors for each variable
and its values, but visa versa. Thus (I) and (II) indicate
that the Hilbert space formalism is to be taken serious-
ly as providing representatives for the physical vari-
ables of a system and their values.

With the help of (I), (II), and (1)'—(3)’, we immediate-
ly see that the function m satisfies the conditions (1)—
(3); and hence , from theorem T, we derive the Born
interpretation:

If S at ¢ is in the pure state ¥, then P[A,i]= K¢;, ¥) 12,
Thus, from merely adopting probability theory and (I)
and (II) (which specify how the Hilbert space formalism
is to map the “real world”), we get out the fundamental
law of Q. T.—a law which gives rise to all the physical-
ly significant “quantum effects,” such as superposition
interference, etc.

Other attempts have of course been made to obtain a
similar result. %7 Of these, the strongest result is that
of Gleason.® Gleason considers a measure m on projec-
tion opevrators onto H-rather than on the vectors of H
directly. It satisfies:

(1) m(E) = 0,
(2)” m(I) =1, where I is the identity operator on H,
(3)" if EF=0, then m(E + F) =m(E) + m(F).

He then derives that there is a positive definite
Hermitian unit trace (p.h.u.t.) operator W for which
m(E) =TrWE, for any E. He can then introduce, as
central tenets of Q. T.:

Copyright © 1977 American Institute of Physics 1015



FIG. 1.

(D' P[A, i]=m’(E,) for some function m’, where E;
=P[¢,] (the projection operator into ¢,),

(ID’ as for 1I,
(UD" m’(E + F) =m'(E) + m(F) if EF =0,

From (2)’, we can then see that »'(I)=1, and hence
that m’ satisfies (1)” — (3)”, and hence we derive:

For any S at ¢ there is a “density operator” W for
which P[A, i]=TrWE,.

We can then derive, as a special case, the “Born
interpretation,” via the trivial intermediate theorem:

If P[B,jl=1 for some B, j, then W=E], where E}
is the projector onto the eigenvector of B for value
by.

(This follows trivially from the W being p. h.u.t.)

What are the advantages/disadvantages of the ap-
proach to the Born interpretation via (I}, (II) and The-
orem T, as compared to the approach via (I)'— (@D’
and Gleason’s theorem (let us call it G) ?

The G approach has the obvious advantage that we
derive that there are only two sorts of states inQ.T. —
viz. “mixed states,” for which there is a density op-
erator which is not a projection operator; and “pure
states.” In the T approach, more axioms have to be
added to derive this restriction. We show how this can
plausibly be done in Ref. 8 [where we also incidentally
show how the restriction to dimension of H > 2 can be
removed, as well as arguing for (I)]. On the other hand,
the disadvantage with the G approach, is that the as-
sumption (IIT)’ is intuitively less plausible than (2)° (its
analog in the T approach), because (2)’ follows just
from probability theory. Because of this we would
argue that the G approach is over-all less prefer-
able, as a basis for axiomatizing Q. T.~—even though its
axioms may be logically more integrated when we come
to derive the existence of density operators for all states
inQ.T. As a second point in favor of considering the
T approach, we note that the G approach uses logically
stronger axioms [this is indicated by the fact that from
(I)’'=(1ID)°, but not from (1), (II) alone, can we derive
that states in Q. T. are of the linear “density operator
form™]. Thus, even were the G approach to be preferred
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over-all as a basis for axiomatizing Q.T., the T ap-
proach is of interest in that it shows that the Born inter-
pretation can be derived from the weaker (I), (II).

Finally we note that in a previous paper, ® we also
presented a derivation of the Born interpretation, but
we needed an extra assumption of rotational symmetry
for m, in order to establish the continuity of m. Thus
one of the interesting consequences of Theorem T is
that rotational symmetry of m in H (and hence its con-
tinuity too) is derived instead of assumed.

il. PROOF OF THEOREM 1

The proof of Theorem T will be presented in several
steps. First we will present a series of lemmata, which
will lead up to a proof of:

Theorem 1: Let m be a map of the points of a three-
dimensional real Euclidian sphere S onto {0, 1], such
that

(a) the north pole N has value 1 [m(N) =1],
(b) Sm(P;) =1 for any orthotriad of points Py, P,, P;.°

Then m(P) =(sind)?, where 0 is the latitude of P (as
measured from the equator).

We will later generalize Theorem 1 to a hypersphere
in an N-dimensional complex Hilbert space, in order
to prove Theorem T. The lemmata and theorems in
this section will all be taken to refer to points on the
sphere S, for which there is a mapping m satisfying
(a), (b) above.

Lemma 1: Let X be the northmost point (the “apex”)
of a great circle GC through Y. Then m(X) > m(Y).'°
Also m(E) =0 for any equatorial E,

Proof: There is a orthotriad of points X, X', E where
E is on the equator, and X' is orthogonal to GC. (see
Fig. 1).

Lom(X) +m(X) + m(E) =1.

But there is also an orthotriad E, E’, N, where E’is
also equatorial.

omE) +m(E) +m(N) =1
But m(N) =1, and hence m(E) =0.
(1) m(0) +m(X) =1.
But since X’ is orthogonal to GC, there is an ortho-
triad X’, Y, Y’, where Y’ is also on GC. Hence
(i1) m(Y) +m{(Y") + m(X") =1,
From (i) and (ii), we see that
m(X) = m(Y) since m(Y’) = 0. QED

Lemma 2: Suppose X and Y are both northerly points,
and suppose Y is to the south of, but at the same longi-
tude as X. Then m(X) = m(Y).

Proof: Construct the great circle GC with X as apex—
let its equatorial diameter be AB. Construct the set of
all great circles through Y, 11 and let L be the locus of
their apexes. Obviously Y itself will be one such apex,
corresponding to the great circle ABY, and N will be
another such apex corresponding to the great circle
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CND (see Fig. 2.) Hence L will be a continuous line
joining Y and N (traced out as AB turns into CD—see
Ref. 11). Obviously L must intersect GC, (The only
way a line can join N and Y is by intersecting GC.) Let
the point of intersection be P.

Then, by Lemma 1, and since P is an apex of a great
circle through Y, we have that

(i) m(P) = m(Y).

But, by Lemma 1, and since P is on GC, the apex of
which is X, we have that

(it) m(X) = m(P).
Hence by (i) and (ii),

m(X) = m(Y). QED

Lemma 3: Let X be the apex of a great circle which
also passes through X', let d¢ be the difference in longi-
tude between X and X', and let X have latitude 6 and X’
have latitude 6’. Then tanf’/tan = cosd®.

Proof: Let the meridian of longitude for X' intersect
the equator at C. Join OC. Project X' down to intersect
OC orthogonally at B. Project a perpendicular from B
across to intersect OD at A. (See Fig. 3.) /X'BA is
obviously 90° since X'B is normal to the equatorial
plane (i.e., X’B1OC by construction, and X’'B is in a
meridianal plane). Join X’4, Let OX’ be 7 in length.
Now OB =7cos8’ (since / X'BA=90), and X'B=7sin6’.
Also /. X’AB =0 (since a great circle is inclined at the
same angle to the equatorial plane, at all points along
its equatorial diameter, that angle being the latitude
of its apex); and hence

X’'B=ABtané (since /X'BA=90).

Hence AB=7siné’/tand. But / ABO=d¢ (alternate an-
gles); and hence

cosdp =AB/OB=rsin8’/(tanb - » cos8’)

=tané’/tan@ QED

Lemma 4: Let X and X’ be two northerly points where
X’ is to the south of X, but on a different longitude.
Then m(X’) < m(X).

Proof: Construct a great circle GC, with X as apex.
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Let X, be a point on GC;, which has a longitude d¢ closer
to X’ than X has. (See Fig. 4.) Then, by Lemma 3,

tan6, /tané = cosd¢, where 6, and 6 are the latitudes of
X; and X respectively. Construct a great circle GC,

with X; as apex. Let X, be a point on GC, which has a
longitude d¢ closer to X’ then X; has. Then tanf,/tané,
=cosd¢p, by Lemma 3. Construct a set of N such points
Xy, X5 ..., Xy, and let Xy have the same longitude as

X'; i.e., Nd¢ =A where A is the difference in longi-
tude between X and X'. Then tanf,/tand,, =cosd¢ for all
n=1,...,N, by Lemma 3, and hence

tanb, tanf, tang, ¥
—k 1 ] d
tané tanf, tany_y L4 cosde,

i.e., tanfy/tand=(cosa/N)",

But (cosa/N)¥ -1 as N—~=, Hence, by letting N be
large enough, 8y can be made as near to 6 as one likes.
In particular, since 6> 6', we see that for large enough
N, 8y >0’ also; i.e., we see that X is at the same
longitude as X', but to its north.

Now by Lemma 1, we see that m(X,) s m(X, ) for all
n=2,...,N, and that m(X) = m(X,). Hence m(X) = m(Xy).
But, from Lemma 2, we see that m(Xy)=> m(X’), since
Xy is on the same longitude but to the north of X',

Hence m(X) = m(X’). QED
N
lat. @
X lat. 8,
GC, . lat. 6,
GC, b
GC
X lat. 6,

R L.

FIG. 4.
H. Krips 1017



Lemma 5: m is a constant of latitude and a conti-
nuous function of latitude, at af least all points in the
northern hemisphere other than equatorial and polar
points.

Proof: (All points will be assumed to be northerly.)
Let m1,,,(60) be the g.1.b. (greatest lower bound) of all
the m(X) for X at latitudes > 8. Since m(x;) <m(X) for
any x; at latitude 6 and any X at latitudes > 6 (by Lem-
ma 4), it follows that m(x;) is a 1.b. on the set of m(X);
and hence

(i) m(xy) < My (0) for any x; at latitude 6.
Let my,(9) be the 1.u.b. (least upper bound) on all the

m(X) for X at latitudes < 6, Similarly to (i), we can
prove:

(ii) m(xy) = m,(6) for any x; at latitude 6,
Then let {6,,} be any denumerable set of latitudes for
which (7, 4(6,) = Mya(6,)) = €, for some € >0, where
8,> 6,. for any n>n', Also let {X,,} be any set of points

such that X, is above latitude 6, and below latitude
6,.1 (if there is one). Then

m(Xy) = m,,(6;) (by definition of g.1.b.)
2 € +my,,(8y) (ex hypothesi),
> € (since mpy,(6,) = 0).
Also
m(X,) = my . (6,)
2 M ga(0y) — (Mn1a(85) = m(Xy))
[since #m,4a(6,) = m(X,), X, being below 6, ex hypothesi]

= (mmax(ez) - mmin(ea)) + m(Xi)
2 €+€

= 2¢,
By induction, we easily prove that

m(X,) = ne;
and hence, since m(X,) <1,
n<l/e.

Hence there is a finite upper bound on the number of
latitudes 8 at which (#2,,.(8) - m,,(6)) 2 €. Let the set
of those latitudes be the set C..

Then what we have shown is that the cardinality of
C.<1/¢, for any €>0Q.

Part 2: Here we show that if C, has even one member
for € >0, then C,,, has indefinitely many members,
which contradicts the final result of Part 1. Hence we
show that C, is empty for any €> 0.

Now let X be at a latitude which belongs to C,. Ob-
viously X # N, since for 8 to be a latitude in C,, #y,(6)
must exist—and obviously m,, (90) does not exist.

Let P be the plane orthogonal to X. The intersection
of the sphere S with P will then contain all pairs of
points (Y3, Z,), Y5, Z2),...,{Y, Z,, - ++, which form
orthotriads that include X; and any point on the inter-
section of S with P is a member of such a pair. We
shall now show that any such Y, is in C,,.
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Let 6, be the latitude of ¥,. Then for any €’ >0,
there is a Y’ north of Y, for which m,,,(6,) + € > m(Y")—
otherwise it would be m,,,(6,) + € which would be the
g.1.b. on all the m(¥Y) for Y north of Y. Now let ¥, be
normal to Z,, and north of Y, but south of Y’ (see Fig.
5). Then, by Lemma 4, m{Y)) <m(Y’); and hence

(1) m(¥,) < my . (0,) + €.

Let X’ be normal to Z, and to Y. Then obviously X'
is south of X. (This follows trivially from Lemma 6—
see later.) Similarly for any €” >0 there isa Y,
normal to Z, and south of ¥, for which

(i) m(Y,) = mp,(6,) - €.

Let X” be normal to Z, and Y,. Obviously X" is north
of X. Now because (X", Y”, Zyand (X', Y, Z,) are
orthotriads,

mX") +m(Y) +m(Z ) =1,
mX') + m(Y,) + m(Z,) =1;
and hence
mX") - m(X') =m{Y)) - m(Y]).
But, by definition of l.u.b. and g.1l.b.,
M(X") = m(X") 2 Mgy e (0) = Mg4,(6),
where, since the latitude of X is in C,,
My ael ) = 114, (6) = €.
Hence
m(Yy) - m(¥;) > €

so that from (i) and (ii), for any €, € >0, m,.(6,)
— Mgl 8 + € + €72 €.

Hence, letting €’ =¢" =€/4,
mmax(en) - mmln(en) = 6/2)

which means that 8, is in C,,, ,

But, the plane P on which all the Y, lie, is not a
latitude plane (since X cannot be N—see second para-
graph of part 2), Hence there are indefinitely many
points on the intersection of the sphere S with P, which
have different latitudes. Hence there are indefinitely
many Y, at different latitudes; and hence indefinitely
many members of C,,5 .
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But this contradicts the result derived in part 1 of
this proof; and hence, by reductio ad absurdum, we
see that C, cannot even have one member,

Part 3: Here we show m is a constant of latitude and
hence a continuous function of latitude. First we tri-
vially see, from Part 2, that at any latitude 8, for
which 7,,,,(6) and m,;,(9) exist,

mmax(e) = mmln( 9)

Hence, by (i) and (ii) (from part 1) m(%;) = 9y .(6)
=My (8) for any x, at (northern) latitude 6, 6+#0 or
90. But m(X) =0 for any X at latitude 9, and m(N) =1
for N at latitude 90, and hence we see that » is a con-
stant of latitude. We can therefore introduce a function
m of latitude, so that m(8) is the value of m(X) for any
X at latitude 8 (where we define a function as a single
valued mapping).

Second, for any € >0 and 9>0, there must be a 8’
< 8 for which m(0’) > m,,(9) - € because, if this were
not so, then (m;,(6) ~ €) would be the L.u.b. of the
m(8’) for 6’ < 6. Hence, since we have just proved that
Meyia(0) =m(6), for 0 < 8<90, we see that for any € >0,
and 0< <90, there is a 6’ <6 such that m(6’) > m(0)
- €.

But also m,,,(6) = m(8’) for any &' < 6 (by definition
of l.u.b.); and hence for 0< 8<90, m(8) = m(¢).

Hence, for any € >0 and 0< 6 <90, there is a 6’ <9 for
which m(8) = m(6’) > m(9) — €. But this means that m
is a continuous function of 6 from below, for 90> 6> 0,
Similarly m can be shown to be a continuous function of
6 from above, for 0< 6<90,

Hence we have shown m is continuous at all northern
latitudes, except 0 and 90, QED

Lemma 6: Iff sin®6 +sin?6’ + sin?6” =1 is there an
orthotriad with members at latitudes 6, 6’, 9”.

Proof: At any latitude, including 6, there are mem-
bers of various orthotriads—let one such member be
X. Construct the plane P through O, normal to OX,
Obviously P intersects the sphere at all latitudes be-

tween 90 - 6 and 8- 90. (see Fig. 6.) One of these lat-
itudes is ¢’, because, from

sin%6 + sin?6’ + sin%0” =1
it follows that

sin®8 + sin®@’' < 1,
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i.e.,
sin%0’ < cos?6, i.e., sin?¢’ <sin®(90~ 6),
and hence §-90<68'<90- 6,

Let one of the points at which P intersects the sphere
at latitude 8’ be X’. Now there are fwo points on the
sphere, orthogonal to both X and X'—both of them along
the same line normal to OXX'. Let them be Xy and X;'
Moreover, we know that, for any orthotriad X;, X, X
with members at latitudes 6;, 6,, 0, respectively, we
have sin?6; + sin%6, + sin®6; =1,'? Hence X{’ and X," must
be at the two latitudes, for which the sin® is 1 - (sin?6)
- (sin®9). Hence there is an orthotriad (viz., X, X’, X{)
at latitudes 6, 6’, 6", merely in virtue of sin6 + sin?6’
+s8in?¢” =1, QED

We are now finally in a position to prove Theorem 1
(of the first paragraph of Sec. II above).

Proof (of Theorem 1). Because m exists it follows, by
Lemma 5, that there is an m"”, which maps values of
sin®0, 0< 6< 90, onto the closed interval [0, 1], such
that:

m "(sin?6) = m(P) for any P which is at latitude 6.
Note that the rotational symmetry of m (from Lemma
5) is necessary to ensure the single-valuedness of m”.
Moreover,

(a)" m"(1)=1 [since m(N) =1], and m"(0)=0 (by Lem-
ma 1),

and, from Lemma 5,

(b)’ m" is continuous everywhere on the open interval
(0, 1) and bounded.

And, from Lemma 6, we see that
(c)’ if Tx;=1, then Tm'(x,) =1.

(The continuity of m'’ follows trivially from the conti-
nuity of m.)

But {c)’ is easily shown to be equivalent to the
“Cauchy equation” on interval (0, 1), q.v.'? let %, %,,
(%, +%,) all be in (0, 1); and set x; =% +X,, x,=1= (%,
+x,), and x;=0. Then, from (c)’ and (a)’,

m (o, + %) +m"(1 = (i, +%,)) =1,

But now set x; =%, X,=x, and x;3=1= (x; +x,). Then,
from (c)’,

m"(x)) +m"(x,) +m "1 = (x; +x,)) =1.

Hence m"(x)) + m"(x;) =m”(x, +x,), for any x;, x,,
(% +x,) in (0, 1) [since if (x, +X,) is in (0, 1), so is
1= (r +x,)). 1

It is well known, however, that the Cauchy equation
for function 7", which is continuous and bounded every-
where on some interval, has the solution m"”(x) =x, for
all x on that interval (see p. 187 of Ref. 5). Hence, by
(b)’, m"(sin®6) =sin®6, for all 6 such that 0> 6> 90.

Now we can easily see that m(N') =1, where N’ is
the south pole (since N’ forms an orthotriad with any
two equatorial points). And hence any result derived
for northern points can be obtained for southern points
too (the same relations hold for southern points as for
northern points). In particular we can derive m’'(sin?6)
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=sin®6, for - 90< 6<0, where m'(sin®6) =m(P) for any
P at latitude 6<0,

Hence we see that, for any P on the whole of S,
m(P) =sin®d for any P at latitude 6, 6#0 or 90 or - 90.
But m{(N) =1=sin?90; and, for any equatorial E, m(E)
=0=sin?0. Also, m(N')=1=sin%- 90). Hence, for any
P on S, m(P)=sin?6, where 6 is the latitude of S. (In
particular, m is continuous at the polar and equatorial
points.) QED

lIl. PROOF OF THEOREM T

We shall now prove Theorem T.

In what follows, m and ¥ are as defined in (1)—(3) of
the statement of Theorem T.

Lemma 1: For any o.n. set of vectors {¢,;} which
spans ¥, we have that ¥ m(¢;) =1.

Pyoof: Let {¢,} span the closed subspace V, which,
ex hypothesi, includes ¥. Construct a ¢.o.n. set of
vectors in H consisting of {¥; ¢{ - - s 301 -+ b7 ** T,
where {¥; ¢,} span V. (Such a set can always be con-
structed by the “Gram—Schmidt” process.) We have
m(¥) + S mlps) + T m(p;) =1 [by (2) of Theorem T], and
hence, since m(¥) =1 and m($)> 0, we have that m(¢,)
=0 and m($;) =0 for all k, I. But since {¢,} spans V
(as well as {¥, ¢;}) we must have that

{d1edyeeesoy -ontpy -}

is ¢.0.n. in H too. Hence

2om(d,) +2am(p;) =1.

Since m{$;) =0 for all I, we have

Lim(p,) =1. QED

Now we can finally prove the Theorem T :

Proof: Let ¢ be any vector of unit norm in H, Then
either (¢, ¥) is real or complex (where m(¥) =1). First
suppose that (¢, ¥) is real. There are two subcases:

(a) ¢ L ¥, Then let ¢, be a vector orthogonal to ¥ and
¢, and V be the veal subspace spanned by ¥, ¢, and
¢y, i.e., Vis the closed set of real linear combina-
tions of ¥, ¢, and ¢, (of unit norm).

(b) ¢ not L ¥, Then there is a ¢y, for which ¢ L ¢,
and ¥ is a linear combination of ¢, and ¢ —i.e., ¥
= ap, +P¢. Moreover B ={(¢, ¥) and hence is real; and
a={¢;, ¥) which we can choose real (by adjusting the
phase of ¢;). We then let ¢, be a vector orthogonal to
both ¢, and ¢, and let V be the veal subspace spanned
by ¢, ¢, and ¢,—which will include ¥.

In either of these two cases, we therefore have a
three-dimensional closed linear subspace V which con-
tains ¥ and ¢. V obviously forms a three-dimensional
Hilbert space'’ with the same operations of addition,
scalar multiplication, and scalar product as defined on
the broader H. It is crucial to note, however, that V
is veal—i.e., all scalar products of vectors in V are
real. In particular for any vector ¢’ in V, there is a
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unique triple of real numbers {C,, C;, C;}, where ¢’
=3%3,C;9,, for any given base set {¢,} in V.

Now consider the real Euclidean space E5. We can co-
ordinate it so that for any X, in E, there is a representa-
tive triple of real numbers—the “coordinates of X;.”
Moreover, we can define a Hilbert space on E;, by de-
fining a scalar product (X, Y)=cosine of / XOY {0 being
the point with coordinates {0, 0, 0}).

It is obvious that there is an isomorphism i between
the spaces E; and V—which preserves scalar product,
vector sums, and multiplication by a constant, viz.,
i(¢) is that vector in E, with coordinates {C;, C,, C},
where ¢ =334 C;¢;. We can then define a measure m’
on those vectors of E; which are of unif norm-—viz, on
those vectors which are on the sphere of unit radius
about O, q.v.,

m'(X)=mi2 (X)).

This measure m’ is defined over the set of points on
a sphere in E;—Ilet it be S—and is easily seen to satisfy
the conditions (a), (b) imposed on the m of Theorem 1,
q.v.: Let Xj, X,, X, be any o.n. triad in S. Then, since
i preserves scalar product, we see that i(X;), i(X,),
i(X,) is an o.n. triad in V. But ¥ is spanned by any o.n.
triad in V, since V is, ex hypothesi, a three-dimen-
sional Hilbert space in its own right. Hence, by Lemma
7, Ym(i(X,) =1; so that Tm'(X,) =1.°

Therefore, we finally get that, for any Xon S, m'(X)
=sin®6, where 0 is the latitude of X (by Theorem 1).
But sin®0 = (N, X)?=(S, X)?, where S and N are the north
and south poles respectively; and it is a corollary of
Theorem 1 that these are the only points for which m’
has value 1—and hence that i(¥) is N or S [since m(¥)
=1]. Thus we see that m(i (X)) = {1V, i1(X)?
={(S), i (X))? and hence that m(p) = (¥, ¢)? [since we
have just seen that ¥ is either i"*(N) or i"'(S), and since
some X is i(¢), for ipn=1].

Second, suppose (¢, V) is not real, Now, if m(¥) =1,
then it follows that there is a set {qb,-} for which {¥; ¢}
is c.o0.n. in H, and m{¢;) =0 for all i. (For proof see
Lemma 7). But if {¥; ¢,} is c.o0.n. in H, so is {¥ exp(ia);
®;}. Hence, by condition (2) of Theorem T, m(® explia))
+Sm(p,;) =1. Hence, since m(¢;) =0, we have that
m(¥ exp(i@)) =1. Moreover, @ may be so chosen that
{¢, Y exp(i®)) is real. Hence the condition (3) in Theorem
T guarantees that there is a ¥’ for which m{¥"} =1 and
{¢,¥") is real for any given ¢. The whole series of
proofs up to the proof of Theorem T may then be re-
peated with ¥’ instead of ¥; and we then derive (apply-
ing the first part of this theorem) that m (o) ={(¢, ¥")?
where (¢, ¥)2 = [($, 1) |? since ¥’ =TV exp(ia). Hence,
in general, m(¢)= (¢, V)% QED

This completes the proof of the required Theorem
T.ﬂ

1A proof of the non-existence of partial hidden variable
theories, ” by J. Dorling, Chelsea College, London.
?Dorling does not provide suggestions for the following proofs
which appear in our paper: Lemmata 2, 3, and most of 4,

5, and Theorem 1,
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3The title of Ref. 1 notwithstanding, our proof has little
relevance to the ‘“hidden variables question,’”’ Condition I, in
what follows, need not be satisfied by hidden variable theo-
ries; and is in fact not satisfied by the theory of Bohm and
Bub, Rev. Mod. Phys. 38, 453 (1966), for example.

‘Again m may depend on S and ¢ but the dependence is sup-
pressed—in fact if S and ¢ is in a pure state, m()=1(, ¥){?2,
where ¥ is the eigenvector of B for value j [see (3)].
5In an earlier article, Found. Phys. 4, 181 (1974), this point
was not sufficiently well emphasized by us, but we correct
this here,
8A. Gleason, J. Math. Mech, 6, 885 (1957).

'J. von Neuman, Mathematical Foundations of Quantum
Mechanics (Princeton U, P., Princeton, N,J., 1968), p. 297.
8H. Krips, Found. Phys. 4, 381 (1974).

*P; and P; are “orthogonal,” i.e., P;1 P;, if the line from
P, to the center O of the sphere is at right angles to the line
from P; to O.

10The lemma comes straight from Ref. 1, although, in vector
notation, the same proof occurs on p. 450 of J. Bell, Rev.
Mod. Phys, 38, 447 (19686).
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1The most convenient way to imagine this is to imagine
turning AB through 360°, and, at each angle it passes through
as it turns, construct a great circle through ¥ on AB as
diameter.

12This is most easily seen, by realizing that the components of
ON along 0X;, 0X,, OX, respectively are cos(90~6,),
c0s(90 —6,), and cos(90 ~ 0,) if we set IONIl =1,

13This is just the proof called “step 1,” p. 187 of Ref. 5.

14Note that here we essentially use the three-dimensionality
of the sphere. For dimension less than 3, the proof breaks
down here,

15The relevant theorem here is proven as in M. Naimark,
Normed Rings (Noordhoff, Gréningen, 1964), p. 86.

18That ¥ is spanned by {i(X;),i(Xy),i(X,)} as far as V is con-
cerned is not, strictly speaking, sufficient to derive this
conclusion. We also need to make the point that the same
operations of addition and scalar multiplication which
apply in H also apply in V—-cf. p. 85 of Ref. 15,

17The author would like to mention the substantial encourage-
ment and help received from talks with Dr. H. A, Cohen.
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By using the apparatus of exterior forms, a new spinorial notation and Cartan’s theory of integral
manifolds, some new results concerning complex strong heavenly metrics are established. In particular, the
study of a subfamily of two-variable heavens (types G®[—], D®[—), and N ®[—)) is reduced to linear
equations, a prolongation process related to first and second heavenly equations is studied leading to a
(presumably) infinite hierarchy of 1-forms, and finally, the symmetries of the studied structure are
investigated from the point of view of its description by Pfaffian forms, elucidating in this way previous

results concerning Killing vectors.

1. INTRODUCTION

This paper is the fifth in a series of articles dedicated
to the study of the analytic continuation of general rela-
tivity, with special emphasis on the solutions of the
complex Einstein equations characterized by the self-
dual conformal curvature, (These spaces have been
called heavens by Newman! and Penrose, 2 The first
article® of the series outlined the formalism of com-
plex tetrads, forms, and spinors used subsequently and
established heavens as the integral manifolds of a cer-
tain partial differential equation of order and degree 2.
Actually, two equivalent partial differential equations
for a single function were given—the first and second
heavenly equations. In the second article, 4 a generaliza-
tion of the Goldberg—Sachs theorem to complex Rie-
mannian spaces was given, elucidating the important
role of complex null strings. Then in® many explicit
heavens of various algebraic type were studied and the
problem of finding the conformal Killing vectors for an
arbitrary heaven was reduced to a single equation while
the general theory of Killing spinors in both real and
complex Riemannian spaces was studied in Ref, 6.

The purpose of this article is to study the general
integral manifolds of heaven from a geometric point of
view, While the general form of a regular integral
manifold is only given implicitly, many of its properties
are obtained and studied form the point of view of both a
concise spinorial language and closed Pfaffian 1-forms.
The outline of the paper is as follows: in order to make
the succeeding sections more palatable we show first in
Sec. 2 how a special subcase of two-variable heavens
can be solved completely by the systematic use of ele-~
mentary exterior differential calculus which reduces the
problem to the linear two-dimensional complex Laplace
equation. For this case we give a complete classifica-
tion of the self-dual conformal curvature types.

In Sec. 3 we organize some of the basic results of
the previous papers in the concise spinorial language,
while Sec. 4 treats the integral manifolds in terms of
pairs of Pfaffian 1-forms. The idea of prolongations
first introduced by Cartan is used to study further
properties, "~? in particular the relation between the
first and second heavenly equations and establishing a
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hierarchy (presumably infinite) of 1-forms. Then in
Sec. 5 we investigate the structure of the regular in-
tegral manifolds of heavens from the point of view of the
general Cartan theory. *1° Furthermore, some explicit
results concerning subcases when the problem can be
reduced to linear structures are presented. Finally, in
the last section the symmetry group which maps the
heavenly integral manifolds into each other is computed
and the relation to Killing vectors is discussed.

2. TWO-VARIABLE HEAVENS

In Ref, 5 the general solution of the reduced two
variable problem [Eq. (2.1) below] was solved using
the method of first integrals. However, since the com-
putations involved were quite complicated, the classi-
fication of the algebraic degeneracy of the conformal
curvature was not given. In this section we present
this classification as well as the general form of the
metric, connections, and curvature using fairly simple
computations. Our techniques illustrate the ease in
which differential forms can be used to solve concrete
problems which at first sight appear formidable. The
reduced two variable equation of Ref. 5 is

0,04~ 6,,0,,=1. 2.1

Here we have transformed the constant — %2 in Eq.
(2.34) of Ref. 5 to 1 by a complex dilatation, The case
when 4% =0 was completely solved in Ref. 5 and yields
algebraically special metrics. We will also briefly
discuss this case in the present context, In both cases
we succeed in linearizing the theory,

To write (2. 1) in differential form language we first

write the contact 1-form
d0 —udx -vdy =0, (2.2)

which implies #=0,, v=0,, Then it is easy to see that
(2.1) becomes

dun dv—dx A dy=0. (2.3a)
Taking the exterior derivative of (2. 2) we find
dun dx +dvn dy=0, (2. 3b)

Now we can consider (2.1) to be equivalent to (2, 3) with
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the added condition that the 2-forms (2. 3) be in involu-
tion® with respect to the variables x and ¥, i.e., dxA dy
+#0, Now we integrate (2. 3b) considering x and v as
underlying variables. This is equivalent to a half
Legendre transformation and can be understood as a
certain discrete transformation in the linear symplectic
group Sp(4, ), upon integration we find

dp=udx +ydv=0 2.4

subject to the constraint dyA dx =¢,,dvA dx+0, Sub-
stituting (2. 4) into (2. 3a) we find

¢xx+¢w=0- (2.5)

Thus Eq. (2,1) is equivalent to the complex Laplace
equation as long as dvAdx#0 and ¢,,#0. The only solu-
tion of (2.1) which is not equivalent to (2. 5) is the case
©6,,=0 which yields the solutions

(2.6)

where o is constant and 6° is an arbitrary holomorphic
function of x, This is a special case of a class solved in
Ref. 3 of type [N]® [~]. We mention also that equiva-
lently we could integrate (2. 3a) with independent varia-
bles x and v which gives another Laplace equation when
substituted into (2. 3b),

O =+ixy +ay +0°®x),

Now the general solution of (2.5) is well known and
can be written as

¢=fz)+7 @) 2.7

where z=x +iv, z=x —iv (bar does not denote complex
conjugate), f and 7 are arbitrary holomorphic functions.
It is a straightforward calculation to express the metric
m terms of the new quantities. Putting F:=f,,,

F:=f;; we find
2dp _F-F
F+F +4’F+F“l‘7]

dst=dp [dz +dz -

+dq [- iFdz +iFdz - %dq], (2.8)

where the condition ¢,,#0 implies F+ F#0, Similarly

we can compute the heavenly connections. Using the
notation of Ref, 3,

Ty, =Ty=-Kdp+Ldg,

Typ=-Ldp+Madg, (2.9)
[yy=-Ndp +Kdg,
we have
F o B 2
(2.10)

(F2F - RF (F’F_.‘+F3 3
=4ZW’ M=8_TFTF“,)'5£).

After a little straightforward algebra we obtain the com-
ponents of the conformal curvature,

LW _ (p 4 Tyt < 3(j’—f)2)
1cW = (F+ F) (F+F -2=)

ic®= 2z(F+F)'4(FF FF+J(F-ﬁf:)3(Fﬁ+FT3)),
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ICW—_4(F+ E-‘(i‘*iﬁ RF
FFQ«Q +F%) - 3(F2F* + FFR) - 4FFFF)

F+F (2.11)
%C“)=8i(F+F)'4(I?‘F3—iF3 3(FF+§F+Q(F{" FFQ))
19 < 16(F+ F)"(FF‘+F‘I«“ 3R - I;F:)é”e FFQ))

The degenerate case 6,,0,,- 6% =0 described in Ref.
5 can be treated similarly. Indeed in this case (2.3a) is
replaced by

dundv =10 (2,12a)
and using (2. 4) we have

=0 (2.12b)
whose solutions are immediate, viz.,

p=0')x + ') (2.12¢)

This case was completely classified in Ref. 5 so we do
not repeat it here.

Returning to the curvature components (2.11) we can
construct Penrose’s fourth order equation for the
spinor K4 = (K1 K?%) to determine the Penrose—Petrov
classification. >!! In our case this equation can be
written in the biquadratic form

£ 1_ 0; T2y (*' F 14 9 FK?)4
(F 3}57?) (K- 26 FrH)4 + F—3}~+—F) (K" + 2 FK*)
+3. ——f"FF (K" + 2 FR2 (K - 2iFKY2 =0, (2.13)

Owing to the biquadratic nature of (2, 13), the roots can
be obtained fairly easily. Introducing

A:=F- 3F+2F, B: —3FﬁFF, c:=1"5-3}-%
(2.14)
we write (2.13) in the factorized form
(i K*) (o 3K %) (BLK ©) (85K ) = 0, (2.15)
where the components of the spinors o%, B are
ot =A 4 i[B + (B2 - AC)/P]12,
af=-2{FAY232F(B + (B - AC)1/2]1/2
(2.16)

Bi=A/244[B- (B2~ AC)Y/2)1/2,
Bs=- 2FA/? 3 3F[B - (B

The coincidences are, of course, obtained by the
vanishing of any spinor scalar products between o, B4,
We find the following classification:

- AC)I/Z]I/Z.

(1) F and F constant, or F constant and F= (az + g)-1/2
+k or vice versa;

Flat
(2) F constant, F arbitrary or vice versa, [N]® [-];

(B) F=aiz+8y, F=a,z+B, or F=(ayz+ ;)2 +k,
F=(a,z+8) 4V -», [Dlg[-];

(4) F and F otherwise [G]® [-],
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where o;#0, B; and & are constants in the above classi-
fication, It can also be mentioned that the correspond-
ing Killing vectors can be worked out from the results
of Ref, 5.

3. STRONG HEAVENS IN THE SPINORIAL NOTATION

The results derived in Ref. 3 concerning strong
heavens were obtained by working with the spinorial
formalism; however they were stated in a notation
which did not make explicit use of the spinorial charac-
ter of the various quantities concerned. We can now
considerably improve the condensed presentation of
these results by the simple device of introducing in
place of the variables {xypq} and { pars} which were
used in Ref, 3, the new variables defined by

x::_piy y::—sz bi=qy,
q:=4qy, 1’::1:(7'1, S::iai

which will be interpreted as formal spinors (p*,q4,34).
The spinorial indices should be then manipulated ac-
cording to the standard rules

Ya=eapd®, Pi=eii $
. A

(3.1)

d)B:d)AGAB, %9 _wAe é) (3. 2)
where
(€as)=ea3) = (_01 (1)) = B =(*5). 3.3)

The key functions® depend now on their respective
variables written in spinor notation, viz,

Q:Q(q.&’a.l)’ eze(pA’qA)v (304)
The corresponding heavenly equations assume the form

*Q 220

1
2 9% . +1=0,
2 99,893 dq*agt

Yo e __o% (.5

3pA3ps Opadb® | ap%0q,

1
2 =0,

and the (strongly) heavenly metric takes the form of

H:ds? =% g e*+2e%g !
2°'Q
09489 5

dg,@dqg
—sdghe (dpy— 22 qu) 3. 6)
q AT apAaPE . a

The heavenly tetrad and its inverse are then given by

2
. T
et et aq’, 89,008 493
@*B=vZ\ 1 _o) =2 | = g
ST TR
2
¢ g 0%
dq ’ dp apiapA qu
=V2 , , % ) 6.7
—dpt -
a’, b 30D a4
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a0 = (a2 =2 (20 _%)

- )
— 3q!’ oq'dqy agd
=-Y3 2 ?Q @

34%’ 3q%aq; og*

(2, 0 2

gt aglapA ap,’
-V3 A

2, 90 9

3t aplaph op,’ T 2

. (3.8)

2
T
2

For the invariant d’Alembertian in the strong heavens
we find

O0p:= VuV“fb = 2(3231 + 8384)¢
920 3
-2 — s &
994 9q8 3q4072

8 {3 % @
=9— +—
Zam(@" o op" apa) & .9
Now, the basic relation which establishes the brldge
between the 2 and © formalisms is

a8
=——, 3.10
A 99 4 ( )
It will be useful to consider a parallel object
-4 o8
e 3.11
= (3.11)

Then, for the base of the (closed anti-self-dual 2-forms
we have

—el/\e2+e3/\e4)

elne +ednet, 2e%n el
_(da*ndq,, -dgindp,
~(amindss indgs) @.12)
Writing this, we notice that
SB—_dgrnap,=dgindpy,
(3.13)

S —'daAA‘ﬁA—dP AdpA+2d( G)Aqu

At the same time, for the base of the self-dual 2-
forms we have

4 2
(5“’)=(2f e

e‘/\ez+e3/\e4)

e/\e2+e‘*‘/\e4 2e%ne!

Y PRV LI )

( % aQB 34c ¢

320

“ B)
[ 2dq A dp +ap e dg® /\dqc] (3.14)
The invariant volume along V, is given by
~dVi=xl=elne’relnet=5dg* ndg ,NdpBndpy

- kdg* ndg,AdG* N dg 3. (3.15)

Now, our 2*® from (3.7) induces the spinorial con-
nection [for the definition, see Ref, 3, Eq. (1.16)]

— AgR a Q axﬂ - C_ﬁ@_.__ T. s =0
FAB_dq aqgaqs aqsanaq dq apAapBapC ] AB

(3.186)

C.P. Boyer and J.F. Plebafiski 1024



The curvature form
Rap:=dT 5+ TysAT%

2
-3 ap‘a;?apcap" 244" (d" "t oo d"E)
==-3Ca8c0 57, (3.17)

determines the only nontrivial spinorial curvature

quantity
A (3.18)

Cancn = SpRapPop°ap? -

Of course, because H with the null tetrad oriented as in
(3.7) is a strong heaven, Cjzs5=0=R,,. The heavenly
conformal curvature can also be expressed in terms of
the first key function

o ey e 2ol @19
aq(AaEk oq s

3g%3gs aq 3 8q° aq”
(The symmetrization affects here only the undotted
indices ABCD.)

Cupcp ™

We will mention that from the two expressions for

ds? in (3. 6) one directly infers that
_oa ¥
094995 3PAOPg

Now, a basic advantage of the present notation is that if
we restrict the heavenly factor of the gauge group
SL(2,Q) in G =SL(2, C) xSL(2, €) to constant transforma-
tions, it coincides directly with the freedom of SL(2, C)
transformations of our formal spinors. These trans-
formations (which maintain the simple expression for
I, 5 in the terms of ©) represent the ambiguity gvoup of
the present spinorial description of strong heavens in
the 6 formalism. Notice that according to (3. 12) the
“hellish” 2-forms § Ab are invariants of this group, as
it should be. It should be observed, however, that
working with the & formalism, we then have two in-
dependent ambiguity transformations of our formal
spinors, SL(2, @) and SL(2, €), with constant coeffi-
cients, where SL(2,C) does not coincide with the hellish
factor in g restricted to constant transformations. This
fact should be remembered when working with the £
formalism if one wants to avoid confusions,

(3.20)

4. PROLONGATIONS AND THE DERIVATION OF THE
HEAVENLY STRUCTURE

In this section we will apply Cartan’s idea of pro-
longation’=? to study the heavenly integral manifolds
and their relation to an hierarchy of key functions.
Since the procedure of prolongation of an ideal of dif-
ferential forms is probably new to the reader we will
proceed rather cautiously, We will also employ the
spinorial formalism developed in the proceding section,
Our treatment here is local; however, the formalism
used is readily adaptable to a global treatment. The
standard mathematical device for patching the local in-
formation together to obtain a global theory is to use
the theory of algebraic sheaves.? Then the problem of
the existence of exact global 1-forms along some in-
tegral manifold is a problem involving sheaf cohomology
theory. We only mention this as a future road to the
global theory and all our integrations here will be in
star shaped regions.
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Now consider two independent 4-forms given in local
coordinates by

a1 =(dp' Adgy + dp* Adg,) AdGi A dGy

= 1(dp oA dg*) A [dg s dGP), (4.1a)
B:=(dp'Adp® +dgindgs) Adgy N dg,
= L(dpandp* +dG jndgh) A (dg pndg®), (4. 1b)

involving six complex variables {p,,q4,74}. We can
take the global manifold here as €%, Now an integral
manifold I of the ideal of differential forms generated

by (4.1) is a pair (N, i) where N is an analytic manifold
and 7 : N—@° is an immersion (locally 1—1) such that the
pullback i*w :=w@(p)) =0 for p € N and w in the ideal,
Hereafter, we will take poetic license and simply write
an integral manifold I as any subspace which satisfies

a=0, B=0, (4.2)

By external multiplication of & and 8 by the basis 1-
forms

{dp4,dq 4,dq ;} one easily finds that all 6= () of the
possible external products of five differentials of these
variables vanish on I as a consequence of (4,2). There-
fore, for any integral manifold we have

dim/ < 4, 4.3)

We are interested in exactly four-dimensional integral
manifolds along which we explicitly assume

0+dV=-dg*Adg ,AdpBAdpy

=tdg*ndg,NdgEAdg 5, 4. 4)

i.e., the ideal generated by o and B satisfying (4.2) is
an involution®® with respect to either set of variables
{G1,94r or {ga,p4}. The last equality in (4. 4) follows
from =0,

Now with dV+0 we can select in particular, {7 1,4}
as local independent coordinates for I, then having

Pa=04la5,T5p) (4.5)
so that Eqs, (4.1) and (4. 2) become
api + ap2)

=|- = +-—)dV=0, 4.6

* ( 89,  9qy (4. 6a)
api apz ap2 ap2 + )

e e - - 4+ 1)}dV=0. 4, 6b

P (aqi oq ~ 541 o3 (4. 60)

As a consequence of the local inversion of the Poincaré
lemma, (4.6a) implies the existence of a function
Q=2Q(g4,74) such that

292
3qs
Plugging (4. 7) into (4. 6b) we recover the first heavenly
equation (3, 5a). Thus our integral manifolds I of (4, 2)
are, at least locally, in 1—1 correspondence with the

solutions of the first heavenly equation. We will now
analyze various consequences of Eq. (4.2).

ph= @.7)

In order to proceed systematically with the program,
we will now state an elementary lemma!! (which will
heretofore be referred to as L):

Lemma L. Let /), denote a star-shaped region of a
complex analytic manifold M, of complex dimension n,
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and let x!,,..,x* be k independent local coordinates in
Dn i€, dxAdx?A . -Adx*+0, ksn, Let e be a 1-form
(e € A) such that in ), :deAdx'A- - -dx* =0, Then there

exists in /), O-forms x,y,,...,¥,€ A° such that
1]
e=dx+21y¢dx‘. (4-8)
fu
We can now rewrite (4. 1a) and (4. 1b) in the form
a=d(prdq \) A dgi A dGs, (4.9a)
B=13d(pdp,+q"dg ;) Adgy A dgy, (4. 9b)

and applying L to the integral manifolds for which «
=B=0, i.e., (4.2) is satisfied, we infer the existence
of functions Q, = and s* such that

phdg,+BAdg = - ag,
shdg,+3prdp, + tqtdg s =dz.
Differentiating these relations we have of course
dp*ndgu =~ dpA ndG;,
Hdp*ndpa+ dZAndG ;) = - ds* A dg..

(4.10a)
(4, 10b)

(4.11a)
4. 11b)

Now, the new spinors which have appeared in these
relations are p; and s,. We can now observe that the
pairs of spinors {p,,q,} and {94, 74} play symmetric
roles, Indeed, multiplying externally (4. 11a) by dg,
Adg, we deduce the equation

a:= (dﬁi/\dzii +dpt A dgs) ndgyndgy
=3(dPindg*) A (dgsndg®)=0

on an integral manifold. Now take the external
“squares” of both sides of (4.11a); this gives

Gy NdgsAdpi A dbt= L dgAn dg i AdpPAdD
=dqNdgy A dp* Adp?

4.12)

=idg* AdgAdpBAdpg=dV +0,
4.13)
Consequently, the functions {p ,;,E;,} are independent.
Now, eliminating dp®Adpp in equality (4.13) by the use
of (4.11b) leads to

0=R8:= (dj?i/\ dEi +dqy A dg,) NdgEAday

= 3dP A dpA +dg ndg?) A dZandTP).  (4.14)

Thus, equations a=p=0 and @ =B=0 imply each other
and are related by the formal transformation
{pA, da 5,&} - {p,‘, a;h qA}°

Now, a =0 by the application of L and again gives us
(4,10a), From E:O, however, by the application of L
we obtain the new information that there exist functions
5* and = such that

SAdg, +1PAdp s+ Lqtrdga=dz. (4.15)
This relation differentiated gives, of course,
LdpAndp g +dgAndg,) =- dSAAdg . (4.16)

It is now clear that the equations o =8=0 again lead,
through the elimination of 53 in the form of p; = 3Q/dg4,
to the first heavenly equation, (3.5a). Therefore,

we can now equivalently state the problem of the inte-
gral manifold as follows: Postulating simultaneously
any of the two pairs of equations in 1-forms,
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4 { dZ =z p*dp,+stdq, +2q*dg,
- dQ=prdg, +p*dq;, }
dZ = qtdq,+54dg i+ 354dp; )
one is led to the first heavenly equation, Thus, it is
reasonable, instead of considering separately the pair
A or the pair 4, to consider the three equations in
(4.17) as 1-forms where there enter six spinors
(Pasda, SasP1i,94,54) and the three key functions
(Z, 9, T) together as equations which determine an in-
tegral manifold in the corresponding multidimensional
space,

We shall thus call the three relations in (4. 17) the
nucleus A/ of the heavenly structure of 1-forms. The in-
tegrability conditions of A/ have of course the shape of
three equations in 2-forms,

(4.17)

%dPA/\dPA+dSA/\qu+%dEI-A/\dEA=0 W

. b

. A A e —
N : dpiAdg,+dp {\qu»o o >6A- (4,18)

2dg*Adg,+dsAndgy+ zdpAAdpi=0

(Of course, it is enough to postulate 34 in order to
deduce 34 and vice versa.)

Now, we are going to show that // forms a natural
part of some much wider structure of 1-forms, which,
among other things, also describes the integral mani-
fold of the second heavenly equation. For this purpose,
we first respectively eliminate in the expressions for
a and @ [the formulas (4.1) and (4, 12)] dg 3/ dg® by
using (4. 11b), and dgzAdg® by using (4, 16); this leads
to the equations

a%ty = (dp  Adg*)A (dsgndg®) =0, (4.19a)
@ = (P A dgA) A ([dSyAdgP) =0, (4. 19b)

At this point it is convenient to observe that the
numerical identity

(4.20)

(any object skew in the three indices in two dimensions
vanishes), when contracted with dk*AdlB3AdmC Adn®
provides a general A* identity

G:dk*Adl NdmBArdng+dRA Ndny,NdlBAdmg

€as€cp T€gceap Tecacnp=0

+dk* AdmaAdlBAdng =0. (4.21)

In particular, identifying here m* =n* we obtain a
special identity
S:idk* A dmandIBA dmg=~3 dF* A dly A dm® A dmp.(4.22)

Now, by using S, we can rewrite (4.19a)—(4.19b) in the
form

ottt =—3ds* A dp, A dg® A dqp =0, (4.23a)

G = — 3 dsh A dpi A dg® A dgg=0. (4.23b)
Now, rewrite (4.11b) and (4. 16) in the form

—Ldgi A dg;=4dpt A dp, +dsPA day, (4.24a)

—Ydg*ndg,=5dpA A dp; +dsA A dag. (4. 24b)

By taking the external “squares” of the both sides of
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(4.24a) and (4.24b), and by applying in doing so {4.22},
we obtain the A? equations

y:=dp* A dp, A dsB A dgy —3ds* A ds, A dgP A dgp =0,
(4.25a)

y:=dpA ndp; Ads® Adgg—sdsh nds; AdE Adgs=0.
(4.25b)

Now, by application of L, we infer from (4.23a) and
(4. 23b) the existence of the functions such that

shdp, +ridg,=de, (4.26a)
A dpg + 74 dg;=do. (4. 26b)

But according to (4.13), the variables {p,, g,} and
{P4,ds} are respectively independent. Therefore, we
have

®=@(9A9 qA)7 @T:é(EA.y Eﬁ')y (4.27a)
A 30 38 4.27b)
ST ob4i (

Now, putting (4.27) into (4.25a) and (4. 25b) one easily
obtains

1 2% 2% 220
52(_ . + )dvzo, 4.28a2
Y=\2 3pA0bs op,0p°  PAD, ( )
_ 1 328 220 220 ) .
=2{= . + < av =0, 4,28b)
4 (2 0pLaps 2Pi%PE  aphoy; (

It follows that ® must fulfill the second heavenly equa-
tion, (3.5b) and @ fulfills a copy of the same equation in
the variables g4, p4:
1 e 2% %6 _
2 0pAop; opsop8  opAog;
We should like to observe that in Ref. 3 the fact that
the first and the second heavenly equations are equiva-
lent was described in an implicit manner only. In the
present study, the above derived implication (@ =8=0)
— {¢*** =y =0) explains a part of the mechanism of this
equivalence. The inverse implication (% =y =0)
— {@ =8=0) can be also easily derived, indeed, y=0
is equivalent to the statement that the external square
of the closed 2-form, g§dp* A dp, +ds* A dg,, vanishes.
Thus, this 2-form is simple, and hence by the applica-
tion of the Darboux theorem, can be represented as
- d(g;dg; +dT) =— 3 dg*Adg ;. Therefore, ¥ =0 assures
(4.24a). On the other hand, %" is equivalent to (4.19a)
and by use of (4.24a) reduces to ¢ =0. Moreover,
(4. 24a) multiplied externally by dq® A dqy clearly gives
B=0.

0. (4.29)

Now, in Ref. 5 it was found that in the study of the
Killing vectors in strong heavens in the @ function
formalism, an important role is played by a new func-
tion, A. We will now be able to show that this function
can be interpreted as a natural member of a structure
of 1-forms, which naturally emerges by a further ex-
tension of the procedures applied in this section.

Indeed, by closing (4.26a) and (4. 26b) we have
ds* A dp, + dr* A dq, =0,
dsh A dpy+ aPh A dgp=0.

(4.30a)
(4. 30b)
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Now, externally multiplying (4.30a) and (4.30b) by
dp* A dg, and dp* A dgy, respectively, and by applying
S, (4.22), we infer that

ds* A dgy A dpP A dpg +dr* A dpyA dg® A dgy =0,
4.31a)

d5AA dg; A dBE A dbg + dFA A By A dP A dgg=0.
(4.31b)

These relations can now be used in (4, 25a) and
(4. 25b) transforming these equations to the form

Y=o (bdst A ds, +dr* A dp ) A dg® A dgg =0, (4.32a)
F=— GdA A dsg+d7AN dP A dGP A dgg=0. (4.32b)

Consequently, by applying L, we infer the existence
of functions such that

3s%ds, +ridp, 1t dg, =dA, {4.33a)

354 g5 + A dp; + A dg; =dA. (4.33b)
By closing these relations we have of course,

3ds Adsg+dr* Adpy+dtAndg, =0, (4. 34a)

Lish A d5;+d7A A dp +dTA A d; =0, (4. 34b)

Now, if we understand A as A=A(p,, q,), then from
(4. 33a) we have

oA s
—— =72 +5sB 28
pa TN
so that (4.26a) implies
00 13e % A

5&:4--2—5;;—3—81) 31)‘4_51;1. (435)
Now due to the identity (8/0p,)(8/0p*)=0, one easily
sees that Eqs. (4.35) imply and are implied by the
second heavenly equation (3.5b). Notice that (4. 35) is
just the spinorial version of the last two equations of
Egs. (2.33) of Ref. 5, which appear in the master
equation for determining the Killing vectors in heaven.

Now our procedure of prolongations to obtain new
Pfaffian 1-forms can be continued presumably in-
definitely. However, there is one important difference.
From the 1-forms we have constructed up to now, that
is Eqs. (4.17), (4.26), and (4.33), we can choose any
neighboring pair (4.33a) and (4.26a), (4.26a) and
(4.10b), or (4.10b) and (4. 10a), or the corresponding
barred pairs to reconstruct the entire heavenly struc-
ture. This, however, appears not to be the case as we
continue further up the ladder. That is, if we construct
the next 1-form and its barred associate by applying
the same techniques as previously we can not use this
1-form in conjunction with (4. 33a) to derive the second
heavenly equation or its associated 1-forms (4. 26a) or
(4. 10b). It appears that above the A 1l-form {4.33a)
infinitely many 1-forms appear and that possibly all
are needed to regain the entire structure. We will now
write our heavenly hierarchy of 1-forms in a much
more concise notation and also assign complex dilata-
tion weights to the variables which appear.

We begin by noticing that all the 1-forms constructed
so far enjoy a scale invariance of the following type:
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ga—rexp(-in/2)qs, pa—rexplin/2)p,,
sa—=1expl(idp/2)s,, 7,—rexp(5in/2)ry,
ty—~nexp(Tin/2)t,, Q-2%Q, = -—-2%expliu)z,
®—-A%exp(2in)®, A—£2exp(3iu)A,

(4. 36)

where A, p € €. The corresponding transformations for
the barred quantities can be obtained from (4. 36) by
putting a bar on the corresponding variables and
changing p — - .

This invariance exhibits the fact that all our 1-forms
can be characterized by their weights with respect to
exp(ip). This suggests the following change of notation.
We introduce spinors y,(j) and scalars &(I) defined by

30)=-,
o()=2, &(-1)=%,
®2)=06, &(-2)=0,
®(3)=A, &(-3)=A,

Pal- 3)= s> JA(%) =4q4,
$a@)=pa, $il-2)=Pi,
‘pA(%) =84, (-P_A'(- %) =§A'9
lpA(%) =74 {p_Aﬂ(" %) :?A"
alB) =t4, %{(* = ;A'-
It is understood here that j is a half-odd integer, while
lis an integer. Then we can extend y,(j) to all nega-
tive half-odd integers and §,(j) to all positive half-odd
integers by
pali)=0—j< -1,
Pi(H=0~j>3.

(4.37)

(4.38a)
(4.38b)

Now the important point is that we can apparently also
extend ¢,(j), P4(j) to the remaining half-odd integers
and ¢(I) to all integers by the prolongation process.
Indeed using (4.37) and (4. 38), we can write all our
previous Pfaffian 1-forms (4.17), (4.26), and (4.33)
succinctly as

do() =% T M=) dpa() + PR - i)}, (4.39)

where j runs over all half-odd integers. Now the pre-~
viously obtained 1-forms are given by the range
1=-3,...,3. However, we have checked the validity

of (4.39) for the larger range l=-17,...,7. Indeed it
appears that (4.39) is valid for qll integers 1. Hence,
we conjecture that the heavenly hierarchy given by

(4. 39) is, in fact, infinite. We have not been able to
prove our conjecture, however. One might think that
an inductive proof would work, but a closer examina-
tion shows that one must invoke the induction hypothesis
at each stage of the prolongation process, i.e., itis
necessary to alternate invoking the induction hypothesis
with implementing Lemma L. In spite of this we see no
reason why the prolongation process should break down
for higher values of I.

Now the closure relations for (4.39) are given by
W=t T Adp 1 -)A dpa(i) +dgA1- A dpi(i)} =0
(4. 40)

It is clear that the relations (4.40) split in a natural
fashion into three subfamilies: the pure heavenly sub-
family (no dotted spinors)

w(l)=% Zj) dp* (1 =) dy,()=0, 122;

the pure hellish subfamily (no undotted spinors)

(4.41)
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wW=3 T dif(1-j)A dgg=0, 1<-2; (4.42)
and the subfamily where the three forms, 4&(1), d&(0),
and d®(- 1) necessarily mix the undotted spinors. The
corresponding equations are of course

WD) =zap @A dpa () + Ay BN diy(=3)
y / ARG A dpi(h) =0,
™~ _ L 1 TA; L =
@) =dpt A dpa(-3) + @A (=D A dpi(3), (4.43)
o= =5t (- DA dpa(- ) + A=A dpg(d)
+3dpA (- DA dpi(- 1) =0.

It is quite clear that A* or 4/~ assumed is enough to
reproduce all the structure considered.

Finally we mention that from (3.12) one easily sees
that equalities (4.43) amount to the description of the
forms s*® through the alternative formulas

sT=dyA (= ) A dy(-3)
== 2dPA (= DA di() - P (= ) dipi(- b,
$2= - dPAG)A dy (= B) =+ dgph(= 5 A dii(3),
s = dpA @) A dpi(3) = 2dpA BN dya(-3)
+dZ/JA(§)/\ de(%)-

5. GENERAL PROPERTIES OF THE INTEGRAL
MANIFOLDS

In this section we consider some important properties
of the heavenly integral manifolds. While we have not
been able to find an explicit expression for the general
solution, we can use Cartan’s theory® ' to construct
stepwise the regular integral manifolds in terms of
their tangent spaces. This will allow us, for example,
to determine at each step the arbitrariness of the in-
tegral manifolds, i.e., on how many arbitrary functions
of how many variables the general manifold depends.
To do this we can begin with any of the equivalent forms
of the heavenly manifolds. It seems best to use the al-
ready partially integrated description given in terms of
the two Pfaffian 1-forms (4.10b) and (4.26a). Here we
write them in component form

(4. 44)

w,=d® +s,dp, — 5,dp, +7,dq, - ¥, dq,, 5.1)

w,=dE +3s,dq, - 55, dq, + 343 dq; - 2 q; dg;
+3pydp, — 2 by dp,.

These forms are, of course, zero on an integral mani-
fold. The closure easily gives

dw, = ds,A dp, = ds, A dp, +dvy A dq, — dr, A dgy,

5.2
dw,=ds, A dgy~ds, A dg, +dgs A dgi +dp, A dp,. ©.2)

Now we are working on complex Euclidean n-space
where n=12. We wish to find the regular integral mani-
folds by successive applications of the Cauchy—
Kowalewski theorem. Now at a regular point in €'2, the
rank of the system (5.1) is 2, so the Cartan character
S, =2. A vector in the tangent plane to a solution must

satisfy
Xl =X1w,=0 (5.3)

where _ denotes the inner product between differential
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forms and vector fields. The polar system is obtained
by adjoining to (5.1) the 1-forms

X, Jdw,, X, ldw,, (5.4)

where X satisfies (5.3). This system has rank 4 (i.e.,
sy +s,=4), so s,=2, A two-dimensional integral mani-
fold is obtained by constructing X, to satisfy (5.3) and

X (X, ddw,) =X 1 (X, ddw,)=0. (5.5)

Its polar system is obtained by adding to (5.1) and (5. 4)
the 1-forms X, Jdw; and X, Jdw, which has rank 6 and
thus s, =2. Continuing in this way we obtain a three-
dimensional integral manifold with tangent vectors

{X1, X,, X,}, where X, satisfies (5.3), (5.5), and (5.5)
with X; replaced by X,. The polar system is obtained
by adding X3 1dw, and X, _tdw, to the previous polar
system. Its rank is 8, thus s;=2. The four-dimension-
al integral manifolds {X;, X,, X,, X,} are constructed as
before with X, orthogonal to the last constructed polar
system. However, if we add X; ldw, and X, Jdw, to
this polar system, its rank remains 8, since we are in
C'2 and 12 - 4=8. Thus the genus g=4 and the maximal
regular integral manifolds have complex dimension four,
which of course we already knew. We also have s,=0.
Now we can use Cartan’s criteria (Ref. 8, p. 75) to
state for example, that the general solution for heavens
depends on two arbitrary functions of three complex
variables. To sum up, the regular maximal integral
manifolds of heaven are determined by

X, Jwy =X, Jw,=0,
{5.6)
X, (X, ddew) =X, J(X, Jdw,) =0, i#j,

i,j=1,...,4. The only qualification that we must add
is that (4. 4) be satisfied, i.e., that the system (5.1) be
in involution with respect to the spinors g4, p4. Equa-
tions (5.6) give, at least implicitly, the general
integral manifolds of heaven in terms of the tangent
spaces at each point.

In order to find explicit integral manifolds for heaven,
we deal with the second heavenly equation in the form
given by (4.25a) and the 2-form dw, given by (5.2). In
component form, (4.25a) reads

dsy A dsah dgy A dgy +dsy A dgy A dpy A dp, — dsy A dg,

AdpLA dpy=0 (5.7

on an integral manifold. In fact we would like to be able
to linearize, at least partially, the differential equations
for an integral manifold. Indeed we will see that the
case treated in detail in Sec. 2 is a special case of the
linearization that follows. Again as in Sec. 2, the trick
is to integrate the equation dw, =0, treating q;, g, py,
and s; as independent variables. We have the existence
of a function ¥(py, s4, g1, g;) with

A% = sydpy - pydsy — vydgy + v dg, =0 (5.8)

on an integral manifold. Plugging (5. 8) back into (5.7)
we obtain the differential equation

Yy Vo0, = Voo Vo (5.9

The advantage of this form is the following: As seen

from (2.7), the derivatives of ® with respect to ¢; do
not enter into the calculation of the metric, and thus it

+¥sq = ¥y, =0.
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is also this way with ¥. Moreover, the nonlinear terms
in (5.9) contain derivatives with respect to the g,’s.
Thus (5. 9) is susceptible to linearization involving non-
trivial metrics. We mention that the condition that the
original variables p,, ¢4 be independent (i.e., dV#0)
imply that 11/3;131 +#0, and that only those heavenly mani-
folds such that @, , #0 are amenable to the above
treatment. The case @,,,=0 is easily handled, how-
ever, as shown in Ref. 3.

Now it is straightforward to determine the metric in
terms of the function ¥. Indeed, the necessary deriva-
tives are

_ g gt
Oy, = Vo Opyp, ==~ V55 Ve
® gt \I,Z R\ (5. 10)
PPy T TS(ST S1A L

Simple substitution of (5. 10) into (3. 7) then gives the
spinorial components of the metric in the ¥ formalism.
Similarly the connection and curvature components can
be computed; however, we do not give these explicitly.
The important point is that as in the ® formalism,
the metric, connections, and curvature do not involve
derivatives with respect to g,.

With this in mind we look for solutions of (5.9) with
Vo0, =0. [The counterpart in the @ formalism is @0,
= @1, = 0 which does not enter the second heavenly
equation (3.5b) explicitly. ] Thus ¥ can be written as ¥
=F(p1, 51,41 + Py, a1, ¢») and the analysis of (5.9)
splits into two cases depending on whether Fsls1 8
vanishes or not.

Case 1: F,lsl,l#o.

This case reduces to the three dimensional complex
Laplace equation after some gauging and changes of
variables,

Yoy T o, t = 0, (5.11)

where now ¥ is a function of py, p,, py, and
Ps=s1+8, pa=iq + iL,
fi=s1+ f alg1) dgy, algy): =¥pa,e

There are many ways, of course, to solve (5.11) de-
pending on different domains of holomorphy.'? The gen-
eral solution can be given explicitly and depends on two
holomorphic functions of two complex variables. We
mention in addition, regarding solution techniques for
(5.11), Ref. 13 where group theoretical techniques are
used and Ref. 14 where an operational calculus
approach is used. We also mention that the special case
when a(g,) =1 and ¥ is independent of g, reduces to the
two-dimensional Laplace equation treated in Sec. 2.

Case 2: Fs1slsl =0,

This case has two vanishing conformal curvature
components, i.e., C®=C%’=0, The quantities neces-
sary to compute the metric are

Vs =g'(qp1 +£%a),

L2798 =g'g1)s1 +%gf,lpf+gflp1 +Yqy), (5.12)
1
‘Ill’lbl = ‘Ilsl 5951 + s_g—;lalpf + %gglalplz +fa11p1
+fay (1) + ¥ g (& q1),
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where g°, &, 7%, 7! are arbitrary functions of gy, & is an
arbitrary function of its arguments, and £:=g,

- 388 (py +£°/8")%. This case has some overlap with

the case treated beginning with (4. 12a) in Ref. 5, but
in general they are not eguivalent.

It is clear from the above analysis that many classes
of metrics appear and can be given explicitly and hence
studied in much more detail along the lines of Sec. 2.
We will not do this here, however. Finally, it is
mentioned that a similar linearization yielding non-
trivial metrics is obtained by setting ¥,,,=0 in (5. 9).

6. SYMMETRIES OF THE SECOND HEAVENLY
EQUATION

In this section we describe the symmetries of the
second heavenly equation. In fact, we show that essen-
tially the infinitesimal symmetries coincide with the
Killing vectors obtained in Ref. 5 aside from the func-
tion A, which we have already seen arises from the
prolongation process described in Sec. 4. Generally it
would be of interest to study the symmetry of the com-
plete heavenly hierarchy or at least the system of 1-
forms which begin with and end with A (i.e., !
=-3,...,3). This could shed light on the meaning of
the hierarchy. However, we content ourselves here with
finding the infinitesimal symmetries of the pair of
Pfaffian 1-forms (4. 26a) and (4. 33a). The reason for
choosing here the 1-form (4. 33a) instead of (4. 10b) to
represent the heavenly integral manifolds is that it
allows for the dependence of the symmetries on A which
is of interest from the point of view of the Killing vec-
tors.® We will show, however, that this dependence is
not allowed as transformations on the space spanned in
a local chart by (g4, 4, ©).

Now let M be a differential manifold and let ¢ be an
ideal in the Grassmann algebra A(M), Also let ¢ be
closed under exterior differentiation. Suppose that ¢
is generated by w, and dw; and let (N, i) be an immersed
submanifold which annuls ¢, i.e., an integral mani-
fold. Then the local symmetry group for ¢ is given by
the set of all local diffeomorphisms ¢ : M -~ M such that

o*wed for all wed, (6.1)

where ¢* denotes the pullback of ¢. Hence ¢ is a
mapping on M such that the integral manifolds of ¢ are
mapped into themselves. Infinitesimally (6. 1) reads

£xw=2Nw, (6.2)

for all we ¢ and where w; € ¢, ' are locally holo-
morphic functions on M, and X is the vector field de-
scribing a local one-parameter trajectory ¢,.

Now let us apply (6. 2) to the ideal ¢ of differential
forms generated by the two 1-forms (4.26a), (4.33a),
and their closures (4.30a), (4.34a). Explicitly, we
write

wy=de - stdp, - rtdg,, (6.3a)

wy=dA—$stds, —vidp, -t dg,. (6. 3b)
Then applying (6. 2) we have

Exwy = Mw, + Mw,, (6. 4a)
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Exwy = MNw, + Bow,. (6. 4b)

We mentioned that the commutivity of the Lie deriva-
tive and the exterior derivative applied to (6.4) guaran-
tees that the 2-forms dw, and dw, are back in ¢ after an
infinitesimal transformation. Now in order to solve

(6. 4) we write the w’s out explicitly and make use of the
identity'®

Fxw=d(X Jw)+X Jdw, (6.5)

Then equating the coefficients of the independent 1-
forms on the space €'? we obtain a system of first order
coupled partial differential equations for the vector
fields X. In order to facilitate matters it is convenient
to define functions F and G by

F:XJLUI, G:X.sz. (6.6)

Then upon equating coefficients in (6.4) we obtain the
equations
A
FtAZO’ Xt '_—FrA:GtAs
A_ L AR _

X" =F, +3s Fy=G,,, 6.7)

X =F,, +5*Fo+¥F,=G, +1s'G,,

X =F, 4 Fg +PAF =G, +5%Go +74G,,
where x* denotes the component of X multiplying 9,4,
etc. The first three of Eqs. (6.7) can be integrated
immediately to give

F= FAVA + FO,
A 0, L A0 00 (6.8)
G=Fty+(Fg, +2s " F)r, + G,

where FA, F° and G" are arbitrary functions of the
spinors g, pa, 4 and scalars ®, A. Plugging (6. 8) into
the last two of Eqs. (6.7) and doing some algebra, we
have

ngo, FO:HASA+H0, F‘i=FsBA =F‘g :FfAZO,

Fy +s"F§ =Gy, +35*GYl)

Gps +s*Gy' =H;, 85 +H,,,

F}, + €4 scHC + 4By =H] +3s"H§ + ™ GY),
where H* and H® are arbitrary functions of g4, pa, ®,
and A. The integration of (6.9} is straightforward but
rather tedious. First we notice that F® is a function

only of g, and after some algebra we find that H®, H',
and G% must have the forms

(6.9)

HE =HBC(q)jJC +H? %q),

H'=h'(g)e +1%g,p), (6.10)
GY=g¥q)A + &' (g, p)® +£%4q, b, 9),
and we are left with the constraint equations
g'=3F] sasp+hy, 54 +8"(q,P),
HBA=F5A+QB“‘(h‘—g2), (6.11)
1}
g, =HFS = 21 Jpcss + (Hg ~ & €H)sg +hy

where 1’ and o are functions of g4 only. Upon further
integrations of (6.11) we find that both 4! and g% must
be constants and

FA:¢GA+C1€ABQB’
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HAZ = ¢, 0 + Co€®4,
HA =y, — aye*Pas, (6.12)
R =F Bq yaga PabsDC + 30 upPals + Xy P4+ Hg),
1 1
8" =Tibayaga i pP AP 8D DD+ V0 papacPalsPo
+ %¢°A¢B¢0p“pasc + wﬂAGBpAsB +%XGAGBPAPB
+hi3 (@pa+£").
This ends the computation of the infinite dimensional
Lie algebra [/ of infinitesimal symmetries of the
heavenly manifolds. It is not difficult to see that the
only symmetry in (6. 12) which is not a projection onto
transformations of the space with local coordinates
(g4, pa, ® is that symmetry generated by the function
2°%4g). This function generates ¢, dependent transla-

tions of A and leaves (6. 3b) invariant since the spinor
t, is essentially arbitrary. The Lie algebra / , gen-

erated by these translations is therefore less interesting.

Indeed, it can be seen that [ ; is an ideal in / and we
thus consider the factor algebra [ /[ ;. The projections
of these onto the base space spanned by (g4, b4, ©) are
given by the vector fields

A
X" =, +Ci€'8gp,

A
X’ =¢GAGBPB + CZEBAPB + zqu - aOEABqB,
X®—(c,+3Cye +1’

It is now easy to see that the vector fields (6.13) are
precisely the Killing vectors in spinorial notation given
by Eq. (2.33) of Ref. 5, with @;=0. On the other hand,
we have understood the @, term in terms of the pro-
longation variable A in Sec. 4.

{6.13)

Finally, we mention the possible use of the sym-
metries to obtain solutions of the second heavenly equa-
tion. Given a symmetry vector field we can find rela-
tive invariants which essentially reduces the number of
variables of the original partial differential equation
by one. Indeed if we know three independent symmetries
we can reduce the problem to quadratures. Moreover,
given any solution we can obtain other solutions by
group transformations.

Closing this paper, we should like to conclude that we
believe that its results, although not as complete as
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one might desire, seem to justify our belief that (i) it
is profitable to use an abbreviated spinorial notation
as introduced in Sec. 3, and (ii) that the apparatus of
the canonical Cartan’s theory of integral manifolds is
suitable when striving towards better understanding of
the nature of heavens.
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We present a detailed discussion of the infinitesimal symmetries of the Hamilton-Jacobi equation (an
arbitrary first order partial differential equation). Our presentation elucidates the role played by the
characteristic system in determining the symmetries. We then specialize to the case of a free particle in one
space and one time dimension, and study the local Lie group of point transformations locally isomorphic to
0(3,2). We show that the separation of variables of the corresponding Hamilton-Jacobi equation in the
form of a sum is related to orbits in the Schrédinger subalgebra of o(3,2). The remaining orbits of o(3,2)

yield symmetry related solutions which separate in more complicated product forms. Finally some
connections with the primordial equation of hydrodynamics (without force terms) are made.

INTRODUCTION

One of the most important techniques in finding ex-
plicit solutions of partial differential equations is that
of Lie group theory. This is said while keeping in mind
the recent developments which illustrate the intimate
connection of the time honored method of separation of
variables with the theory of Lie groups, !~% Up to now
most of this development has treated only second order
linear partial differential equations, although the first
and perhaps best understood example of separation of
variables occurred for the nonlinear Hamilton—Jacobi
equation, ®~? Indeed there is a close connection between
the separation of variables for second order linear
partial differential equations of hyperbolic—elliptic type
and the corresponding quadratic Hamilton—Jacobi equa-
tion which describe the characteristic surfaces of the
former. This connection is usually described in the
dual formulation in terms of a covariant Riemannian
metric!® ds?=g,,dx* dx‘, However, even for parabolic
equations like the time dependent Schrodinger and heat
equations we will see that the connection with a Hamil-
ton—Jacobi equation of first degree in the temporal
derivative remains, in the sense that they both admit
the same type of separable coordinates, This is no
doubt related to the fact that such coordinates are pro-
jectively related to quadratic surfaces in a higher
dimensional pseudo-Riemannian space. However, we
will show shortly how the elliptic Hamilton—Jacobi equa-
tion (sums of quadratics) is related by a simple point
transformation to the parabolic Hamilton—Jacobi equa-
tion (first order derivative in time), It is also em-
phasized that the separation of the parabolic type pre-
sents a unified picture of four types®® of potentials V,
the free particle (V=0), the linear potential (V=ax),
and the attractive and repulsive harmonic oscillators
(V=1+ wx?),

Now generally any first order partial differential
equation can be cast by the process of embedding in a
space of one higher dimension, into the Hamilton—
Jacobi form

St +H(x‘9pht):0)

0.1
py=S4 (0.1)
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(subindices with respect to variables denote differentia-
tion). The importance of this equation in geometrical
optics, the calculus of variations, and obtaining ex-
plicit solutions of Hamilton’s equations of classical
mechanics is well known. (For the classical treatment
see Chap. 2 of Ref. 11; for modern treatments see
Chap. 13 of Ref, 12 and Chap. 4 of Ref, 13,) There is
also a close connection with the theory of canonical
transformations which we mention briefly here since the
treatment in the sequel is complementary to this in the
sense that it relates to contact transformations. Indeed
consider a manifold (Hamiltonian manifold) with local
coordinates (x!,p,, #) which has a closed 2-form w and a
function H such that

w=dp,Ndx* - dHAdt, (0.2)

Now each submanifold such that w =0 implies the ex-
istence of a function S(x*, #) which is a solution of the
Hamilton~Jacobi equation (0.1) (for more details see,
e.g., Chap, 13 of Ref. 12). On the other hand, if we
consider — H as a coordinate, then the transformations
which leave w invariant form the pseudogroup of canoni-
cal transformations over a (2n + 2)-dimensional mani-
fold, Then restricting H to be a function will give a
subpseudogroup which depends upon H, of course.

We now consider the special case of a free particle
in a Riemannian (or pseudo-Riemannian) n-space with
contravariant metric g*/, Then (0. 1) becomes

Se+8"8,45,4=0. (0. 3)
If we introduce a change of variables T={+S, z=¢-~S§,
an easy calculation shows that (0. 3) is equivalent to

T4+ g T Ty =1 (0.4)

as long as both sets (x,#) and (x*,z) can be treated as
independent variables. Two comments are in order:
First, the local symmetry group of point transforma-
tions of (0.3) and (0.4) are isomorphic. It was shown
in Ref. 14 that when g'’ is the flat Euclidean metric,
the local symmetry group of point transformations of
(0. 3) is a factor group of order 2 of O(n +2,2). Second,
the above change of coordinates involving the dependent
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variable shows that (0, 3) is equivalent to a Riemannian
(pseudo-Riemannian) metric.

In this paper we study in detail the symmetries and
separable coordinates of the equation

S;+8k=g+p*=0. (+)

This equation can be obtained from (0. 3) by partial
separation, at least in the case when 2" admits a
Killing vector, Thus from the point of view of separable
coordinates we only study here subgroup coordinates.
In fact the more general point transformation sym-
metries of (x) will yield coordinates not associated with
the usual separation of variables. From this point of
view the similarity solutions or complete integrals we
obtain are more general than ordinary R-separation;
however, we do not study here the usual quadratic
orthogonal separation involving quadratic forms. Those,
of course, do not appear in (), but they will appear in
the analog of (0.4), i.e.,
72+ 72=1. (x%)
We plan, to treat these in a subsequent work. Recently15
it was shown that in a Riemannian or pseudo-Riemannian
metric space there are two types of separation, those
coming from local symmetry groups and those coming
from the usual orthogonal separation, and that the
latter are described by contravariant quadratic sym-
metric forms (Killing tensors).

The outline of the paper is as follows: In Sec. 1 we
compute the Lie algebra of vector fields depending on
both coordinates and momenta which are infinitesimal
symmetries for an arbitrary first-order partial-differ-
ential equation. This computation elucidates the role
played by the characteristic system in determining the
symmetries, We discuss some of the underlying struc-
ture of this infinite-dimensional Lie algebra. Then we
specialize to the subalgebra of point transformation
symmetries of (x). These generate a finite-dimensional
local Lie group-conformal transformations in R3,
locally isomorphic to O(3,2). We then classify the orbits
in the Lie algebra O(3, 2) under conjugacy with respect
to the group. In Sec. 2 we obtain all R-separable co-
ordinates systems for (x). In Sec. 3 we present a
similarity solution!® for each of the orbit representa-
tives found in Sec, 1 and discuss the connection with
the separation of variables of Sec. 2. Some remarks
concerning the general solution and characteristic vec-
tor fields are also made,

Finally, in Sec. 4 we present a discussion of sym-
metries which derives from the fact that the x deriva-
tive of () yields the primordial equation of hydro-
dynamics without force terms!lr16

P+ 20D, =0 (%)
(the connection holds for n spatial dimensions), This
allows one to relate a subalgebra of symmetries of (***)
to a subalgebra of symmetries of (x), Moreover, even
symmetries of (*xx) which are not symmetries of (x)
can be used to determine complete integrals of the latter,
or vice-versa,
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1. THE INFINITESIMAL SYMMETRIES OF THE
HAMILTON-JACOBI EQUATION

Consider an n dimensional manifold M with local
coordinates'” ¥' and an arbitrary first order differential

equation on M

G(x‘,u,;,u)=0. (1.1a)
We wish to determine the infinitesimal symmetries of
such'an equation which depend on all the variables
present, To do this we consider the cotangent bundle
T*(M) over M with local coordinates (x*,p;), and con-
struct the product manifold T*(M) xR, Now 7*(M) has a
canonical 1-form p,dx* which provides the contact
1-form

a:du—j),dx‘

on T*(M)xR. Solutions of (1, 1a) will be surfaces in
T*{M)XR

G(x’,p,,u):o,

which also annul the 1-form a. Now, following
Cartan, !3 we construct the closed ideal (closed refers
to exterior differentiation) / defined by

Glx*, p,, u), (1.1b)
o =du - pydxt, {1.1c)
dG =G dx' + G, dp, + G,du, (1.1q)
da=dx*ndp,, (1.1e)

The surfaces in 7% (M) X R which annul 7 will be the solu-
tions of the differential equation (1. 1a). Stated more
precisely we look for immersed submanifolds whose
pullback annuls 7,

Now the symmetries of the differential equation
(1. 1a) will be those local C? diffeomorphisms on T*(M)
X R whose pullback maps 7 into /. Stated infinitesimally

this readst% !’
§G =£G, (1.2a)
)t[<1=7t0+17dG+ (4,dx* + B dp,)G, (1.2b)

where I denotes the Lie derivative with respect to the
X

vector field X, and &, A, 0, 4;, B are functions on
T*(R") XR, where &, A;, B* must be nonsingular in a
neighborhood of G=0 but are other wise arbitrary. We
have replaced M by the Euclidean manifold R". It should
be mentioned here that the commutivity of the exterior
derivative and the Lie derivative guarantee that dG and
da are back in I when an infinitesimal transformation is
applied, and so Eqs. (1.2) suffice to define the sym-
metry condition for all of I, Notice that the Lie algebra
of symmetries is more general than just contact
transformations since it is not necessary that the con-
tact 1-form o be preserved. The contact transforma-
tions which are symmetries of (1, 1a) form a Lie sub-
algebra (o C(; given by the special case n=A;=B'=0.
To determine the Lie algebra g , we use the expres-
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sions!? valid for a 0-form f and any form w

1tf=X1df,

x 1.3)
fw=dX Jw)+X ldw,

X

where | denotes the natural inner product between vec-
tor fields and exterior differential forms, Applying
(1.3) to (1. 2a) and (1. 2b) and defining the function on
T*(RMXR, F=X | a, we equate coefficients of the in-
dependent 1-forms in (1. 2b) to obtain

x* =~ F, +1G,, +B'G, (1.4a)

XM =Fu+pF,-n(Gg +p,G)) - 4,G, (1.4b)

X*=F+pX* =F=p,F, +1p,G, + Bip,G, (1.4c)
and from (1. 2a} we find

X 1dG=Gux* +G, X? + G X"= £G, (1. 4d)

where the superscripts on the vector field X denote its

component, i.e.,
X=X 3,4+ X013, + X", (1. 4e)

Now, inserting (1.4a)—(1. 4c) into (1. 4d), we obtain a
linear first-order partial-differential equation for the
function F which immediately yields the system

dx! du dpy

ar =G gr=iGp p = Cat 0,6, (1.5a)
aF i ‘
O (- GuB' 4G, A~ piB'G)G + G F. (1. 5b)

We recognize that Eqs. (1. 5a) describe nothing more
than the characteristic system'1? of Eq. (1.1a). Thus
the function F has two parts; one determined by Eqgs.
(1. 5b), plus an arbitrary function which depends only
on the characteristic curves of (1. 1a).

Now the characteristic vector fields ¢ in § are those
which satisfy X 1 w e for all w in I, By using the
identity

£ 1 w)=[X, Y] lw+Y | fw, (1.6)
X X
it is easy to show'? that ¢ is in fact an ideal in G for
any ideal of forms I,

However, in some sense the terms in Eqs. (1.4)
proportional to G are trivial, e.g., A, and B, since if
we restrict the vector fields to the surface in T*(R")

XR defined by (1.1a), these parts vanish., Indeed we can
consider all vector fields in (1.4) which satisfy

Y1aoa=EG, Y ldoa=8G, 1.7)

where E and B are arbitrary 0- and 1-forms, respec-
tively, on T*(R") xR which are nonsingular near G=0.
Clearly all such vector fields are characteristic.
Moreover, by using (1.3), (1,4d), and (L. 6b), it is not
difficult to show that they form an ideal ¢ in (. Thus it
is often convenient to consider the factor algebra ¢ /4.
We can always choose A; and B’ such that the term
multiplying G in (1. 5b) vanishes in which case we have

dF
27 = Guf. (1.8)
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In general when G,=0, (1.1a) takes the standard
Hamilton—Jacobi form (0. 1) and the symmetries are
determined by an arbitrary function of the characteris-
tic strips. In this case the first two of Egs. (1, 5a) are
just Hamilton’s equation of classical mechanics, For
example, for the free particle in Euclidean space, the
function F takes the form

F=F(x'-2p,t,S- 2p*t - qt,p;,q).

The point transformation symmetries are locally
isomorphic to Oz +2,2) as shown in Ref, 14. Now
G/9¢ admits a Lie algebra semidirect sum

G/9=Gc/399/9

where g o J@' is generated by the contact symmetries
given by the function F which satisfies the characteristic
system (1.5a) and (1.8), and ¢/{ describes the charac-
teristics given by the function 7.

(1.9a)

(1. 9b)

For the remainder of this section we will discuss
only point transformation symmetries ¢, cgc/ﬁ for
(x). To find them from (1,4), we set A’=B,;=7n=0 and
impose the condition

i
X:jZO’

i.e., the transformations on the base space are inde-
pendent of p,. Doing this explicitly for the case when

G =0 is given by (x) and using (1. 9¢) will determine the
point transformation symmetries of (*), From this
analysis one can find that the vector fields span the
finite dimensional Lie algebra o(3,2). [In » space and

1 time dimensions, o{n +2,2). | However, to understand
better the appearance of the Lie algebra o(3, 2) of the
conformal group, we introduced in Ref. 14 the graph
W(t,x,S) =0 of solutions of (*). Then upon computing
the derivatives W, + WS, =W, + WS, =0 and introducing
the Minkowski variables

=212¢+28), x*=212(t-29), xl=x, (1.10a)
we find that W satisfies
(W,0)% = (Wa)? — (W) =0, (1.10b)

Thus the point transformation symmetries of («) are
precisely the conformal transformations of the cone
(1.10b).

This global approach” has distinct advantages over
the infinitesimal method: (i) Without much work we have
reduced the problem to known results; (ii) the geometry
elucidates the meaning of the symmetries; (iii) we ob-
tain certain symmetries which are not connected to the
identity component of the group and thus are not ob-
tainable through infinitesimal methods. However, it
should also be mentioned that in general it is not always
s0 easy to find such a nice geometrical situation in
which case infinitesimal methods provide the most
straightforward approach,

The symmetries of a cone in a pseudo- Euclidean
space of three dimensions with signature (+, -, -) form
the conformal group C*? which is a certain factor group
of the pseudo-orthogonal group O(3,2). More precisely
we can consider the group O(3, 2) as a group of trans-
formations in a five-dimensional pseudo-Euclidean
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space with signature (+, -, -, —, +) which leaves the
quadratic form 73— 1% - 13 - 73+ 1} invariant, We now
congider the 5-cone n,n=*=0 and define homogeneous
coordinates

x4 =n*/(m*+ %), 1.11)

where p=0,1,2. The linear action of O{3, 2) on the 5-
cone given by

No= ¥ N4s
with AL % O3, 2), then induces through (1.11) a non-
linear action on the Minkowski space M ={x%, which
we will give shortly, However, it is seen that the action
of O(3,2) on i/ is not effective. Indeed, there are two
members of O(3, 2) which act as the identity transforma-
tion on M, namely the snbgroup Z,={Ac0(3,2):
An=27}. Hence, the conformal group C¥*~0(3,2)/Z,.

Now the group O3, 2) consists of four components,
where the component connected to the identity is
S0,(3,2)={A € 0(3,2): detA =1, A’A'-A,%A'> 1} The
other three compounents are obtained by reversing the
signs of detA and A %A%~ Ay'A,°. Notice that SO,(3, 2)
< Ch2, The whole O(3, 2) can be obtained by extending
SO,(3, 2) by two discrete operations P-parity and T-
covariant time reversal given by

P={x"—x0 x! = - x! x2 ~x?},

T={x"—= -2 x! ! x?—~x},
respectively. In terms of {(f,x, S}, we have

P={t—t,x—~-x,S— S},

T={t—-28,x=x,5~- 38,

(1.12a)
{1.12p)

We will also be interested in a discrete symmetry R ob-
tained by combining P with a certain member of
S0,(2,1) < 8043, 2), namely

R={t—S,x~x,S~t (1.12¢)

Finally we mention the well-known inversion symmetry

1={(t, %, 8~ ¢, x,8)/(4tS~- x%)}. (1. 124
It is emphasized that the symmetries (1.12b)—(1.12d)
are nontrivial symmetries of the Hamilton—Jacobi equa-
tion (). Indeed, (1.12b) and (1,12¢) imply that, given a
solution S{x, f) of (*), we can use the implicit function
theorem and solve for £=%(x, S), which again satisfies

ti+t5‘:09

1.e., is another solution of (<),

We now give the group transformations of SO,(3, 2)
in terms of the original Hamilton—Jacobi variables
t,x,3):

(1) 02, 1) transformations:

A1 +A1
x':A’,x+ _.lv!_._z____z. i+ ‘/2(1\10— AIZ)S’
M= (Aoi + A21) + (AOD + A02 + A20 + A22)
a ” 2 ¢

+ (A% + A% = A%, - A%)S,
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= (A% = AY) X+ (A% + A% ~ A%~ A%) ;
2V2 4
L 8% A"g; A%+ A%) s

2 (1.13a)

where A, €0(2,1), 4,j=0,1,2.
(2) Translations:
x'=x+q, t'=t+7, §+S+aq, (1.13b)
with a, 7,0€ R.
(3) Dilatations:
x'=px, t'=pt, §' =pS, (1.13¢)
with p> 0.
(4) Special conformal trvansformations:
x' =0"Yx, t, S)fx + C (x? - 4£5)),
t =0, t, S)[t + C,x% - 419)],

§ =0Yx, ¢, SIS+ C_&x2 ~ 4£5)],

{1.13d)

where
olx,1,S)=1-2C,t-4C_S+2Cx + (C,C.~ C3)(4tS - x%)

and C,, C, € R. It is mentioned that the special conformal
transformations can be generated by a translation, an
inversion, and another translation.

Now the group action {1.13) is really only a local
group since the points where o(x, ¢, S) vanishes map
finite points to infinity. Nevertheless, a global Lie
group can be defined if we consider the “cone” com-
pactification of R%, making the manifold homeomorphic
with the sphere S*, Although this is necessary for a
global Lie group, for gur purposes it is more convenient
to work with the local coordinates (x, ¢,S), keeping in
mind that under finite group transformations singulari-
ties can occur., Hence, what we are really dealing with
is a finite pseudogroup. Although the study of such
singularities is of interest, we will not consider them
further here. We only mention that Sard’s theorem?®
guarantees that they form a set of measure zero,

In what follows we will be interested in two different
formulations of the Lie algebra o(3,2), The first is the
covariant formulation with a basis given by M, with
a,b=0,..,,4, which satisfy the Lie brackets

[Maw Mod] :gadec+gbcM¢d_gucMM—gw ac* (1' 14)
On the 7-space realization used previously the M,, can
be realized as 1,3, — 1,8,. However, on R? it is more
convenient to consider the realization!! [these are the
point transformations of 1.4 for (x) projected onto R*]
Xy =2, Xp=t3,+3x2,, Xy=F£a,+mxa, +ixd,,

X;=2,, Xz=td,+3xds, X;=32s,

X,=13%x2,+ Sis, (1, 15)
Xy= X839, + (1S+ 5 x%)8, + $xS85,
Xy=4x%,+Sxo, + §ds, Xyg=3x3;+So,.

It is not difficult to see that the generators Xy,...,X,

form a subalgebra of o(3,2). In fact this subalgebra is
maximal and generates the subgroup of s0,(3,2) which
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leaves a lightlike two-plane invariant. It has the struc-
ture gl(2, R)Dw, i.e,, the general linear algebra with
the Heisenberg—Weyl subalgebra as an ideal. However,
we will be more interested in the subalgebra formed

by the generators X, ...,X; whose structure is s,
~81(2, R) Pw. This algebra generates a group known as
the Schrodinger group §; since it is the group which
leaves invariant the Schrodinger equation for a free
particle in one space and one time dimension, 4.2
The existence of the Schrdodinger group §4 as a sub-
group of O(3,2), or more generally'#® ¢ cO®+2,2),
emphasizes the close connection between the Schrio-
dinger and heat equations on one hand and the Hamilton—
Jacobi equation on the other. The subgroup §, will play
an important role in what follows, It is also seen that
the discrete symmetry R given by (1. 8c) provides us
with another Schrodinger subgroup §{, conjugate to §y,
through the mappings X; = X¢, X, Xq, X3 X,,

Xy Xyy Xy—Xyg, Xy~ X

Rather than write down the commutation relations
explicitly for the generators (1. 15), it is more con-
venient to express them in terms of generators M,,
satisfying (1, 14), viz.,

My =— (1/V2)(X;+ 2Xyp),

May =Xz — Xy,

Mgy = (1/2V2) (X + $X; ~ 2X, - 4X,),
Myy=- (1/V2)(X; - 2Xyp),

My = 3(X, +4X,),

My = (1/2V2)(X| - 3X; +2X; - 4X ),
My =(1/2V2)(X{ + 3Xg + 2X 3+ 4X),
M41:%(X4‘4Xa),

My =(1/2V2)(X; - X5~ 2K, + 4Xy),
Mp=X; + X,

(1.16)

Now we are interested in the orbit structure of O(3, 2}
under the adjoint action of the conformal group C*?, In

fact this problem has been solved in several places®%%;

however, in none of these are the results in a form
particularly suited for our needs. As will be seen in the
next section, for the purpose of separation of variables
the subgroup §; plays a distinguished role. Therefore,
we want to pick orbit representatives which are mem-
bers of the Lie algebra s, of §, if possible. The proce-
dure we use to do this is to nectice that every member of
0(3, 2) stabilizes a timelike, spacelike, or lightlike vec-
tor. Of course, specific elements may stabilize more
than one type of vector, We then study each case
separately by lIooking at the adjoint action of the stabili-
ty subgroup and picking orbit representatives in s; when
possible. When this is done, we must then check for
conjugacy under the full C*? group, again picking mem-
ber of s; when possible. In this way we obtain a com-
plete set of orbit representatives emphasizing which are
conjugate to members of s; and which are not,

We begin by classifying the orbits of s;. Now in the
case of the linear Schrddinger equation treated in Refs.
2 and 3, the orbits of the factor algebra of s; by the
central element X; were considered. The reason for
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this is that for all linear equations it is convenient to
think in terms of diagonalizing operators and from this
point of view X, is irrelevant, However, in the case of
nonlinear equations one cannot always diagonalize
operators in this sense. Instead, we can construct
relative invariants,?® i.e., if the infinitesimal genera-
tor X is a symmetry of the differential equation (1. 1a),
we can construct the graph f(x‘,u,t,u):O of a solution

u which satisfies X | df=Xf=0. In the special case
when (1, 1a) is a linear equation, this is equivalent to
diagonalization of operators in the factor algebra as
long as we consider general orbit representatives which
include the central operators. The case at hand should
illustrate the point, Thus we are interested in classify-
ing orbits in s; under three particular groups: (i) the
Galilei group G; extended by dilatations, D @ Gy; {ii) the
Schrodinger group §;; (iii) the full conformal group C"2,
The first group D G; is of particular interest since
this is the geometrical group closely associated with the
separation of variables. That is, two coordinate system
which differ by dilatations of (x,f), or by Galilei trans-
formations, essentially look the same. In Refs, 2, 3
there are some inconsistencies concerning this point.
Conjugacy under §; and Cl? are of interest for obvious
reasons.

The orbits of s; under Dg G; are
X1xXg, XptaXg, XpxXg, Xi+Xj+aX,
X - Xg+aX,, Xi+X; X;xX,,

X

.17
X'a‘y X4’ Xﬁs XG:

’

where — © <a <, We will discuss the connection of
these orbits with the separation of variables of () in the
next section.

Under §; we gain the type of equivalences discussed
in Refs, 2, 3, viz.,
Xltxth X2+aX6’ X1+X3+aX6’ (118)
Xl +X5’ X15 X4’ X69

where again — « <a <=, In both the above cases =0 is
a degenerate orbit.

Under the full conformal group C? the orbits of s,
become

XX, Xo+Xg, X +X32Xg, XitXg,

(1.19)
X+ Xy, Xy, Xy

Thus under C*? we can dilate a to + 1 using X;, and inter-
estingly enough we find that X, is on the same orbit as

X, - X; through a rotation generated by X; - X;,. Again
the last three entries in (1, 15) correspond to degenerate
orbits.

Now we wish to clasify the orbit structure of 0o(3, 2)
under the conformal group. As mentioned previously we
first classify the one-parameter subalgebras of the sta-
bility subgroups and then later take into account conju-
gacy under the full ct?,

A. Timelike

We take the vector (1,0,0,0,0) for which the stability
subgroup is O(3, 1) generated by the rotations {MZ‘L» Msy,,
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Mg} and the boosts {Myy, My, M5}, The one-parameter
subalgebras are well known, 2?8 and, using (1.18), we
have the orbits

Mz( ~ (Xs“ 2X10), M43=X2 +X7:
Mgy + My ~ (Xy = 3X¢),
My, +aMg~ (X5 - 2Xq) + alXy + Xp),

(1. 20)

where here 0 <a <=, Our conjugacy is under O(3,1) and
not just the connected component SOy(3, 1).

B. Spacelike

We choose the vector (0,1, 0,0, 0) for which the sta-
bility subgroup is O(2, 2) generated by {Myq, Mgy, My, M,
My, Mg}, Here it is convenient to employ the well-known
Lie algebra isomorphism o(2, 2} ~0{2,1)$ 0(2, 1}, where
@ is a Lie algebra direct sum. Explicitly, we construct

3= %(Mmi My),
(1. 21a)

which can be seen to generate a commuting pair of
0(2,1) algebras which satisfy

(5, o) =K;, s, Kal==~Ky, [Ky K]=-J3  (1.21b)

To find the orbits of this 0(2,1)'® 0(2, 1) under 0(2, 2),
we first notice that the o(2, 1)" is conjugate to o(2,1)" by
a discrete transformation in O(2, 2) [explicitly in terms
of our model this is the transformation R given by (1. 8c)
combined with certain dilatations in SO4(2, 2)). Thus we
have the usual one-parameter subalgebras of 0(2,1)",
Then we must find the nontrivial extensions of these or-
bits by the orbits of 0(2, 1), This is done by the method
of the Goursat twist as discussed for example in Ref.
28. Finally one checks for conjugacy of the extensions
under O(2, 2). Accordingly, we find the orbits

i+ a3~ X, + X3+ alXg+Xy),

~1<a<1, a#0,
Jy+aKi~X;+X;+aX, 0<a<w,

Jix (3 +E3) ~ Xy T Xgx X,

K} + (J3+ K3) ~ X, + X, {1.22)
J3 + K3t (J3+K3) =X+ Xe,

K} +aK;~X, +aX;, ~1<as1, q#0,

Ji~ X+ Xy, Ki~Xp, J3+Ki~X,.

In arriving at (1.22) we have taken full advantage of the
dilatations in O(2, 2) generated by X, and X, to remove
some of the annoying constants which multiply the vari-
ous X’ s in the expression in (1. 16).

C. Lightlike

We choose the vector (0,0,0,1, 1) for which the sta-
bility subgroup D Q E(2, 1) is generated by the 0(2,1) sub-
algebra {My,, My, My}, the translations {My + M,,,

Mgy + Myp, My + My}, and the dilatation M5, Again we
use a modified Goursat twist?® method to find the non-
trivial extensions of the 0(2, 1) subalgebra (modified
since the ideal is solvable rather than Abelian), In order
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to simplify the notation, we introduce Jy= My, K= My,
K, = My, which satisfy (1.17b), for the Abelian subalge-
bra Py=Mgy + My, Py=My +Mgp, Py=Ms+ My, which
transform as the designated components of an O(2, 1)
vector, and D= M5 which commutes with o{2,1) and
satisfies [D, P;]=— P;., We thus obtain the following or-
bit representatives:

JytaD~X;~ X talX, +X;), 0<a<es,
Jy+ Py~X,+ Xy =Xy,

K, +bD~X, +aXy,
K+ Py~Xy— X,
Jy+ Ky + D~X, + X5+ X,

-1=a=<l1,

(1.23)

J3+K2+ P2~Xl +X5’
Py~Xy+ X,
Pz +P3~X1, D~X2 +X79

Py~ X - X,

Again we have made use of the dilatations in D 8 E(2,1)
to simplify the operators in terms of the X’ s,

Now in order to obtain all orbits of o(3,2), we only
have to check the above results for conjugacy under the
full C*?, Since we have already done this for the s; sub-
algebra, we can restrict our attention to the remaining
cases, Indeed for the timelike case we can use dilata-
tions to adjust some of the constants appearing in (1. 16),
and we see that all of the orbits (1. 20) also appear as
orbits in the other two cases. In fact, there are no fur-
ther simplifications due to conjugacy other than identi-
fying those orbits which appear in both cases, We have
collected our results in Table I, indicating in which of
the three cases the various orbits appear as well as
which are members of the Schrédinger subalgebra s, as
well as its maximal proper extension gl{2, R)2w in
0(3,2).

2. SEPARATION OF VARIABLES

For the purpose of separating variables in () it is
more convenient to use the equivalent homogeneous
equation

Wi+ WW, =0 2.1)

obtained from (x) by the substitution S=1InW, We are in
general interested in R -geparability, that is, we look
for a transformation of coordinates

sz(vl!UZ); t:G('UI,Uz), (2- 2)

vy, v3 € R, where F and G are once differentiable real
functions, such that the solution of (2, 1) takes the form

W= exp{Q (UI’ UQ)JA(UI)B(UE)’ (2- 3)

where ¢ can not be written as the sum of functions of
the single variables unless it vanishes. It is clear that
a solution of (2.1) of the form (2. 3) implies a solution
of () of the form

S=Q(vy,v,) +1nd(w;) +1nB(v,).
We proceed by considering the cases @ =0 and @#0
separately. First, it is convenient to introduce a notion
of equivalence. Two coordinates will be said to be equiv-
alent if they can be related by a member of the group
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TABLE 1, Orbits in o(3,2) classified under C!:2, ¢, s, I denote
respectively timelike, spacelike, and lightlike.

Orbit Representative Type Remarks
X +eXq ie=~1),s,7 e=x1,0
X+ X s
8 Xy s,1
< X+ X H
o) X+ X3+ eXg s €=+1,0
Eﬁ: Xy +aX, tla=1},s,1 -1l=qg=1
al X+ X3 +aX, s O<a<e
w® Xo+ X+ Xy Z
X1+X5—X‘0 I 0
X;-Xp+alX,+X,) 1,1 -0=xgcw
X+ Xy+alXo+ Xy s ~1=g=1,4a=0
et

D 3G, discussed previously. We also consider any two
systems to be equivalent if they differ by a constant mul-
tiple; i.e. ) (vh 1)2) ~ (U{, Ué) if (’U{, ’Ué) = O!('Ul, vZ)s a
constant,

A. Pure separability, Q = D

Rewriting (2.1) in terms of the coordinates vy and
vy, we obtain

ay Wi+ anW Wy + an Wi+ ey W, + Wy =0,  (2.4)

where ay; = (Go/ DY, ay,=-2G,Gy/D?, ap=(Gy/D), a,
=~ F,/D, ay=F;/D, D=F,Gy~ F,G,, and the subscripts
on W, G, F indicate differentiation with the respective
variable. The conditions for separability can be further
subdivided into two cases:

(i) a,5# 0: This is only possible if W is an exponential
in one variable, say v,, and the coefficients depend only
on the remaining variable vy. Upon redefining the vari-
able vy this gives rise to coordinates of the form t=v,
+k({vy), x =vy, where k is an arbitrary function of vy,
These coordinates describe nonorthogonal coordinate
axes and always give rise to exponential solutions, We
will not consider these any further in this article,

(i1) @y =0: Without loss of generality we can take G
=0 and hence t=v,., By multiplying (2.4) by F} we can
take the coefficients as a;,=2, a;=- F,F,, and a,= F},
The conditions for separability are then

Fi=f@)g(z), FiFy=hivy), (2.5)

with f, g, and & arbitrary functions of their respective
variables, By redefining the variable v,, the conditions
(2. 5) imply
F:vip(v2) +q(1)2), Pha=a, pgy=8,
where a and § are constants., Without loss of generality
we can put ¢ =0, and we find two cases:
{1) a=0, x=01, =0,

(2) a#0, x=vp,17% t=uv,,

B. A-separability, Q # 0

We now wish to classify all coordinate systems for
which (2. 1) admits solutions of the form (2, 3) for non-
trivial real function @, The appearance of the @ will
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give rise to a factor q,W? added to Eq. (2.4), We now
only consider the case @y, =0 and we obtain, preceeding
as. before, the nonzero coeificients

ay=1, @=2Q ~ FiFy, ay=F,
ay=Q{ + Fi(F1Qy - FyQy).

The condition for separability then gives
Fl=fW)gwy), 2Qy- FiFa=h(,),
Q1+ Fy(FiQy - F,Q)) =f,)g ;) +p(vy),

where again f, g, h, p, g are arbitrary functions of their
denoted variables., By suitably redefining the variable
vy, we have from the first of Egqs. (2.6)

F=vu,) + W(v,)

2. 6)

and from the second
1.2 1
Q = quiusy + zuu W,

Then from the third equation in (2. 6), a straightforward
computation yields

wlugy =A,

M3W22:B, (2', 7)

where A and B are constants. Now we can integrate the
first of these equations to give u={(av3+ b)*’%, We con-
sider the following cases:

(1) a=0: We can take u=1. Then by using equivalence
under space translations, Galilei transformations, and
dilatations, the coordinates can be brought to the form

x=v40%, vy=t with @=zxv,.

(2) b=0: We may take u=v, and similarly bring the
coordinates to one of the forms

x =004 1/vy, t=0v, with @ =4v,’vev/20,,

x =V, t=vy, Q=1v0,.

(3) a/b> 0, a,b+0: Using dilatation, we can take
= {v,® +1)'/2, Again using Galilei and space translation,
we find

x=v (v + VY, =0y, Q@=1vva
(4) a, b#0, a/b<0: Similarly we find
2 t=v,, Q=/4vi’n,,

where ¢ =sgn (1 ~ v,%), Thus we have shown that up to
equivalence under the group D ® G,, there are precisely
seven coordinate systems such that (2. 1) and hence the
Hamilton—~Jacobi equation (*) is separable, Moreover,
these coordinates coincide with the separable coordinate
system?® for the Schrédinger equation U, + iU, =0 and the
heat equation U, + U,=0, The list of separable coordi-
nates is presented in Table I, where equivalences under
the full Schrodinger group is also noted. It is also men-
tioned here that the separation of variables for {*}also
implies the equivalence of the four types of potentials;

i, e., free particle, linear potential, and attractive and
repulsive harmonic oscillator, Indeed it is not difficult
to give explicitly the transformations which map the time
dependent Hamilton—Jacobi equation with a linear poten~
tial, attractive, or repulsive harmonic oscillator poten-
tial onto (*). Thus it follows also that their local sym-

x:vill—vz
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metry groups of point transformations are all isomor-
phic to O3, 2). A closer connection will be seen expli-
citly in the next section.

3. SIMILARITY SOLUTIONS

In this section we give a systematic treatment of simi-
larity solutions of (x) by giving the solution which cor-
responds to each of the orbit representatives in Table L
We can then say that any similarity solution obtainable
from point transformations must be related to one of
our representative solutions by at most a transforma-
tion in C!?, Moreover, we will show how the orbits of
the subalgebra s; relate to the method of separation of
variables presented in Sec. 2, or more specifically that
to each system of separable coordinates (&, 7), there cor-
responds an orbit representative of s such that the simi-
larity variable is £ and the similarity solution is the so-
lution obtained by the separation of variables of (), In
this way we will obtain complete integrals of (x). Any
arbitrary parameter which has been transformed away
by our orbit analysis can, of course, always be re-
instated. As is well known,!! then, the general solution
can always be obtained by forming the envelope of any
complete integral. It seems likely that all known expli-
cit complete integrals of (x) can be obtained by group
theoretical methods,

More generally let f(x*,u) =0 be the graph of a solution
u of (1,1a) and Xeg,; then f is called a relative invari-
ant with respect to X if

é(f:XJ df=Xf=0, 6.1)

For every such f which satisfies (3. 1), we can solve im-
plicitly for # which when combined with the original dif-
ferential equation (1, 1a) reduces (1.1) to a differential
equation with one less variable, Any solution # obtained
in this way is called a similarity solution.'® It is clear
in general that in order to specify a unique solution for
an equation in » independent variables, we must demand
that f be a relative invariant for » -1 members X of g,
a=1,,,,,n~-1, The X,’s need not commute, but owing
to (3.1) they must form a subalgebra of g. Thus, the
problem of finding complete similarity solutions relates
to the problem of clagsifying all subalgebras of a given
Lie algebra, 28 The preceeding discussion of similarity
solutions has a simple geometric interpretation. We

restrict ourselves here to R®, Indeed (3. 1) says that for
any vector field X we construct surfaces in R® such that
X lies in its tangent plane at each point, The tangent
planes to all integral surfaces at a point intersect along
X, i.e,, X defines the characteristics of (3.1). If in ad-
dition X is a symmetry of a differential equation as given
by (1.1a), + describes the infinitesimal dragging of the
tangent plafxe to an integral surface of the equation (1, 1a)
in such a way that the tangent plane lines up with the
tangent plane of another solution. For a general first
order equation the possible tangent planes form a one-
parameter family which envelops the Monge cone at a
given point. Now, choosing a tangent plane defined by a
generator of the Monge cone and X, we are guaranteed
that, by moving along the curve generated by X, there
will be a generator of the Monge cone which lies in the
tangent plane at each point, In this way we describe an
integral surface which satisfies both (1,1a) and (3.1),
There are two qualifications to be made: First X cannot
be collinear to the generator of the Monge cone; second
X must not imply a relationship between the independent
variables for (1.1a).

Now in the practical computation of relative invariants
one uses the characteristic equations of a given vector
field, viz.,

X =t (x, )8, +1(x,u)8,, 3.2)
then #(x) can be obtained by solving
dx! dx" du
m:...:?,(‘x’—u—):n—(x,—u;, 3.3)
In our case any X € 0(3, 2) takes the form
X=alx,t)d, +bx,t,S)3,+clx,S)dg, (3.4)

where the coefficients can be read off from (1,11). The
characteristic equations for (3.4) are then

dat dx ds
ak,f) bk, t,9) c,S) (3.5)

Solving any two of the Eqs. (3. 5) when combined with
(*) will then give the similarity solution corresponding
to the vector field (3. 4).

We now proceed to discuss the similarity solutions
for the subgroup §, and their relation to the separation
of variables of the previous section. For the s; subalge-
bra we see from (1, 11) that both b and ¢ are independent

TABLE II. Separable coordinates (*) classified under D ® G,. Subgroupings indicate equivalence under S (-

-
—_—

Coordinates Multiplier Operator Remarks
x=vy, t=vy Q=0 Xy +eXg €=x1, 0
X=v1vy, t:U2 Q=%U12’U2 X3+€XG "
x=U+evyt, =y Q=cvsty X+ €X; o
x=vyvy+€/vy, E=0v, Q=v%vy/4—€vy/ 2w X3+ eX, "
1 1/ 20y 3 4
x=vt? t=v, Q=0 2X, +aX, —<g< e
x=v11=02|1/2, t=y, Q = tev v, Xy~ X;+aX; e=sgn(l —v} "
x=vy 11+0,2 12, t=v, Q=vi’v,/4 X)+Xg+aXg "
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of § (transformations which act linearly on w=e?), and

2 is independent of x, Thus we can integrate the first fwo
of Eqs, (3.5) to give the similarity variable §=t(x, 7).
Then expressing x as a function of £ and {, we have

dS:g—(:—é:)’—t-Ddt. 3.6)

Integrating along the characteristic ¢, we obtain S as

S= f CEED) 41 4 pigy.
aconst

() 6.7

Substituting (3.7) back into (x) yields a first order ordi-
nary differential equation for F which can then be inte-
grated to give the explicit similarity solution.

As mentioned previously, it is the geometric subgroup
DGy, which is relevant for the separation of variables;
therefore, we consider the orbit representatives given
by (1,13} for the similarity solutions, We will see that
for each orbit in (1.13) the similarity variable & will
carrespond precisely to the variable v; for one of the
separable coordinate systems listed in Table IL, although
there are degenerate cases. The separation constant
corresponds to the parameter 2 in (1,13), i.e., to the
one-parameter extensions by the central element X;, In
some cases the separation constant can be transformed
to +1 or 0 by a member of D 2(; which alters only
slightly the functional form of the solution, We also
group together those orbits (1, 14) and separable sys-
tems which are inequivalent under the Schridinger group
§4. As in Refs, 2, 3, these systems are denoted by the
appelations, harmonic oscillator, repulsive harmonic
oscillator, free particle, and linear potential, since
they reduce (x) to the time-independent Hamilton—Jacobi
equation with the corresponding type of potential, Within
this grouping we label by 1 and 2 coordinates which are
equivalent under S, but inequivalent the subgroup
D®(, since they appear differently from a geometric
point of view. We will give the details for the first case
only.

A. Harmonic oscillator

The separable coordinates are

f=vy=x/(L+2 T=v,=14, (3.8)
Substituting these into () and using the ansatz

S=%38 7+ F(£) +G(), (3.9)
we obtain

F+58+1+7)G,=0. (3.10)
Separation implies

1+ 76, =aq, (3.11a)

which reduces (3. 9) to the time-independent Hamilton—
Jacobi equation with a harmonic oscillator potential

F+ig+a=0. (3.11b)
Integrating Eqs. (3.11) and placing into (3.9), we find
S=igr+atan 7 - asin"(¢/2V=a)
+3Va gl + £2/4a)t 3, (3.12)

From the point of view of similarity solutions it is easy
to see that the coordinates (3. 8) correspond to the orbit
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X, + Xg+aXg of (1.13) for which Eq. (3.5) is

dt _dx _dS
1+8 & WP +a

(3.13)

The first two of these equations give precisely the vari-
able £ of (3. 8), while the first and third [or what amounts
to (3. )] gives, integrating along the characteristic &,
(3.9) with G=atan"'7. Then substituting (3. 9) back into
(*) gives (3.11Db) and hence the similarity solution (3.12),
We point out that the case a=0 is degenerate,
B. Repuisive harmonic oscillator
(1) The separable coordinates are
{=2)1=x/lt]”3, T“—“Z}2’—:t, (3.14)

which correspond to the orbit 2X, +aX; whose subsidiary
conditions are

(3.15)

Integrating (3. 15) gives
S=t%alnT+ F(¢), (3.16a)
which upon substituting into () gives
Fl-3tF,+a=0, (3.16b)

yielding the solutions

-1 L2 _ ]
S=3zalnT+35E° - acosh 78%)
a 1/2 53 1/2

+(§) g(aa'l) » 720

S=3alnT- $£° - asinh! (__g_)

(3.17)

V8a
172 /.2 1/2
+(%) g(—&;+1) , T<0.

Again the case a=0 is degenerate,
{2) The separable coordinates are
t=vy=x/|2 1|12 T=0v,=t, (3.18)

corresponding to the orbit X; — X3 +aX; in (1. 13) whose
equations are

dt dx ds

F-lZE:%xz—a. (3.19)
Integrating, we obtain
S=1igr+acothir+F(g), T>1,
(3.20a)
S=1igfr+atanhiT+ F(z), 7T<1,
where F(§) satisfies
Fl-4g-sgn(?-1)a=0, (3. 20b)
leading to the solutions
_1,2 -1 AR
S=3t°t+acoth” r+asinh (2\/3)
2 1/2
+§\/Eg(§;+1) , T>1,
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12 A af &)
S=~gt‘r+atanh™7~acosh (25)
2 1/2
+§\/a§(-§;-1) , T<1,

As mentioned previously cases (1} and {2) are related
by a transformation in S;. The transformation which
takes (3.21) into (3.17) is given by
1+¢ 21/2% x2

! = ’ = 4 = +

=% *=acy Y=5*tma-n
It is also mentioned that Eq. (3.16b) can be cast into the
form of a repulsive harmonic oscillator by replacing F
by F+ £2/8, Again in both cases (1) and (2), a=0 is
degenerate,

3.21)

(3.22)

C. Free particle

(1) The separable coordinates are

E=vy ”—‘X/t, T=vy=1, (3. 238.)
corresponding to the orbit X;+eX; in (1, 13),
The subsidiary conditions (3. 5) are

dat dx ds

F=E=%_xfre’ (3. 23b)
giving rise to

S=%g'7T-¢/T+F(§), (3.24a)
where

Fl+e=0, (3. 24b)
Thus we have the solution

=48l —¢/TaV—¢t. (3.25)

(2) The coordinates are simply the usual Cartesian
ones ¢ =x, 7=1, corresponding to the orbit representa-
tive X, +eX; whose equations are

dez% ;z_s , 3. 26)
giving rise to
=¢t+ Fix) (3. 27a)
with
Fl+e=0. (3.27b)
Hence, the similarity solution is simply
=etxV=—ex+c, (3. 28)

Here we allow ¢ =0 as well as e=+1 s0 as to include the
degenerate orbits X; and X,

D. Linear potential

(1) The separable coordinates are

x_ €
§=U1:;+F, T=‘l)2=t, (3. 293,)
corresponding to the orbit X; +¢X, with the subsidiary
conditions

dit  dx )

F s v B (3. 290)
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which gives rise to

2
.,.
S= +_§_ —;‘r + F(g) (3. 30a)
with
~3t=0, (3. 30b)
Integrating (3.41b), we find the solution
~5—+—§ —Tg+‘f2‘g”2 (3.31)
(2) The separable coordinates are
E=Ut=x—%€t2, T=vy=1, 3.32)
corresponding to X; +¢X; with the equations
dt_dx _ dS
T et “Lx {3.33)
Integrating, we find
2
S=€—§l +€__T.3.+F(£)’ (3. 34a)
2 12
with
F2+ £=0, (3. 34b)
giving rise to the solution
=3etTHhe T+ 3V =2 £3/2, (3. 35)

Again we allow ¢ =0 as well as x1 in order to include the
degenerate cases. The group transformation which takes
(3.35) to (3,.31) and (3. 28) to (3.25) is

H=-1/t, x'=x/t, $'=S-x%/4t, (3.36)

It can be seen that this is the square of the transforma-
tion (3. 22),

The remaining orbits in (1,13) and (1, 14) are degen-
erate in the sense that they give rise to special cases.
X, gives the usual cartesian separation and the special
solution S=const, where as X; which is equivalent to
X, under S, gives the degenerate solution a=0 in (3.17),
A relative invariant of X, violates the condition that x
and ¢ be independent (in involution). However, we should
notice that it does not violate the independence of x and
z in (=*) and thus gives rise to a nontrivial solution. It
is interesting that under the full conformal group these
cases are equaivalent to those already discussed. In
fact under C¥? we have only the four types given by the
potentials and their degenerate cases as noted in (1, 15),
We can always set the separation constant equal to + 1
or 0.

As mentioned previously the subalgebra of 0(3, 2) gen-
erated by X;,...,X; is maximal and contains s;, More-
over, its structure is gl(2, R) ® wy, but now X, is not in
the center, However, we notice from (1. 11) that for this
subalgebra the coefficient & given by (3. 4) still has no
S dependence; hence, we should obtain a similarity vari-
able &(x,?) upon integrating the first two of Eqs. (3,4).
Indeed this suggests that there may be some type of
separation of variables not considered in Sec. 2 which
lead to these solutions, We will now show that this is
indeed the case. We will only consider orbits inequiv-
alent under the full conformal group clz, however, we
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expect that again classifying the subalgebra gl(2,R) dw,
under its subgroup D 2 Gy, will lead to a more geometric
picture compatible with the separation of variables.
From Table I we pick out the following orbit represen-
tatives of gl(2, R) ®w, which are not in s;:

(1) X,+aX,, -1<a<1, a#0: The subsidiary equa-

tions are

dt dx ds

t sla+1x  aS° ®.37)
The similarity variable is

E:t-(un/zx, (3.383.)
giving the form

S=F(E), (3. 38b)
Plugging (3. 48b) back into (), we find that F(t) satisfies

F-3@+1)tF,+aF=0, (3.38¢)

Thus we see that we have the separation of (x) in the
form of a product instead of a sum, If we look into the
separation process in some detail, we will see that the
conditions for separation involve a coupling between the
coordinate functions (2. 2) and the separable solution in
the variable v, ={, For this reason this type of separa-
fion is much more complicated and usually not consid-
ered for equations of the kind of (x}. However, here we
are led to these naturally by considering similarity so-
lutions. Now Eq. (3.38c) is a special case of Chrystal’s
equation®® whose solution is given implicitly by

2
Eiﬂ ] 4a’ 3. 39a)

EuF(@a+1)/2]V u* (@@~1)/2]49 "2 =C

with a#+1 and C a constant. For the degenerate cases
a=x1 we have the regular solutions

=3(+C), a=-1, (3. 390)

F:—-i‘Cz:F'lz‘Cg, a:l, (3.390)
and, for a=1, the singular solution®®

=32+4C, a=1, (3.39d)

{2) Xy +X3+aX, 0<a<w:The Pfaffian equations are

dt dx das
1+F tx+zax x2+aS’

8. 40)

which upon integrating the first two of these equations
gives the similarity variable

1 +4¢) fe/4 3 41
t= (1+i’)”’( = I 8. 412)
while the first and third gives
Br (1+iT\e/2 (1 +iT\4a/2
s=4 () ) e, @.418)
where F satisfies
F-$atF,+aF+5E=0. (3.42¢)
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This equation has the form of the general Chrystal’s
equation.” Its general solution is given by

£ — 20 F 3a) 128/ (u + 2 ¥ ja)"1*2/H = C, (3.43a)
where C is an arbitrary constant and
F=(t/4a)ia® - 1-ud), (3. 43D)

We mention that (3. 42c¢) has a singular solution which
we ignor since it occurs when a is pure imaginary.

(3) X, + X; + X,: The subsidiary equations are

e erd (3. 44)
which yields the similarity variable
E=x/t-1nt (3.45a)
and the form
S=%t7InT+i7in7+ TF(8), (3, 45b)
where F satisfies
- (E+1)F,+ 3£+ F=0, (3. 45¢)
The general solution of this equation is given by
(xu-l)exp(:tu-—l)=C‘{, (3. 46a)
where C is an arbitrary constant and
=il+g-4), (3, 46b)

Thus it is seen that the remaining two cases [{2) and
(3) above] separate in the product form with an addi-
tional multiplier term Q(£, 7) present,

There now remains from Table I only three cases of
orbit representatives of 0(3,2) which are not in gl(2, R)
Bwy. Of these the first two to be considered are in fact
closer related to (x*).

{4) X - X3+ X,: The Pfaffian subsidiary equations are
dt__dx__dS

1-LTi-s & (3.47a)
or alternatively in terms of z=t- S, T=¢+S, we have

lif_; —iﬁ *dl-—T (3.47b)
from which we find the similarity variable

2=z +x-1) (3. 48a)
and the solution

T=sin™[(c - 1)/£] + F(g), (3. 48b)
where F satisfies

£2FE+1-1%=0, (3. 48¢)
giving rise to the general solution

T=sin(x-1)/g] + £~ 1~tan"'g? - 1+C, (3.49)

Clearly this case is related to the separation of (**) in
polar coordinates.
(5) X5 - Xy +a(X, +X;): The subsidiary equations are

at_ dx ds
af—ix t—S+ax ix+aS

(3. 50a)
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or in terms of 2z and T
dz dx dT

az-x z+ax aT’

(3. 50b)

From the first two equations the similarity variable is

ey i [Emix)eY
g=(x%+2% (z+ix) (3. 51a)
while the second two equations give the form
'y +ix a/2
r=(55) " Fo, . 51b)
where F(t) satisfies
(@ +1)E2F2 - 2a* L Fy F+ @* F = 2 =0, (3. 51¢)

The general solution of this equation is given implicitly
by

a _(aF..’_i(aZ_‘_l-)gz_aZFe) +6/24
A8 = O F @ T ) - &R

F
| Fx (df+1)g2-afﬂl‘ (3.52a)
The case a=0 is degenerate and leads to
T=xx*+22+C, (3. 52b)

which in terms of S gives a certain translation in § and
¢ of the fundamental solution x%/4¢,

(6) X; + X3 +a(X, +X,): The Pfatfian equations are

at & _____ds
1+E2+1ax? x(t+aS) a(l +5)+xt"

We have not been able to find a simple way to integrate
these equations explicitly. This ends the list of similar-
ity solutions for (*), We mention also that it would be
interesting to see if there is any relation (perhaps of a
projective nature) between the solutions presented here
and the semisubgroup separation of variables for the
graph equation (1. 10b) and hence the wave equation in
3-space, 4

(3. 53)

Before ending this section we briefly comment on one
other solution generated by a symmetry, namely the
general solution generated by the characteristcis. How-
ever, since (x) is not quasilinear, this solution cannot
be written as a similarity solution. The characteristics
for any first order equation are determined from the
Eqgs, (1.5a) or equivalently from the characteristic vec-
tor fields (1.7). The relative invariant®® obtained from
the vector fields in ¢/J given by

Y=nix,1,S,0,q)2p3,+ 3, + %5 ) 3. 54a)
is determined by the equations

dx_dt_ds_dp_ dq

21 P 0 0’ . 54b)

giving rise to the general solution of (*) in terms of the
characteristic strips!!

S=p%+ Flx ~ 2pt,p), (3. 54¢)

where F is an arbitrary function of its arguments, In-
deed the above analysis can be made much simpler if we
use the characteristic £ =x - 2pf as an underlying vari-
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able, We can consider () to be generated by the ideal
y=p*+q=0, dr=0, (3. 55a)
dxAdp+ditn dg=0, (3. 55b)

Then clearly dx =dt + 2p dt +2¢dp, so (3. 55b) becomes
dENndp+din dr=0, (3. 55¢)

which implies the existence of a function V(¢,¢) with p
=V, and ="V, Then (3. 55a) implies that it is indepen-
dent of #, and thus the general solution is given by

b=V (8), (. 55d)

which is equivalent to (3. 54c) as long as d§A di#0, In
fact, it can easily be seen that V(£) is equal to F in

(3. 54c), modulo an additive constant, In the next section
we will see that (3. 55d) is closely related to prolonga-
tions of (*).

4. PROLONGATIONS

The concept of prolongation was first introduced by
Cartan!®® in his study of what has since been called in-
finite pseudogroups. His idea was to obtain and classify
certain pseudogroups (infinite groups in Cartan’s lan-
guage) by taking successively higher derivatives of Lie’s
differential equations for finite Lie groups. Indeed a
classification of certain types of pseudogroups has by
now been rigorously established, using essentially this
idea, %32 However, here we wish only to apply the first
prolongation of (*), that is we take the derivative with
respect to x of (x) and notice that it gives precisely
(**x), The question that is raised is then what is the con-
nection between the symmetries of (*) and (x+%)? We do
not intend to give here a full analysis of this question
but only to point out some interesting relationships.

Since (#xx) is a first order quasilinear partial differ-
ential equation, the analysis performed in the beginning
of Sec, 1 applies, We are only interested in the point
transformation symmetries of (***) since only these can
be projected to symmetries of R?xR! with local coordi-
nates (x,%,p). Then, using (1.4) and (1, 5), we find the
pseudogroup of point transformations of (#x*) to be gen-
erated by the vector fields (projections onto RIxRY

X=2pFl(x,t,p)3,— 2pF°(x - 2pt,p)3,
+ P, t,p)+’%f”tﬁ*’(x— 20t,9)

+glx—2pt,p) 8y, “4.1)
where F°, F!, g are arbitrary function of their argu-
ments, It is easy to see that the ideal 7 of characteristic
vector fields of (**+) is generated by Fl(x,?,p).

We now look for those members of the symmetry alge-
bra g,, of * given by (1. 4) and (1, 5b) which can be re-
lated to a subalgebra of (4, 1) whose vector fields when
prolonged® to act on the variables S and ¢ can be identi-
fied with a subalgebra of (;,. This prolongation can be
accomplished through the use of (1, 4¢) and (1. 4d) and
give precisely those vector fields in ¢, for which X%,

X!, and X* are independent of $ and g, A straightfor-
ward computation gives constraints on the vector fields
{4. 1) which imply the existence of a function H(x - 2p¢, p)
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such that

1 1
_th'

’=2-P_;
el lm, +-L )
g_2p<H,.+2p,H‘+c§ N

where ¢ is a constant and we use the change of variables
p’'=p, £=x-2pt., The prolongation to the S and ¢ com-
ponents of the vector fields now proceeds via (1.4c) and
(1, 4d) respectively. These prolonged vector fields can
be wriften

X*=2pFi(x,t,p) +cx,

X*=F!'- (1/2p)H, +ct,

X =4,

Xi=-2pH, +E%x,1,S,p,q)(b* +q)

XS=p Flx, t,p)+ spH,- H+cS
+EYx,t,S,p,q)0° +q),

where F! is an arbitrary function of its arguments and
E! and E° are arbitrary except for being nonsingular,

at p+¢ =0, Again as in Sec, 1 it is convenient to factor
these terms out and use (4. 3) modulo E® and E!, We now
consider some explicit examples,

Fo le

4.2)

4.3)

The first example to be considered is the character-
istic collineation given by the arbitrary functions Flin
(4.1), For (**%) this gives rise to the general solution

p=flx - 2pt), 4.4)

Now the prolonged vector fields given by F' in (4. 3) will
generate the general solution of (x) given by (3. 54¢) or
(3.55d), In fact we can easily identify f in (4, 4) with V,
= Vx in (3. 55d).

As another example we consider those point trans-
formation symmetries of (***) which can be prolonged
to point transformation symmetries of (x) or vice-versa.
These can be found by simply demanding the condition
that the x, {, and S compaonents of the vector fields in
(4. 3) be independent of p and q. Through a straightfor-
ward calculation we arrive at a finite-dimensional sub-
algebra spanned by the vector fields™

Yl = at’ Y4 = ax’

Yy=10,+3x0,~ 5pd,, Ys=1d +30d,,

Y3=t26,+txa,+(%x—fp)5,, “.9)

Y, =3x0, + 3P0,

‘We have used a notation suggested by (1.15); the pro-
longation of (4. 5) by adding the ¢ and S components via
(4. 3) gives precisely the corresponding ¥’ s in (1.15).
Conversely, we can obtain the above vector fields from
the corresponding ones in (1.15) (the subalgebra gl(2, R)
Rw] by lifting the latter to T*(R?) XR! and projecting
onto a surface with $ and ¢ constant. We notice that ¥;
is missing from (4. 5) since X projects to the identity
for constant S, i,e., Y;=0. The structure of the gener-
ators (4.5) is gl(2,R) D a,, where g, is a two-dimensional
Abelian ideal generated by Y, and Y, Hence the pro-
longation process does not conserve Lie brackets. How-
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ever, X; generates a one-dimensional ideal of gl(2, R)
®w, and thus there is a Lie algebra isomorphism be-
tween the factor algebra [gl(2, R) v w]AXy} in {1.15) and
gl(2, R) 3 a, given by (4.5). Of course, the subalgebra s,
~sl(2,R) 3w of (;, obtained by removing X; is a central
extension of the subalgebra si(2, R) ® a; of G x4x Obtained
by removing Y; from (4. 5).

Now there is an interesting connection between the
similarity solutions of (4.5) and the corresponding ones
for {1.15) given in Sec. 3. Indeed the orbit represen-
tatives of gl(2, R) ® @, under the adjoint action of the

group are
L
Y, +a¥; (@z0), Yi+Y+al, (-o<ag>wx)
4,
Yi+Y5, YptYs+Y, Y,+Y, Y, Y. (4.6)

Comparing (4, 6) with the orbit representatives of gl(2, R)
Sw in Table I and considering the factor algebra [gl(2, R)
w]/{Xs}, we see that the only difference is the appear-
ance of Y+ Y; and ¥; and the ranges of ¢ in (4, 6). This
is s9 since X; and X, + X; are conformally equivalent to
X, and X, + X respectively, Similarly, the differences
in the ranges of g are explained by conformal equiva-
lence, Now the connection of the corresponding simi-
larity solutions of () and (*xx) ig this: Take the x deri-
vative of one of the similarity solutions in gl(2,R) 2w
obtained in Sec. 3 and put p=S5,; then this solution is
precisely the similarity solution obtained from the cor-
responding orbit representative in gl{2, R) a, for (xx#*),
It should be added that the multiple of X for a similarity
solution of (*) becomes an integration constant for the
corresponding similarity solution of (»**). A simple ex-
ample should illustrate the point. Consider the similar-
ity solution for 2X, + X, given by (3.17). Considering
only ¢> 0, we find

1 £2 _ X
p:S":W -§-+—4-—4tl , g—?‘,}, (4.,73)
which is the similarity solution of (x»*) obtained from
2Y, with proper identification of the integration constant,

Indeed

———— .7b

2t «x b (4.7b)
gives the similarity variable £ =x/#/? and

p=t125(g), {4.7¢)

I we call f=F, and substitute (4.7c) into (x*x), we get
2F,Fyy - 3EF - 3F, =0, (4.74)
which is precisely the x derivative of (3. 18b).

More generally, we can consider the entire subalge-
bra // C( 4, determined by (4.2). Now looking at (4. 3)
we see as before that we must not only factor out E® and
E! but also the constant part in the function H, i.e., the
generator X; in (1.15), That this can be done follows
readily from the form of the generators.in (4.3), namely,
that the only S dependence of the vector fields in (4. 3),
mod (E°, EY), is of the type S9s. Then the prolongation
process defines an isomorphism of 4 onto the subalgebra
of G, given by (4.3) modulo the above equivalences. We
mention that one can find nontrivial similarity solutions
for (s+*) which upon integration give solutions of (x) and
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that the prolonged vector field corresponding fo such
solutions are vector fields on T* (Rz) XR which are not
the lifts of vector fields on R3,

Finally we make a few comments on the members of
G+ and G 4, Which are not related by prolongations. For
example, looking at (1.15), we seen that all the mem-
bers of o(3, 2) which cannot be prolonged to members of
G »xx are those vector fields whose components involve
the variable S. Nevertheless, they yield similarity solu-
tions of (%) for which we can determine, in principal, S
and hence p =S at nonsingular points, and are guaran-
teed that p will satisfy (++«)., Conversely, from those
members of g «xx that cannot be prolonged to symmetries
of (x), we can also determine a p through the similarity
methods which upon integration with respect to x pro-
vides a solution of (*). The problem is from the group
theoretical standpoint that the prolongation process dis-
cussed above no longer gives a symmetry, However,
they can be interpreted as generalized symmetries since
they are a symmetry of one equation and give rise to
solutions of both. In this connection it would be inter-
esting to study further the symmetries of the complete
prolonged ideal of differential forms which contains both
{*) and (=*x) and possibly any further prolongations in
the spirit of Ref. 35.
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We use the fact that a rather general class of integral transforms—complex linear and radial canonical
transforms—are equivalent to hyperdifferential operators, to formulate the problem of self-reciprocal
functions under these transforms as an eigenvalue problem for (second-order) differential operators. We
thus find the solution for Fourier, Hankel, bilateral Laplace, Bargmann, Weierstrass~Gauss and
Barut-Girardello transforms. These involve the Schridinger attractive and repulsive harmonic oscillator
and/or centrifugal potential wavefunctions. A general concept of “self-reproducing” functions is introduced
which includes all of the above plus linear potential wavefunctions. In particular, two new generalized

bases for Bargmann’s Hilbert space of analytic functions are found.

1. INTRODUCTION

A function f{x) will be said to be self-reciprocal under
an integral transform 7, [defined through integration
over an interval ICIR with a kernel A ,(x, x')] when

(TMf)(x)=fndx’AM(x,x’)f(x'):Af(x), re€.  (1.1)

This corresponds to the eigenfunction problem for the
operator /,. The cases we are interested in include the
well-known cases of the Fourier® and Hankel® trans-
forms, as well as the bilateral Laplace,® Bargmann, *
Weierstrass —~Gauss® (which represents the time evolu-
tion of the solutions of the heat equation), and Barut—
Girardello® transforms. These constitute special cases
of a class of integral transforms termed canonical
transforms™® which will be described in Sec. II.

The functions which are self-reciprocal under the
Fourier transform are well known, ® while some proper-
ties of functions self-reciprocal under Hankel trans-
forms have been analyzed in the work of Hardy and
Titchmarsh. '® Further results on the Hankel self-
reciprocal functions and the consideration of the (uni-
lateral) Laplace transform and some of its variants has
been presented in a series of papers by Indian mathe-
maticians. ! The solution we present to the problem
(1.1) makes use of the observation that, for the class
of canonical transforms and fe(, [the intersection of
the space C ~ and the space of functions for which the
integral (1.1) exists at least in a generalized sense],
one can realize 7, as a hyperdifferential operator

(TM(,)f)(x)=exp(iTH“’)ﬂx), (1.2)

where 7 is a continuous parameter which for certain
values yields the particular transforms mentioned
above, and H" is a second-order differential operator,
self-adjoint in L*(I). Clearly, the solution of the eigen-
value equation

HY®9(x) = pd () (1.3)

solves (1.1) with A =exp(iTu).

When 7 is a rational multiple of 7 and the spectrum
A“={u} of H“ is discrete and integer-spaced (cases of
Fourier and Hankel), the spectrum Auz{)\} of 7, will
consist of a finite number N, of values of unit modulus,
and will divide the space (7}, into subspaces §, of self-
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reciprocal functions labeled by the eigenvalue A. The
functions spanning each of these spaces will be the sub-
sets of eigenfunctions &}, with u =y mod N,. When the
usual closing procedure is implemented, the §, become
Hilbert spaces. This is applied to the Fourier and
Hankel transforms in Secs. III and IV, When the spec-
trum A® and hence A, are continuous, the generalized
eigenfunctions of H* will still provide the self-recipro-
cal functions of {1.1), This is the case of the bilateral
Laplace and Bargmann transforms analyzed in Secs, V
and VI respectively. The case of the Bargmann trans-
form is particularly interesting since its generalized
self-reciprocal functions (the repulsive quantum oscilla-
tor wavefunctions), being orthonormal (in the sense of
Dirac) and complete in / *(R) are so too, in the same
sense, in the Bargmann—Hilbert space® 7 B [of entire
analytic functions of growth (2, 1/2)]. This generalized
basis is new and adds to the known harmonic oscillator
and coherent-state*’? bases of 7,. The results for the
Weierstrass—Gauss and Barut—Girardello transforms
are sketched in Secs. VII and VIII. As for the general
case of the complex linear’ and radial® canonical trans-
forms, we explore the generalized “self-reproducing”
functions in Sec. IX, These include, beside the func-
tions studied before, the Airy functions.

il. CANONICAL TRANSFORMS AND THEIR
HYPERDIFFERENTIAL REALIZATION

To every complex unimodular 2 X2 matrix M= (% %) we
associate the integral transform 7, given as in (1.1)
with the kernel

Aylx,x)=(27|b])/? qobexp(—zl;’)- (ax?-2x'x +dx2)) »(2.1a)

@, =exp[—-(i/2)(n/2 +argd)], (2.1b)

which we call the canonical transform.’

When a, b, c,d are real,'® 7, can be seen to be a uni-
tary mapping from /2(R) onto / *(IR), while if these
parameters are complex, the resulting transform [when
bounded: for Im(a/b) >0 and b real if a =0] is a unitary
mapping between / %(IR) and Hilbert spaces 7, of analytic
functions defined through the scalar product over the
complex plane, for f=7,fand g=7,g,

(D= [ duylx) Rx)* 5(x), (2.2a)
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dulx)=22m) *exp [2—10- (ux® =2xx* +u* x*z)]d Rex dImx,
(2.2p)

u=a*d -b*c, v=2Imb*a, (2.2¢)

The functions flx) in the spaces 7, are characterized
as flx)=exp(—ux?/2v) fy(x), where fy(x) are elements in
the Bargmann—Hilbert space.* The transform inverse
to (1.1) is given by

A = (TP = [ duy(x) Ay lx', D).

For the transforms we are interested in, we can
identify the following:

(Fourier) 7=exp(in/4) Tz, F=(21J),

2.3)

(Bilateral Laplace) [ =#/3n7,, L=0J, (2.4b)
(Bargmann) A=Q2a/*7,, B= 7-17—(,‘ 4, (2.4¢)

[with the specific choice of phase +i=exp(zin/2)]
(Weierstrass~Gauss) W,="T7,,, W,=( *{). (2.4d)

We will find it useful to define the geometric transform
as

Tows,er )= e *expliie’ex®] fle’x),

G(8,¢) =(e-3 eOB) s

[

(2. 4¢)

which can be obtained from the general case (2.1)
letting” b— 0.

These results and their derivation are found in Ref.
7, where we also analyze the behavior of the measure
(2.2) when v— 0. We should point out the novelty that
in our treatment the Weierstrass~Gauss transform®
becomes a unitary transformation between Hilbert
spaces with a conserved scalar product and a proper
inversion. One more result which we can extract from
Ref. 7 is the fact that, when two transforms 7}1 and 7,,,2
are bounded, their composition (through integration
over IR) follows the product of the matrices M,M, =M,,
so that 7, °7,,=¢7,,, where ¢ is a phase (1) depend-
ing on 1—2 matrix elements of the M,’s. Notice, how-
ever, that it is not necessary that a transform 7, be
bounded in order to have a nonvanishing domain
dense in /£ %(I). This remark applies to the case of the
bilateral Laplace transform, which is unbounded.
Finally, we should stress that, while all (bounded)
transforms are unitary mappings between /*(I) and 7,
when seen as mappings between / (I) and £ %(I), the
transforms 7, with complex M are nonunitary.

In Ref, 7 it was shown that for fe (], the integral
transforms (1.1)-—(2.1) are equivalent to the action of
the hyperdifferential operators (1.2), Specifically, for
the one-parameter subsets which contain the transforms
{2.4),

hol(_ A . (cosr ~sinT
H'=3( +x%) generating sint  cosT )’ (2.5a)

LA . coshT ~sinh7
H=3( ) generating (— sinh7 cosh7

), 2.5b)
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1 -
Hf=-1a generating(o 11), (2.5¢)

where 2

= E;Z- .
Thus, the Fourier transform can be written in hyperdif-
ferential form (1.2) with H" as given by (2.4a) and
T=-7/2, the Laplace and Bargmann transforms with
H" as (2.5b) and 7= -in/2 and in/4, respectively, while
the Weierstrass —Gauss transform appears with # as
(2.5¢) and 7==2i¢, This last case is commonly known. ®
Finally, the generators of geometric transforms (2. 4d)
are first-order differential operators which can be
seen to be, for the 8 parameter,

(2.5d)

d 1 e’ 0
d_ _ (& = N
Hi= Z(xd’x + 2) generatmg( o e,), (2.6a)
while for the y parameter it is simply
L {10
3x* generating 1) (2. 6b)

In Ref. 8 we considered the “radial part” of a special
n~-dimensional version of the transform (2.1), This
class of integral transforms have the form (1.1) over
the interval I=IR" (the positive half-axis), while the
kernel, instead of (2.1), turns out to be

AR, x") =b " exp(—ikm{(xx) /2

exp [ﬁ {ax’ +df)ﬂ-lg,, xx'/8).
2.7

As before, for a,b,c,d real,'* (1.1)~(2,7) is a unitary
mapping from [ *IR") onto £ *(IR*). As particular cases
we have the following transforms:

(Hankel) A'"'=exp(ikm)7TH}, F:(_(l) :)), (2.8a)

(Barut—Girardello®) ¢"*'=7}, B= 7—12-— (—1i _11).

(2. 8b)

These transforms can also be put in hyperdifferential
form (1.2) for functions in Cg,,. For the Hankel trans-
form, the operator H**! has the form (2.5a) with 7

=~ /2 and the Barut—Girardello transform, (2.5b) with
T=1{n/4 but, instead of (2. 6), the “radial” operator A

is in these cases

@ 2k -17-1/4
s P

The parameters of the transform kernel (2. 7), when
extended to complex values, define a unitary map from
L*(IR*) to spaces 7! with a scalar product which corre-
sponds basically to the radial part of the kth spherical
harmonic part of {2.2). Thus, the “radial part” of an
n-dimensional Bargmann transform is the Barut—
Girardello transform and similar “radial Weierstrass —
Gauss” transforms, for example, can be constructed.

(2,9)

HI. SELF-RECIPROCAL FUNCTIONS UNDER THE
FOURIER TRANSFORM

The results presented in the last section allow us to
state that the eigenfunctions of H* in (2.5a), namely the
quantum harmonic oscillator wavefunctions
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®M(x) = (/22" 1) % exp(- **/2) H (x), n=0,1,2, ..
(3.1)

will be self-reciprocal under the Fourier transform
(2.4a). This is a well-known fact® which will clearly
illustrate our method. Since the spectrum of H" is
u=n+%, n=0,1,2,+-., then

(FoM(x) = exp(~ im/2) X x). (3.2)

Equation (3.2) allows us to split 7 [and its closure
L¥R)] into four subspaces §,, for A=1,i,-1, or —¢
(recall that 7*=1), Each of these subspaces is gener-
ated by the set & with =(0,1,2, or 3) mod4 respec-
tively. Clearly, the intersection of two different {,’s
is empty, while the union of the four is /*(R). The
raising and lowering operators

2‘”2[96—%]@:(96):(" +1) 2% (x), (3.32)

2‘”2[95 + gi—]eb:(x):n”a@;‘_l(x), (3.3b)
are n-independent and will thus map the §, to §,
rotating the A plane counterclockwise and clockwise by
/2.

IV. SELF-RECIPROCAL FUNCTIONS UNDER THE
HANKEL TRANSFORM

Here we follow the general procedure as in the last
section. It is well known that the normalized eigenfunc -
tions of (2.5a) with (2.9) are

2n!
0 =(50

n:0,1,2, sy, xeR".

1/2
exp(— x2/2) x7%-1/2], (2e-1)(y2)

(4.1)

The “radial” Schrodinger harmonic oscillator with
centrifugal potential wavefunctions, for k> 1, (4.1)is
the only set of eigenfunctions, while for 0 <k <1 we
have more than one self-adjoint extension of (2.5a)~
{2.9) in R", one of which still has the eigenfunctions
(4.1). The spectrum is g =2(x +%) with n=0,1,2.-- and
thus

(H, @M ) (x) = exp(— int) & " x), (4.2)

exactly as in (3.2) and splitting the space §'*!in §'*’
(A=1 or —1) generated by &**! with n= (0 or 1) mod2,
respectively, as before.

The z-~-independent differential operators which raise
and lower the index n in (4.1) will similarly rotate the
A plane. From the raising and lowering operators for
the upper index of the Laguerre polynomials, we find

(x +§Z‘%1.& - ﬁ;)q,:m(x):z(n +2R)1E G RA2Y )

(4.3a)

(x+2k—3/2 +_l_i__)¢:lk1(x)=2(n +2k +1)/ 2@ M2 ),

x ax
(4.3b)

which will thus map $%J onto §i*2! i.e., self-recipro-
cal functions of the Hankel transform of index % to index
kB+2,
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The characterization of the self-reciprocal functions
under the Hankel transform with either eigenvalue A
thus seems almost trivial and certainly simpler than
that presented in Refs. 10 and 11,

V.SELF-RECIPROCAL FUNCTIONS UNDER THE
BILATERAL LAPLACE TRANSFORM

The bilateral Laplace transform can be realized
through the hyperdifferential operator (1,2) with ex-
ponent (2.5b), the quantum repulsive oscillator Hamil-
tonian, and T= —im, on a suitable function space. The
eigenfunctions of (2.5b) are the repulsive oscillator
quantum eigenfunctions

S Hx)=C, Dy, /-02V2exp3in/d)x], neR, xcRR,
(5.1a}
(5.1b)

where D, is the parabolic cylinder function. [See Ref.
16, Eq. (2.22) for their computation; the method closely
follows that of Miller ef al., Ref. 17, ] The spectrum of
H" covers twice the real line, so y € R and 7 and &}~
are mutually orthogonal and a generalized basis for
LE(R). Our statement is now that (5.1) are self-recip-
rocal under the Laplace transform and that, due to

(2. 4v),

(LoNx) =27 explmp/2) &, x). (5.2)

The statements (5.1)~(5.2) can be made more trans-
parent with the use of the technique of Ref. 17, of trans-
forming them to simpler operatars on the same orbit
under the group as that generated by (2.4e). For this it
is sufficient to notice that 7, in (2.4b) [ as well as the
Bargmann transform 7, in (2.4c), next section] is on
the same orbit as the dilatation transformation (2, 4e),
that is

o 1 /1 -1
TMDTLTMloer(-M/Z,O)) MO:-\/—_Z—(I 1)

(where M, represents the square root of the inverse
Fourier transform, as M2=F"'). Equation {5.3) can be
verified by simply multiplying the corresponding 2 X2
matrices. Now, the generalized eigenfunctions of H® in
(2.6) are

C, =237 T(~ip +3)exp(- jinliu +3)],

(5.3)

tx, x20,

0, x50, (5.4)

B2(x) = (27)" Pxlurre, "*5{

with eigenvalue pu € R. As (5.3) holds, we have that
&14{(x) = (T, @, )). (5.5)

The generalized orthonormality of the set (5.4) and its
completeness for / %(IR) is known from the theory of
Mellin transforms,® and from here the same statement
follows for their unitary transforms (5. 1) whose direct
verification is far less straightforward than for (5.4).
The action of transform (5.3) is that of dilatation by a
factor e® =exp(—4i7/2), On the basis (5.4) this is clearly
seen to be

(7_0(-:;/2,0)‘1’?)(") =exp{-in/4) d*[exp(-in/2)x]

=exp(7u/2) %(x). (5.6)
From here and (2.4b), Eq. (5.2) follows.
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One point which merits brief consideration is the
following fact: (#7°,8.")=6(u — u')8,, (0=4), under the
ordinary scalar product on the real line. This implies,
through the parseval identity for the Laplace transform,
that for the scalar product

jeo
- 1 - al
(HB=37 f dx flx)*g(x) (5.7a)
~fon
the same generalized orthogonality relation holds,
@7, 87%) = exp(7u)d(u — 1) Oy (5. )

Completeness does not hold, however, as the transform
is only isometric.

V1. SELF-RECIPROCAL FUNCTIONS UNDER THE
BARGMANN TRANSFORM

The Bargmann transform® is closely related to the
bilateral Laplace transform, as it has the same gener-
ating operator (1.2), namely in (2.5b). The value of the
parameter 7 is here in/4, Indeed, we can point to the
fact that B®=L"! through (2. 4b) and (2. 4c). This can be
verified easily through integration. The self-reciprocal
functions (5.1) of the Laplace transform will thus also
be self-reciprocal under the Bargmann transform. With
the proper constants from (2.4c) we have that

(BB7)(x) =(@2m)" * exp(~ 71 /4)®7(x). (6.1)

This result can also be derived by noting that 7 /574,
=T gue/a,0) Where M, is given by (5.3), and repeating
the argument of the last section. Finally, direct verifi-
cation through integration'® is also possible. As B2=L
this proves the result for Laplace transforms as well,

Now, use of the Parseval identity for Bargmann
transforms and the unitarity of the transform, informs
us that the set ®]* is a complete, orthonormal general-
ized basis for the Bargmann space 7, of analytic func-
tions. Recall that the better-known bases for Barg-
mann’s Hilbert space are the denumerable (“harmonic
oscillator”) monomials, i.e., powers of x, and the
overcomplete coherent-state basis. %' The repulsive
oscillator basis can now be added to the list. The
orthogonality relation (5. 7) amounts to the same state-
ment for the 7, space. On similar grounds, at the end
of Sec. IX we will show that the Airy functions can be
used to construct another such generalized basis.

VII. SELF-RECIPROCAL FUNCTIONS UNDER THE
WEIERSTRASS-GAUSS TRANSFORM

For the Weiserstrass-—Gauss transform we can use
the eigenfunctions of (2.5c) and (2. 5d) {recalling that
the spectrum of this operator covers twice the positive
half-axis), and choose

&f(x)=(@2m) " expliux), *eR, pcR (7.1)

which has eigenvalues 3 as an appropriate basis. The
exponentiation (1.2) with 7=2i¢ then yields

W (@ /) x) = exp(— u?) &4 (x)

which is a well-known property of the heat equation
Green’s function.® Thus the functions (7.1) also provide
a generalized orthogonal basis for the corresponding
spaces Fy,.

(7.2)
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A “radial” Weierstrass—Gauss transform for the
matrix W, in (2. 4) with a modified Bessel function in the
kernel (2. 7) would have its self-reciprocal functions
given by the eigenfunctions of —5a'™ in (2.9), viz.,

(7.3)

with eigenvalue ;u®. An equation identical to (7.2) for
these transforms follows. These functions will be used
below,

‘b‘{[k](x) = (ux)“sz,,-l(le), xe ]R‘a o €R’

VIiI. SELF-RECIPROCAL FUNCTIONS UNDER THE
BARUT-GIRARDELLO TRANSFORM

The Barut—Girardello transform® has the integral
kernel (2.7) which stems from (2. 8b) generated by
{2.5b) with A given by (2.8). The generator is the quan-
tum repulsive oscillator Hamiltonian with a centrifugal
potential. Its eigenfunctions are

TN x)=CLx ™ 2M 15 4oy s(—i%%), xR, peR,

(8.1a)

C, =21 D2 130k +ip/2) explin{—itp +k)]/T(2R),
(8.1b)

with eigenvalue u, where M, is the Whittaker function.
These functions can be found through the technique of
Ref. 17, parallel to that of (5.5) through the use of the
appropriate kernel (2. 7). Since 7=in/4, as stated be-
fore, it follows that

(G2 (%) =exp(- 7u/4) &, x). (8.2)

Remarks similar to those made in Sec. VI can be made
to point out that (8.1) constitutes a new generalized
basis for the Barut—Girardello space® 7%,

IX. SELF-REPRODUCING FUNCTIONS UNDER
CANONICAL TRANSFORMS

A useful generalization to the concept of self-recipro-
cal functions {1.1) to the class of canonical transforms
Tus M=(2 %) given by (2.1) or (2.7) is to ask for func-
tions ¢¥(x) such that

[7-¢,‘f](x)=cﬁ expi(auxz +ﬁ,ux) ¢:,(7,ux +6M), (9 1)

where C¥, a,, ..., 8, are constants. We can call such
functions “self-reproducing” under 7,. This has been
used in Ref, 19 in order to find the irreducible repre-
sentation matrix elements of SL{2, R) for all subgroup
reduction chains as well as for the nonsubgroup Airy
function basis.?® In Ref. 16 we were able to state some
general results on separation of variables for a class of
two-variable parabolic differential equations through
exploring relations of the type (9.1), where 7, rep-
resented the time evolution of a system governed by
such an equation. It also allows us, via the unitarity
of the transform to find new generalized function bases
for spaces of analytic functions & la Bargmann, as we
have done with the parabolic cylinder functions in Sec.
VI.

The basic step is to write
Tu=Tewe He, (9.2)

where 7 ., is the geometric transform (2. 4e) and
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TABLE 1. Self-reciprocating functions under canonical transforms of the linear (2,1) I=R) and radial (2,7) A =R*) types. The
table headings refer to the constants appearing in Eq. (9.1).
Function ¢% ct oy Bu Yy Sy
Harmonic oscillator (3.1) @2+ p2)-V4
(Hermite X Gaussian) p=n+%, n=0, 1, 2, =« “a +5’( ac+bd 1
Radial (k] Harm, Oscill. (4.1) Y 2a?+ 5% ¢ @2+ 612 0
(Laguerre X Gaussian) u=2{n+k), n=0, 1, » expi-witan=o
Repulsive oscillator (5.1) (@ — pA)-1/4
(Parabolic cylinder) u€ R ({twice) @ '—: ) ac—bd 1
C —
Radial [£] Rep. Oscill. (8.1) P P17 0 @ = p)UT 0
(Whittaker function) EXpL- kAt
Schrddinger free particle (7.1) a2
(imaginary exponential) p€ R % < o 1 0
Radial (k] centrifugal pot. (7.3) el iu2® 2a a
(Bessel function) p€ R* i wr L
Linear potential (9. 4) vzl b 5B c b 1 b
(Airy function) p€ R aTTeMNHT 1223 2a & a 2at
2 =exp(itH”), H® being any of the operators considered  found to be
in (2.5) or any other operator in the SL(2, C) orbit of 3 (0)=234i2"fx~u]), x,ucR. (9.4)

one of these. By writing the corresponding 2 X2 matri-
ces for the transforms in {9.2), we can easily find 8, ¢,
and ¢ in terms of the matrix elements of M through a set
of coupled algebraic equations. Thus, when ¢} is an
eigenfunction of H*, the action of #{’ is to multiply ¢%
by exp(éu¢) and that of 7 ., is given by (2. 4e), yield~
ing the form (9.1) for the transform function.

A simple example will illustrate the procedure for
the harmonic oscillator functions ®X«) in (3.1),

oo™ [T o0 T 20
a=(a® +b2)1/2’ yz(ac +bd)/a, tant = - b/a.

(9.3b)

Now, the right-factor matrix is generated by (2.5a),
(see Sec. II), hence

[7(: g)q’i'](”: Joax Aylx, x) 8 Xx")
= expli(n +1/2)¢] [7(2'“0.1)‘1’3](")

= o/ ?expli(n +1/2)t] expi (é% ") = (_x)

(9.3a)

(s 4
(9. 3¢)

Equation (9.3) can of course be verified directly using
integral tables. The fact that ®! appears in the integrand
and in the right-hand side of this equation, has thus been
given a group-theoretical interpretation. The list of
self-reproducing functions can then be drawn from the
eigenfunctions of the operators (2.5) or the “radial”
ones with (2.9). There is one further extension which
for economy we have not mentioned at all in this article,
but which appears in full detail in Ref. 16: The exten-
sion of the s1(2, R) algebra through a semidirect sum
with a Heisenberg—Weyl algebra w with generators

x, —id/dx, and 1 to an algebra w -Hsl(2,R). When expo-
nentiated to the group W2 SL(2, R), this brings in one
new interesting orbit generated by H'=4P% +Q, i.e.,
the quantum free-fall or linear potential Schrddinger
Hamiltonian. Its generalized eigenfunctions can be
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Now, in following Ref. 16 to deal with W2 SL(2,R) we
can add (9.4) to the list of self-reproducing functions.
In Table I, we summarize the results for the harmonic
oscillator (3. 1), repulsive oscillator (5.1), free (7.1),
and linear potential (9.4), as well as the radial harmon-
ic oscillator (4.1), radial repulsive oscillator (8.1),
and pure centrifugal (7.3) Schrodinger eigenfunctions.

It should be noted that the choice of these eigenfunctions
(rather than the most general eigenfunction of a linear
combination of these Schrodinger Hamiltonians) is no
restriction at all, since assume we wish to ascertain
the self-reproducing formula for a function T,ltb:’ where
¢y is one of the functions above, Now [, ¢ has the
form in the right-hand side of (9.1). Write (9.2) as

Tulu,=Tuy=Tu T H?s (9.5)

where it is as easy to find ¢’ and G(8',¢’) in terms of M
as it was before. Thus, the most general self-reproduc-
ing functions under canonical transforms are given by
7—M1¢f where ¢) appear in the table and have the struc-
ture (9.1). Table I can be used for all values such that
the entries are nonsingular.? In particular, the table
gives the results on self-reciprocal functions found in
Secs. III-VIII as can be checked by replacing the proper
matrix elements (2.4) and (2, 6) into the six first entries
of the table. As far as the last entry on Airy functions
is concerned, it is of interest to point out that the
Bargmann transform (2.4c) of (9.4), namely

[Be!)(x) =22t exp[3x® - VEx + & — 1]

XAi(25/8 x5 = 278/3 L2M/3,), (9.6)

constitutes a generalized orthonormal complete set of
functions for Bargmann’s Hilbert space 7,. The argu-
ment follows that of the 7 basis in Sec. VI.

13. Arsac, Fourier Transforms and the Theory of Distributions
(Prentice-Hall, Englewood Cliffs, N.J., 1966); S. Bochner,
Fourier Transforms (Princeton U, P., Princeton, N.J.,
1949); H. Dym and H. P. McKean, Fourier Series and Inte~
grals (Academic, New York, 1972); A. Erdelyi et al., Bate~
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man manuscript project Tables of Integral Transforms
(McGraw-Hill, New York, 1954), Vol. I; F, Oberhettingen,
Fourier Transfovms of Distvibutions and Their Inverses
{Academic, New York, 1973); A. Papoulis, The Fourier Inte-
gral and its Applications (McGraw-Hill, New York, 1962);

L. Schwartz, Methods for the Physical Sciences (Hermann,
Paris, 1966); I. N, Sneddon, Fourier Transforms (McGraw-
Hill, New York, 1951); E, C, Titchmarsh, Introduction to the
Theory of Fourier Integrals (Clarendon, Oxford, 1967),

Several of the references in Ref, 1, mainly E.C. Titchmarsh,
contain ample material on Hankel or Bessel transforms; A.
Erdelyi et al. Ref. 1, Vol, II, Chap. VII; F, Oberhettingen,
Tables of Bessel Transforms (Springer, Berlin, 1972); G.N.
Watson, A Treatise on the Theory of Bessel Functions
(Cambridge U. P., New York, 1922).

%v. A. Ditkin and A.P. Prudinov, Integral Transforms and
Operational Calculus (Fitzmatgiz, Moscow, 1961); G.
Doetsch, Introduction to the Theory and Application of the
Laplace Transform (Birkhauser, Basel, 1959); M.G. Smith,
Laplace Transform Theoyy (Van Nostrand, London, 1966);

S. Colombo and J. Lavoine, Twansformations de Laplace et
de Mellin (Gauthier-Villars, Paris, 1972).

4V, Bargmann, Commun. Pure Appl. Math. 14, 187 (1961);
20, 1 (1967); in Analytical Methods in Mathematical Physics,
edited by R. P. Gilbert and R.G. Newton (Gordon and Breach,
New York, 1970); V. Bargmann, P. Butera, L. Girardello,
and J,R, Klauder, Rep. Math, Phys. 2, 221 (1971); P,
Kramer, M, Moshinsky, and T.H. Seligman, in Group Theory
and its Applications, edited by E. M, Loebl (Academic, New
York, 1975), Vol. HI.

SF. Tricomi, Math. Z. 40, 720 (1936); G, Doetsch, Math. Z.
41, 283 (1936); F. Tricomi, Ann. Inst. Henri Poincaré 8, 111
(1938); J. Blackman, Duke Math, J. 19, 671 (1952); D.V.
Widder, Ann, Mat. Pura Appl. 42, 279 (1956}; P.G.Rooney,
Canad. J. Math. 9, 459 (1957); 10, 613 (1958); G.G.
Bilodeau, Canad. J. Math, 13, 593 (1961); P.G. Rooney,
Canad., Math. Bull. 6, 45 (1953); D.V, Widder, J. Aust.
Math, Soc. 4, 1 (1964).

€A.0. Barut and L. Girardello, Commun, Math. Phys. 21, 41
(1971); P, Kramer et al., Ref. 4.

'K.B. Wolf, J, Math, Phys. 15, 1295 (1974).

8K.B. Wolf, J. Math. Phys. 15 2102 (1974),

°See E.C. Titchmarsh, Ref, 1, Sec. 3,8.

%G H. Hardy and E. C. Titchmarsh, Quart. J. Math, 1, 196
(1930), this material basically constitues Chapter IX of the
book by E.C, Titchmarsh in Ref. 1. There, the case A=1
[in Eq. (1.1)] is studied and the case A=—1 rather briefly
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commented upon. The self-reciprocal property is related
with the parity under inversions through a line in the complex
plane of a function closely related to the Mellin and Laplace
transforms of the self-reciprocal function.

B, Mohan, Proc. London Math, Soc. 34, 231 (1932); Proc.
Edinburgh Math, Soc. 4, 53 (1934); Quart, J, Math, 10, 252
(1939); S. K. Bose, Ganita 5, 25 (1954); K. P. Bhatnagar,
Bull. Calcutta Math, Soc, 46, 179 (1954); G. Krishna, Proc.
Natl. Acad. Sci. India 26, 343 (1960); S. Masood, Proc.
Natl, Acad. Sci. India 29, 372 (1960); V.V.L.N. Rao, Proc.
Cambridge Philos. Soc. 57, 561 (1961) and references
therein,

123, Glauber, Phys, Rev. 130, 2529 (1963); 131, 2766 (1963);
C. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).
13M, Moshinsky, Proceedings of the XV Solvay Conference in
Physics (Brussels, 1970); M. Moshinsky and C. Quesne, J.
Math. Phys. 12, 1772, 1780 (1971); M. Moshinsky, SIAM J.

Appl. Math, 25, 193 (1973).

H4M, Moshinsky, T.H. Seligman, and K.B. Wolf, J. Math.
Phys. 13, 901 (1972).

15 A5 the use of the normalization constant is not yet fixed (see
Kramer et ql., Ref. 4 and Ref. 6) we opt for setting it to
unity in our context.

165 B, Wolf, J. Math, Phys. 17, 601 (1976).

"E.G. Kalnins and W, Miller, Jr., J. Math, Phys. 15, 1728
(1974).

B After completing squares in the exponent, use I, S.
Gradshteyn and I. M. Ryzhik, Tables of Integrals, Sevies and
Products (Academic, New York, 1965), Eq. 7.724; in the in-
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Ygingularities occur (notably in the repulsive oscillator case)
when the decomposition (9, 2) fails for a given M and w. This
is the case of the Fourier transform (2. 4a). In this case, the
transforms of the three last entries are (2m)~Y2x~ 212,
8(x—2), and (27) Y 2expi(~Ag+¢%/6), so that self-reproduc-
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Spatial coherence of acoustic signals in randomly
inhomogeneous waveguides—A multiple-scatter theory

G. R. Sutton* and J. J. McCoy
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A normal mode theory is formulated for estimating the loss of spatial coherence of acoustic signals
propagating through a randomly inhomogeneous waveguide. The theory is applicable for experiments in
which multiple-scatter effects are important provided the rate at which energy is scattered with increasing
range is limited. Other limitations on the theory require that intermodal scattering between propagating
and nonpropagating modes be negligible and that the intramodal scatter of energy within a single mode be
narrow-angled, when measured in the waveguide plane. The scattering of acoustic signals, of significant
frequency content ranging upwards from tens of Hertz, by large scale interval wave fields, i.e., wavelengths
of the order of 1 kilometer or greater, satisfy the conditions for applicability of the theory.

INTRODUCTION

The propagation of scalar radiation fields in random-
ly inhomogeneous media has been the subject of an in-
tense research effort over the past two decades. One
problem of fundamental interest is an infinite, statisti-
cally homogeneous medium characterized by a weakly
fluctuating refractive index field superimposed on a con-
stant background value, i.e., n*(X)=n3[1+ep(x)], where
n% is a constant, p(x) is everywhere of the order of unity
and €<<1, A radiation field is introduced by the state-
ment that the intensity across a given plane, say the
z =0 plane, is independent of position in the plane and
is directed normal to the plane in the positive z direc-
tion. In the absence of refractive index fluctuations the
resulting radiation field is given by a plane wave. The
effect of the refractive index fluctuations can be investi-
gated by considering the intensity across a second z
plane, 2> 0, Since the refractive index fluctuations have
been assumed to be statistically homogeneous and the
intensity at the 2z =0 plane is independent of absolute
position, the intensity will be independent of position
at any plane for which z > 0. However, the intensity will
no longer be unidirectional, as given by a plane wave.
To describe the intensity at a plane z> 0 a directional
intensity spectrum is introduced, which may be inter-
preted as a spatial analog of the power spectrum of
random signal theory, The spectrum resolves the inten-
sity at the z plane into propagation directions. The pre-
diction problem is for a descriptor of this intensity
spectrum as a function of range, radiation wavelength,
and the statistics of the refractive index fluctuations.

The problem of scalar radiation fields in randomly
inhomogeneous waveguides has received considerably
less attention than has the infinite medium problem. One
can view the infinite waveguide as a two-dimensional
random medium in which there is an infinity of modes,
some of which can propagate energy and others that are
evanescent. In the absence of the random inhomogenei-
ties the energy in each propagating mode remains in
that mode. The presence of the inhomogeneities intro-
duces a modal coupling, which results in a continual
transfer of energy between the modes of propagation,
The analog of the infinite medium problem described
above is a radiation field at z =0 that has energy in only
one mode and is unidirectional. The prediction problem
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for the intensity spectrum at z> 0 must account for the
resolutions of the intensity into modes of propagation
and the further resolution of the intensity, in a given
mode, into directions of flow in the plane of the wave-
guide. In our study we consider this problem.

Previous research on randomly inhomogeneous wave-
guides!~® appears to be limited to the resolution of the
energy into the several waveguide modes. Furthermore,
the majority of these efforts have also been limited to
single scatter treatments of the problem. Thus, their
results are limited in range as well as in the strength
of the inhomogeneities. Of the papers that discuss
multiple-scatter solutions, the present study is most
closely related to the work of Marcuse. © Like
Marcuse’s theory, our development of a theory that is
suitable in the multiscatter region is based on a range
incrementing procedure. This technique, which appears
to have been first used in discussing stochastic scatter-
ing by Beran,? is now used quite commonly. Its applica-
bility is clearly limited to problems in which the scat-
tering can be described as a forward scattering. Beran
used it to investigate the infinite medivm problem dis-
cussed at the outset of this paper for a scattering ex-
periment in which X/l <<1, where X denotes the radia-
tion field wavelength and I, denotes the smallest corre~
lation length of the fluctuating refractive index field.

We refer to this problem as the optics problem since it
models the propagation of a laser beam through atmo-
spheric turbulence. More recently, Beran and
McCoy!®™1? used the same technique to investigate prop-
agation through a highly anisotropic infinite medium for
which X/Iiy <<1 but X/l < 1. Here ly, is the minimum
horizontal correlation length and lyy is the maximum
vertical correlation length. We refer to this problem as
the acoustics problem since it models the long range
propagation of a sound beam through an oceanic internal
wave field.

The point of departure of our studies from that dis-
cussed in the preceding paragraph is founded in the
motivation. Marcuse’s work is directed to propagation
in fiber optic waveguides, for which the principal con-
cern is to estimate the loss of energy to the waveguide
due to boundary interaction and to estimate the transfer
of energy among the waveguide modes. The degree of
spatial coherence of the energy within a single wave-
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guide mode is of little interest. Our principal interests,
like those of Beran and McCoy, are motivated by ocean
acoustics experiments in which the spatial coherence

of the signal is of primary importance for ascertaining
receiver array gain or receiver array resolution capa-
bilities. Our formulation differs from that of Beran and
McCoy in being a normal mode formulation, whereas
theirs is a parabolic formulation. Thus, the two formu-
lations are complementary with the normal mode theory
becoming more suitable with decreasing frequency con-
tent for the acoustic signal,

1. DEVELOPMENT OF GOVERNING EQUATIONS

The waveguide is referred to by Cartesian coordi-
nates with the y axis directed normal to the waveguide
plane, which is taken to be horizontal, The acoustic
medium is described by a weakly-random sound speed
field superimposed on a deterministic background field.
The statistics of the fluctuating field are assumed to
be homogeneous and isotropic for measurements taken
in any given horizontal plane., The possibility of statis-
tical inhomogeneity for measurements taken over the
depth coordinate is retained, as is the possibility of
statistical anisotropy for measurements taken over the
depth coordinate when compared to those taken in a
waveguide plane. The background sound speed field can
vary with  but not with position in the waveguide plane.
The acoustic field is taken to be harmonic in time with
circular frequency, w.

The waveguide with the background medium is
described by the normal mode functions, Y;(y), defined
by the eigenvalue problem

2
‘;—yﬁi +[7y) -1, =0, 1)

together with appropriate conditions at the waveguide
face(s). The depth dependent mean wavenumber is de-
noted by 2*=w?/c %, where ¢/(y) is the background
sound speed field; the eigenvalue corresponding to the
ith modal function is denoted by B;. In general, the
eigenvalue problem will give both a discrete and a con-
tinuous spectrum, the continuous portion being required
to describe any energy leakage out of a waveguide
formed by a sound speed well. The continuous spectrum
is understood in terms of lateral waves, the discrete
spectrum in terms of trapped modes.

The acoustic pressure field in the random waveguide
problem, p(x), can be formally represented by

px) :? Bi(r) Y,(»), 2)

where the summation is over both discrete and continu-
ous modes. The p;(r) are termed the modal amplitudes
and vary with position in the waveguide plane, located
by the two-dimensional position vector, r. The modal
amplitudes are governed by the set of differential
equations,

vib, +/3,25¢=—€§: b5(8) by (3)
where

B0 = [ B3 p) 1x) Y;(3) Y, (y)dy. )
1053 J. Math. Phys., Vol. 18, No. 5, May 1977

The two-dimensional Laplacian is denoted by V¢, the
randomly varying wavenumber field by e 2%(y) p(x).
Here p is a stochastic function of position of unit vari-
ance. Hence, € provides a measure of the “strength”
of the variations. We assume € <1,

The theory is to be formulated in terms of modal
coherence functions defined according to

{841 xy, %2, 2)} = 1By, 2) B Gy 2, (5)

where the braces indicate an ensemble averaging. Thus,
the coherence function is a spatial correlation function
taken at two points in the same z plane, where z is taken
to correspond to the principal propagation, or range,
direction. For the problem specified in the Introduction,
i.e., an initial plane wave directed along the z axis and
homogeneous statistics measured in the x, z plane, the
modal coherence functions vary with xy, =x; - x, being
independent of absolute position along the x axis. The
x4 transform {I‘”(xﬂ, 2)} is termed the modal intensity
directional spectral density. This function provides

the intensity resolutions discussed in the Introduction.

The modal coherence function for x(, =0, i.e.,
{2 ={Fy(0,2)} 6)

is termed the modal intensity function. It provides a
measure, somewhat imprecise, of the modal energy
flux per unit area that passes through the point xy=x,, z.
(For the problem posed, {I;} is independent of the abso-
lute location of %y =x,.) A more precise measure of
modal energy flux per unit area would weight the energy
flux in a direction making an angle 6 with the axis, by
cosf, to incorporate the projection of the unit area
normal to z onto a plane normal to the propagation
direction. For the narrow-angled spectra of interest,

f <«<1 and the modal intensity function provides a useful
estimate of energy flux per unit area.

The more familiar mutual coherence function for two
points in the same z plane is given by

{r(xl, yi; X2, yz, Z)}: {‘5(961, yl; 2) 13* (x2’ yZ’ Z)}. (7)
By substituting Eq. (2) into Eq. (7), we can write

{f(xx, Y1y X25 Yo 2)}3 iE ? {f,.,(x,, X9, Z)} Y,(y1) Y,(yz),

(8)

where in writing Eq. (8) we were required to introduce
cross-modal coherence‘functions, which are obvious
generalizations of the {I';;}. Upon setting y, =y, in Eq.
(8) and integrating over the waveguide depth, we obtain,
upon making use of the orthonormality of the Y,

f{f'(JQ,y,xz,y,z)}dy:;\{f,,(xl,xz,z)}. 9)

Equation (9) states that the modal coherence functions
provide the modal decomposition of the averaged (taken
over the waveguide depth) coherence for two points
located along the same horizontal line positioned orthog-
onal to z,

In the range incrementing derivation procedure, we
divide the waveguide by a series of range planes sep-
arated by a distance, Az, Since the problems to which
the theory is to be applied involve only forward prop-
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agation, we then calculate the modal coherence functions
at one range plane in terms of those of the plane im-
mediately preceding it. The increment Az is taken to be
small enough to enable use of a single-scatter theory
for this calculation, Also, in making this calculation,
we assume the statistics of the p; measured on any
range plane to be independent of the statistics of the
sound speed fluctuations in the interval “in front of”

the range plane. This is clearly consistent with the for-
ward propagation assumption over most of the interval
if we take Az to be large relative to 7y, the maximum
correlation length along a line in the horizontal plane,
Finally, we make a series of approximations to simpli-
fy the single-scatter solution to a point at which compu-
tationally useful expressions are obtained. Conditions
justifying the approximations are drawn when the ap-
proximations are made and are summarized by Eqs.
@),

Making use of a perturbation solution of Egqs. (3), we
write the following expression for the cross-modal
coherence function for two points on the (j +1)Az plane:

{Fu(xiz, (5 +1)az)}
AT b, G+ 1)AZ)}+622_3 Z} [fA J, Gilry, £)GF (x2, £")
X0y (2" = r"){f,i‘,”(r', r")tdr’ dr”
+ fAJ‘;Rcf (rl! r,)Gk(r', !‘")U;kk;(r' - l'")
{0 @, rtdr ar' + [, [, 63y, r)GEG, 1)

X0y (27 = r”){f‘:‘;’(ri, r")}dr" dr’], (10)

where
Opara(®’ = 7Y ={py (£ ()}
=[ [y (3o, x")
XY ()Y (3", (»")Y (y")dy'dy", (11)
where
o, x")={p & )"}

In Egqs, (10), the area 4 is the region of the waveguide
plane between the jth and (j +1)th range planes; the area
Apg is the region between a generic intermediate range
plane located by 2z’ and the (j +1)th plane, The term
{F{9(r’,r")} is the cross-modal coherence function, for
a pair of points not necessarily in the same range plane,
for the waveguide with no random sound speed varia-
tions beyond the jth range plane., Thus, {I'{)’} is deter-
mined from the cross-modal coherence functions on the
jth plane by solving a homogeneous waveguide problem.
Finally, the modal Green’s functions, Gy(r,r’), are
taken to be free space Green’s functions, given in terms
of Hankel functions of the first kind of order zero, H"
for @ real and positive, and by the continuation of H;"
for other . Real positive 8 define the propagating
modes of the waveguide. Use of the free space Green’s
function as well as the choice of the domains of integra-
tion in Egs. (10) is consistent with the restriction to
forward-directed scattering.

(12)

s

In Eq, (12), o is the spatial correlation function of
the randomly varying sound-speed field. The matrix
Oy is a2 modal correlation matrix defined by this cor-
relation function and the modal eigenfunctions. For
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homogeneous and isotropic statistics for measurements
taken in a waveguide plane,

13

As indicated previously, we next reduce the integrals
in Eq. (10) to more manageable expressions, The first
simplifications to be introduced are (i) to neglect any
coupling in Egs. (10) between propagating and nonprop-
agating wave modes, and (ii) to approximate the Hankel
functions in the G’s by their large agreement asymptotic
representation, We shall see that the strength of the
coupling between propagation modes depends on the
magnitude of B; - B,, the difference of the modal eigen-
values; the larger 8, - 8,, the weaker the coupling, Thus,
coupling will be strongest between propagating modes,
with real values for 82, that may be termed neighbors,
Coupling between propagating and nonpropagating wave
modes will be much weaker. It is to be noted, however,
that this coupling, no matter how small, will act con-
tinuously and is to be expected to have significant effects
over long enough ranges, Our neglect restricts the the-
ory to experiments in which these latter ranges are
very long when compared to those over which the effects
of coupling between the propagating modes and the loss
of coherence of the energy within a given wave mode be-
come significant, The justification for approximating
the Hankel functions by their asymptotic representations
is that we can neglect the region of integration within
which the arguments are not large, These regions have
a linear extent of the order of 8;'. Of the remaining
length scales encountered in the integral the shortest is
of order lg,. Thus, the approximation is valid if By,
>>1, a restriction that is imposed on the theory.

Ty (T, T} =0 (I = 2" 1),

Introducing these approximations into Eq. (10), the
first integral term is written

2
) € 2
L, )= 5= B1/8)

J ),

X0 (®' = e IO, r")}ar’ dr”,

We consider the terms Ir;—r’| and |ry— "1, write the
second as . .
L, a=x") e —~x")
—p" | =z,~2" + +0 1
lr2 r l 29~ 2 2(22"2”) (ZZ‘Z”F 3 ( 5)

and note that we can truncate this expression, as it ap-
pears in the exponent, after two terms provided, we
can show that

exg[z'(ﬁglri—r'l —B,Irz—r”lﬂ
lr,— 112 p, — 2”172

14)

Bl =x")t |
(@,-2")°
over the integration region that contributes significantly.
Thus, if the directional intensity spectrum of the signal
is bounded by an angle 6, the restriction will be satis-

fied provided

88tAz <1,

(16)

@amn

This condition is to be interpreted as an upper limita-
tion on the size of Az. In a previous study® we showed
that the angular spread due to a single intramodal
scattering is of the order of (8y,)™, when 8,ly,> 1.
Use of this in Eq. (17) together with the requirement
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that Az > lgy leads to the following condition on the
relative sizes of the signal wavelength and the sound
speed fluctuations correlation length scales:

Lau
Bl «1, (18)

This restriction is less severe than one to be ultimately
accepted on the theory.

The truncation of the expression for Iry—r”| as it
appears in the denominator, after a single term, is
justified if 62 <<1, a condition that is consistent with the
others to be accepted.

With these approximations we write Eq, (14) as

2
L5 vy, 72) = gt exoli (5 - £,)2]

X[fexp[i(ﬁlz"—B;Z')]

xexp([B;x — x')/2(z - 2%)

~ Bylep = x")/2(z - 2")])

X(z-2") 2z -2")1/?

X0y (@' = 2" WO (¢, 2”)}dr’ dr”. (19)

In writing Eq. (19) we have set z; =z, =2, The integra-
tion over x” and x’ are now accomplished in the manner
of the saddle point method of integration. (This approxi-
mation amounts to use of a geometric theory over a
range lyy.) The lowest order term gives

Z -~
Il(})(rh rz)Z#‘B" [[/U,M,(xz,z”—z’){I‘;‘,”(xig,z’,z”)}

xexpli(B;z" - B;2")]dz" dz’]exp[i(ﬁ,- - B)zl.
(20)

The first order correction, when compared to the coef-
ficient of the exponential in Eq. (20) is seen to be of the
order of

1 - n —_ ’
P(z 2" =z z)) @1)

B; By

where L™ is a measure of the curvature of 0,,,,{T'%’}
with respect to x;;. For 8;=8,, which we shall find to
be the important case, the above is written

(" - 2")/B, L%, (22)

Noting that L > Iy, and that z’ - z" <lyy, neglect of the
first order correction is justified provided

L/ Belbm <1, (23)

The condition is recognized as a statement that Iy
falls within the geometric theory range, This condition
is somewhat weaker than that ultimately accepted on the
theory.

To simplify Eq. (20) further requires the approxima-
tion that
{L ey, 2% 2"}
={L 012, 02)} exp(ilBy(e’ - j A2) - B (2" - jAz)]). (24)

Equation (24) essentially neglects diffraction effects
over a Az range, The approximation is somewhat
stronger than Eq, (23) in that it requires
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Bytaz <1, (25)
Introducing Eq. (24) into Eq, (20) gives
PGy, %y, ( +1)A2)

2 -~
—=—{Tyy (53,7 2)} expli (8, - 8,)(j +1)az
48,8
+1(B; ~ Byl Az] /U(m(xizy z'-2z")
X expli(B,— By)z’ +i(B;— By)z"]dz" dz’. (26)

Introducing sum and difference coordinates we write

LYy, ( +1)A2)

2 N
£ {T,, 0y, A2)} expli (8; - B;)(j +1)az
43;61

+i(8;— Bn)jAz]ffaikjl(xi2’ so) exp(i(By — By + By = By)be

Z

+ E(ﬁk_ﬁl'ﬁj+6l)sz]dptdsz- (27)

Again we make use of the assumption that Az >>Iyy,
which enables our uncoupling the regions over which the
two integrals are to be carried out. The integral over
P, is seen to be equal to Az, provided

Be— By~ B;-8,=0,

and it is seen to be negligibly small if this equation is
not satisfied. In particular, we note that i=j requires
that =1 and we write

2
5 = 2 .
1P =52 BFnbul Db, jan)taz, (28)

where

5:»("12):‘@_/0- Oipin®12, ;) cos[ (B, ~ By)s,)ds,.

(29)

Equation (28) indicates that the first series on the rhs
of Eq. (10) does not result in coupling the diagonal,
{fy;}, to the off-diagonal, {I';;} terms. Coupling of the
diagonal terms is controlled by 0,,(x;,), which is seen
to be a spectral representation of the correlation ma-
trix, Oy(x(,s,). Thus, the coupling between diagonal
terms will fall off very rapidly with increasing |8, - ;!
beyond a value of l;{im. Since the theory requires that
Bilum > 1, this conclusion justifies the statement that
modal coupling will be strongest between neighboring
propagation modes.

The reduction of the second and third series proceeds
in 2 manner similar to the above, Taken together we ob-
tain for the generic diagonal term

It(%):‘GZGM{I:“(’512,]'&)}5&(0)&- (30)

Thus, in the reduced formulation there is no coupling
between diagonal and off-diagonal terms. We write for
the diagonal terms the following system of difference
equations:

{Ty, 61y, (G +1)A2)}
={Ly; tepz, i A2)} - 62[{f'u(xiz,jAz)}? 04,(0)

- 5 2 Bl b, s} az. 61)
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This set of difference equations can be approximated by
a set of differential equations, which we write,

ail - .
;3(:12 2t - ez(zk; U“(o)){[‘“(xm,z)}
2
+ %{ ? Bkaik(xlz){ru(xlh z)}-

(32)

The differential equations follow exactly from the differ-
ence equations in the limit of Az — 0, However, our
derivation procedure requires Az > Iy, making this
final step an approximation, It is similar to the approxi-
mation taken in formulating a continuum theory to
predict the response of a discrete system,

Equations (32) is the sought-after scattering theory
for predicting the modal coherence functions, We can
lmmedlately use these equations to obtain a formuhsm
on {I,(z)}, the modal intensity functions, and on {I Iz},
the coherent modal intensity function given by {1",,(00 z)}.
We write

d{l, @)} - 7 7 I,
{d‘z(Z) =¢ [EI; ? B0 1 (0N, (2)} - (kE U“,(O)){I; (z)}] ©3)

and

dllf @)}
dz -

-&(Toao)en. 50
k

It is to be noted that a complete formulation is obtained
in terms of modal intensity functions only for the in-
cident plane wave and for statistics that are homoge-
neous in the waveguide plane, For beamed signals or
for inhomogeneous statistics, {I““} will depend on ab-
solute position of the observation point along x, For
such problems the task of determining the energy dis-
tribution among the wave modes is coupled to that of
determining the modal coherence measured at two
points along the x axis in an inseparable manner, %12

Equation (33) provides a statement of energy
conservation,

Y BATi(z)} = const, (35)
s

as expected of a theory incorporating only forward scat-
tering and neglecting any energy losses, The equations
on the coherent modal intensity functions are uncoupled
as expected, since the transfer of energy between
modes is accomplished by scattering, which will always
result in a loss of coherence,

Eguations (34) allow an estimate of the rate at which
energy is being scattered. Thus, the limit of the single-
scatter region, i, e,, the limiting range over which
multiple-scatter effects can be neglected, can be es-
timated by

z¥= rnin(e2 > 3;,,(0))‘1.
k

Equation (36) provides the last restriction on the theory,
Az «<z*; this restriction is needed to justify use of the
single-scatter theory over the range increment, Sum-
marizing, the derivation procedure requires a range
increment, Az such that

Lo << AZ << mim(e2 4:) 3;,,(0))-1

(38)

{37a)

and
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B5%az <1, (37b)

2. SOLUTION OF GOVERNING EQUATIONS

The separation distance, x5, appears in Eqs. (32) as
a parameter, The set of equations constitute a set of
constant coefficient ordinary differential equations, the
theory of which is well established. The general solu-
tion of the set of equations is given by a linear combina-
tion of solutions of the form

5 1
{T e 240)} = b—i)’i(xﬂ) exp[- €20(xy)z], (38)

which upon substitution in Eqs. (32) gives an eigenvalue
problem for a, We write the characteristic equation as

' [“(xu) -3, "(%2‘ a;,(0) )]%e (1= dp)og (xtz)l =0,
(39)

where

04 (xy5) =044(0) = Oy (h40). (40)

In general, Eq, (39) has N roots, N being equal to the
number of propagating modes. We denote the roots by
a'”(x,,) and assume them to be distinet, Nondistinct
roots introduce no conceptual difficulties, Associated
with each characteristic value, a"”(xu), is a charac-
teristic vector 7,‘“’(x12) obtained in the uswal manner.
The symmetry of the 0;,(x,) provides an orthogonality
relationship for the characteristic vectors. We make
their definition unique by a normalization prescription.

Two limiting propagation experiments can be identi-
fied, a coherence dominated experiment, defined by the
condition that (G, - 0,;)>0},, and a modal intensity dis-
tribution dominated experiment, defined by the reverse
condition that (6, - 6,)?<«<%%,, For a coherence dominated
experiment, the determinant of Eq. (39) is approximated

by one that is diagonal, leading to characteristic values

(u)(xIZ) Uuu(o uu(x12) + 2 ou!(o) (41)
and characteristic vectors
i G12) = By 42)

The first term on the rhs of Eq, (41) gives the rate of
intramodal scatter, scatter from the « mode; the second
gives the separation distance over which this intramodal
scatter correlates; the third gives the rate of intermodal
scatter out of the # mode. The first two terms are ob-
tained for an uncoupled mode theory. The third term can
be interpreted in terms of an apparent dissipation mech-
anism. For a modal intensity distribution dominated ex-
periment, the characteristic equation can be approxi-
mated by

| [a(xlz) —?_:1‘5“(0)] 54,, + (1 - 541@)64»("12)‘ =0, (43)

All experiments are modal intensity distribution dom-
inated experiments for small enough x;,., For x3=0,
we have

( [a(m- D) 6;,(0)] i+ (1= 54)0u(0)] =0. (44)
14

Equation (44) can be directly obtained from the equations
governing the modal intensity functions, Egs. (33).
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Equation (44) has one root given by a‘’(0) =0, This is
consistent with the energy conserving nature of the the-
ory. The components of the characteristic vector asso-
ciated with this root are equal, This leads to the con-
clusion that the continual scattering of energy will tend
to an equal distribution of acoustic intensity among all
the propagating wave modes. While this conclusion is
intuitively satisfying it would appear to be of little
physical significance since the range required for the
uniform distribution of energy is expected to be far
greater than those in practical ocean acoustic experi-
ments., Indeed, we suspect that such ranges are com-
parable to those at which coupling between propagating
and nonpropagating wave modes is significant, The the-
ory will fail before such ranges are reached.

3. APPLICATION OF THEORY TO PROPAGATION
EXPERIMENTS

In discussing the applicability of the theory to a real-
istic propagation experiment it is natural to first look
at the several conditions introduced in the derivation,
For example, Eqs. (17), (18), (23), (25), and (37).
Appearing in some of these equations are a number of
environmental parameters and the question of estimat-
ing these parameters for a particular medium and
acoustic experiment arises. Further, the tremendous
range of size scales for measuring sound speed fluctua-
tions in the ocean, from meters or less up to several
tens of kilometers, would almost invariably indicate
that the anticipated experiment is beyond the range of
validity of this as well as any other coherence theory,
It is important to realize, however, that experience has
shown the presence of a selection rule in most co-
herence experiments. Thus, although the range of en-
vironmental size scales may be tremendous, usually a
much narrower range is actually operative in a given
experiment, Determining which of the size scales is of
importance in a given experiment is a task requiring
some experience with the problem. Using a scattering
theory such as the one developed here in a “self-
consistent” manner can be useful in this regard, In this
manner, for example, the theory of Beran and McCoy
would indicate that the most important horizontal size
scales for controlling the horizontal coherence of
moderately low frequency acoustic experiments (of the
order of a few hundred Hertz) over ranges of the order
of several hundreds of kilometers are of the order of a
kilometer, with the important range of sizes covering
somewhere between one and two orders of magnitude. 13
This can be compared to the four or five orders of
magnitude that one might observe from environmental
data.

The theory is equally applicable to the optics prob-
lem and to the acoustics problem discussed in the Intro-
duction. This is in opposition to the parabolic formula-
tions, for which the highly anisotropic theory developed
for ocean acoustic experiments is distinctly different
from the isotropic theory developed for atmospheric
laser experiments, Some explanation of this opposition
is, therefore, in order., The explanation is that the
manifest differences of the parabolic formulations would
exhibit themselves in our normal mode formulation in
the next step in applying the formulation, namely, re-
ducing it to a computational algorithm. Then, for effi-
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ciency, it would be important to consider the sizes of
the various off-diagonal terms of the determinant in
Eq. (43). As noted in deriving the theory, the 0;, terms
will, in general, be greatest for i =%+ 1 falling off with
increasing separation of the integers i and k. That is,
the intermodal scattering by the large size scale fluctua-
tions is confined to neighboring modes. Thus, the non-
zero elements of the determinant are banded about the
main diagonal., In this the isotropic and anisotropic
theories will be the same, When they differ is that, for
an isotropic medium 0,, is relatively insensitive to the
absolute values of 7 and k. That is, the rate of energy
transfer between adjacent modes is relatively insensi-
tive to the particular pair of modes, For the highly
anisotropic medium, on the other hand, o,, is strongly
sensitive to the absolute values of i and 2, as can be
clearly demonstrated, from a single scatter treatment
of the local nature of the scattering. ® The rate of
transfer between adjacent modes is very much greater
for the lower order wave modes., Thus, for the aniso-
tropic medium the width of the band of nonzero elements
about the main diagonal will exhibit a very sharp
shrinkage for i =k values above some cut-off value, As
a consequence the energy in the lower order wave
modes will rapidly be scattered into other lower order
wave modes with the continual scatter up the spectrum,
to higher order wave modes, occurring but only at a
much reduced rate. Indeed, the rate of decrease was
shown in Ref. 8 to be so great that to an observer at-
tuned to the more rapid rate of transfer among the
lower order wave modes the continued transfer would
appear to be blocked. A saturation of sorts would ap-
pear to occur with intermodal scatter rapidly spreading
to all of the lower order wave modes and then stopping.
This saturation is consistent with the highly anisotropic
parabolic formulation.
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We explicitly construct the one-parameter family of solutions, 7(8;v,A), that remain bounded as 8— oo
along the positive real 8 axis for the Painlevé equation of third kind

ww' =(w)P—0"lww +2v8 (w3 w) + w1,

where, a5 86—, 7 ~ 1 —AT(v+1/2)27207""!/2% ~2%, We further construct a representation for
Y(4;v,A) = —In[n(2/2,v. X)), where (1;v,A) satisfies the differential equation

Y N = (1/2)sinh(Qy) +2v ¢~ sinh(y).
The small-0 behavior of 1(8;v,)) is described for [\ <7~ ! by
n(0;v,\) ~ 2°B6°.

The parameters o and B are given as explicit functions of A and v. Finally an identity involving the
Painlevé transcendent 1(8;v,A) is proved. These results for the special case v=0 and A = 7' make rigorous
the analysis of the scaling limit of the spin-spin correlation function of the two-dimensional Ising model.

. INTRODUCTION
The Painlevé equation of the third kind is

—-—( - —w+2(aw2+ﬂ)+-yw3+%, (1.1)
where prime denotes differentiation with respect to the
variable 6 and @, B, 7, and 0 are constants. The im-
portance of (1.1) in the theory of ordinary differential
equations was first discussed by Painlevé! and later by

Gambier.?

In this paper we develop the theory for the one-pa-
rameter, bounded (as & —« along the positive real
axis), solutions of (1.1) when the constants o, 8, ¥,
and § satisfy

e 5)1/2 + 3(7)1/2 =0

Under the assumption (1. 2) there is no loss in generality
if we consider in place of (1.1) the equation

(1.2)

w':%(w')z—% '+~<w2 1)+w3-~—— (1.3)

where v is a constant.

If we denote by 7(8;v, A) the one-parameter family of
solutions of (1.3) that remain bounded as # approaches
infinity along the positive real axis, we shall prove

Theorem 1:; The function 7(6;v, \) satisfies (1.3) and
for sufficiently large, positive 8 and Rev> -3,
7n(0;v, 2) has the representation

1-7(8;v, A)

— Gt:v. 2 .4
1+0(6;v,2) Gltv, M), @.42)
t=20, (1. 4b)

where
Glt;v, \) =20 Al g, L (50), (1.5)

n=0
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(1.6a)

Y exp(-ty) y—l)"
gx@”*[ & TE T (y+1 ,

and for n>1

g2nd<t;V):(_ 1)"/ dy1 see
i

e Zmi
X d}’hd

[ om T 5 ()]

2n n
x[}}’ (3’;’*‘3’;,1)-1] [}:11 (3’%: - 1)] .

The parameter X is subject only to the condition |al

< R{t) where R({} is the radius of convergence of {1.5)
viewed in the complex A plane. Simple bounds on R(f)
follow from the inequalities of Ref. 3, Eqs. (3.156)—
(3.159). The restriction Rev> — 3 can be lifted in (1. 6)
by first changing the contour of integration to the con-
tour ( which is the contour beginning at infinity and
looping around the branch point at y =1. The additional
factor sinm(v - 3) can be incorporated into A,

{(1.6b)

It is an important feature concerning the theory of
the function 1(8;v, ) that if we define ¥(t;v, 1) by

1) n(8;v, A) = expl- p(t;v, V)],
(ii) ¥(t;v,X) =0 as t— -+,

1=26,
(1.7)

then we have

Theorem 2: For t sufficiently large and Rev> -

d)(t; v, h): Z(;) )‘2"‘1 wiud(t; V), (1. 8)
n=
where we have
Dy (E;v) =2g,(4;0) (1.9a)
and forn=>1
Copyright © 1977 American |nstitute of Physics 1058
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FIG. 1. Quantity B(o,v) as a function of o for various values of
v, The slope of B(o,v) at =0 is 2y + In2+ {2 +v), For v=v*

=~ (), 0245 the slope is zero. For v >v* (<v* the slope at the
origin is positive (negative), For v =0 the minimum of B{c,v)
occurs at 0=0, 23, The scale of the figure is too large to see
the B{o,v) <1 behavior for v=0, For v <0 B{o,v) vanishes at
o=1+2v,

9 *® * 2n+t exp(... ty )
) = e e I it AMNLA # 14
d)nﬂ (t, V) = ST /1. dyi [ dyZn-ol [!=1. ¥; + Viat

y [2ﬁ1 (y ,.1) v-1/2 +2rﬁl y _1) vd/Z]
i=1 yj+1 3=t ',"1'1
(1.9b)

With 9,., =, in (1.9b). Again the restriction Re(v) > - %
can be lifted by using the contour ., To examine the
analytic properties of 7(8; v, A} and ¥{#; v, A) in the com-
plex A plane, representation (3. 38) is useful.

As emphasized by Painlevé! the point 6 =0 plays a
unique role in the theory of the third Painlevé trans-
cendent. It is the only point in the finite 8 plane for
which a branch point or an essential singular point of a
solution of (1.1) can occur, Furthermore it has been
shown!? that if 6 =0 is an analytic point, then the solu-
tion is a meromorphic function. Thus it is important
to examine the behavior of a solution of (1. 3) in the
neighborhood of 6 =0, It is easy to demonstrate that for
t—~0 {(=26) a formal solution of (1. 3) is

w(t/2) = Bt°{1 — vB(1 - 0) 19 + By(1 + o) fi*°
+[12B2(1 ~ o) - & B1 - 0)?] 2% + 0(P)},
(1.10)

where — 1< Re0 <1 but otherwise ¢ and B are arbitrary.

In general a solution that behaves as (1.10) for ¢t ~0
will not remain bounded as f =+, When 0 <A< 7 the
bounded solution 7(¢/2;v, ) behaves as (1.10) for t—~0
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but the coefficients ¢ and B are now functions of A and
v. Using Theorem 2 we shall prove

Theovem 3: The solution n(t/2;»,)) has the small-¢
expansion (1, 10) for 0 €A < 1/7 where

o=0(A)=(2/7) arcsin(m}) (1.11)
and
B= B(U, V)
_ oot L2(1 - 0)/2) T((1+0)/2 +v) (1. 12)

r¥((1+0)/2) T(1-0)/2+v)’

where I'(x) is the gamma function.

In Fig. 1 the function B(0, v) is graphed. Using Theo-
rem 3 we can determine the small f behavior of
1{t/2;v,1) for A= 1} (see Sec. IV.1, also the case A< 0
is discussed).

We conclude our presentation of the theory of the
Painlevé transcendent 7(0;v, A) by proving a useful
identity (0 <A < 7).

Theorem 4: If we define the functions

=1t T 2 exp(-fy,)
funltiv) = — [ dyy [ dYzn [,Hi W

-1\" 1 n
x (Z=2) ——— 111 (43,-1)
(3’1 + 1) yi¥ 3’3*1]34 Y
(1.13)
with v, =y, then we have

31 +7(8;0, )]0/ 2(8;v, 1) exp [ f dx{%x'rrz(x;v, 2)
8

x {1 =12 (e;0, WP ~ (' (30, V)]

14
* Sy A, x))v}]

=exp [—ré Rz"fz,,(ze;v)] s

(1.14a)

where prime denotes differentiation with respect to x.
Using definition (1.7) of the function ¥(¢;, A) the above
identity becomes

cosh39(t;v, A) exp {% f dss [—C—iﬁ)z

¢
+ sinh®p + %—1 sinhzéqb]}z exp [— Z‘ Az"fz,,(t;l/)] )

(1.14b)

where all § functions appearing under the integral sign
are functions of s, v, and A,

Theorems 1,2,3, and 4 are proved and discussed in
Secs. I, III, IV, and V, respectively.

For the special case v=0 and A =7} these four
theorems make rigorous the analysis of the scaling
limit of the spin—spin correlation function of the two-
dimensional Ising model carried out by Wu, McCoy,
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Tracy, and Barouch.?® It is perhaps not inappropriate
to describe in some detail how the above theorems fit
into the work of Ref. 3. However it should be stressed
that the remainder of this section is irrelevant for the
mathematical discussion that follows in Secs. II-V.

If we denote by £ the correlation length [£ =£(T),
T = temperature, and £ == as T — T where T, is the
critical temperature] and by <°o. 00, ») the spin—spin
correlation function for the two-dimensional Ising model
on a square lattice, and if we further assume for sim-
plicity of presentation that the vertical and horizontal
interaction energies are equal, then by scaling limit we
mean that limit

E—o, R=(M+NM?—-o (1. 15a)
such that
t=R/t is fixed. (1. 15b)

In this limit the correlation function {0y (o, y) becomes®

<00' OUM,N> :R'1/4F*<f) +R‘5/4F1t(t) + O(R-5/4),
(1.16)

where F,(t) and Fy,(t) (these are commonly called scai-
ing functions) are functions of the single variable ¢ de-
fined by (1. 15b).

In Secs. OI and IV of Ref. 3 an expansion valid for
large f was developed {these results are summarized
by Eqs. (2.26)— (2. 30) of Ref. 3]. The expansion for
F_(#) is the right-hand side of (1.14a) of Theorem 4 (for
A=7"1 and v=0) times the factor (2¢)!/* (sinh2B,E,

+ sinh2B,E,)} 8, The expansion for F,(t)/F_(t) is the
right-hand side of (1.5) of Theorem 1 (for v=10 and
r=71), These infinite series expansions are only use-
ful for large f. For small ¢ the functions g,,,(f;¥) of
Theorem 1 behave as

Eanag(65V) = Cop  (In1)2™* 4 2y (InF)2H 4 v o0

and similarly for the functions f,(¢;») of Theorem 4.

Therefore, to study the small-f behavior of F,(#) the
representation of F,(t) as an infinite series of multiple
integrals is not directly the most convenient represen-
tation. This representation of F,(f) as an infinite series
of multiple integrals can be thought of as the coordinate
space analog of the dispersion integral representation
of the two-point function. What is needed is a way to
sum up this dispersion integral representation.

In Ref. 3 this was accomplished in two ways. One
way (that of Sec. V) was to develop a separate perturba-
tion scheme valid for small {. The other method (that
of Sec. VI of Ref. 3) was to introduce an integral equa-
tion that could be solved in terms of Painlevé funcfions.
This approach led to the representation of F,(f) in terms
of Painlevé functions [these results are summarized
by Eq. (2.39) of Ref. 3]. In terms of Theorem 1 of this
paper F,(t)/F_(f) was shown to be the left-hand side of
(1.4a) for v=0 and A=7"1 and in terms of Theorem 4
F_(t) was shown to be the left-hand side of (1, 14a) for
A =71 and v=0 times the factor (2t)!/¢ (sinh28, E,

+ sinh2B, E,)}/ 8, The methods used in Sec. VI of Ref, 3
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though correct are not rigorous. Theorem 1 of this pa-
per rigorously proves that the infinite series represen-
tation of F (¢)/F_(t) is simply related to Painlevé func-
tions, and likewise Theorem 4 rigorously relates the
infinite series representation of F_{#) to Painlevé func-
tions. Stated somewhat crudely, the Painlevé trans-
cendents 1(6;v, A) are the functions that sum the dis-
persion integral representation of the two-point func-
tions F,(t).

In light of Theorems 1 and 4 the small-# behavior of
F(#) follows once the small-t behavior of 1(t/2;0, 7-1)
is known. To determine this behavior the analysis of
Ref. 3 had to make crucial use of the unpublished
thesis of Myers® where Painlevé functions of the third
kind arose in the study of scattering from a strip.
Though Myers’ analysis is rigorous it gives only the
small-# behavior of 7({/2;v, \) for the case v=0 and
A=7n-1, Theorem 3 gives a direct proof (that is, the
scattering problem is avoided) of the small~¢ behavior
of n(¢/2;v,)). Theorem 2 is essential to prove
Theorem 3.

1l. THEOREM 1 AND THE FUNCTION Gi{z; v, A}
A. Restricted Painlevé equation of third kind

The most general Painlevé equation of the third kind
is given by (1.1) where the constants o, 8, y, and &
are arbitrary, If we assume that the constants o, 8, 7,
and § are restricted so that (1.2) is satisfied, then (1.1)
can be reduced to (1.3). To demonstrate this we let

w(z)=An(9), 6=Bz, 2.1)

where z denotes the independent variable in (1.1), and
A and B are constants that are to be determined. Sub-
stituting (2. 1) into (1. 1) it follows that
dzn-l(@, P ldp, Al
d* n\a8) “ede B ¢
yA: 5 6 1

B 1

2
(Y-

TE T TAE 2.2)

This equation is of the form (1.3) if we have

oA B

_E.__ZE_zV (2. 3a)
and

A? )

%Z—Z-W=1' (2. 3b)
From (2. 3b) we see A and B are given by

Al=(-8/y)Vt, Bl=(-By)% (2.4)
In order that (2. 3a) is satisfied we demand

2u=a/(W == p/(- B2 2.5)

which is just (1.2).

The condition (1.2) arises naturally in the following
context. In general if w(f) is a solution to (1.1), then
[Aw(8)]! is a solution to (1.1) with diffevent a, B, v,
and & (here A is a constant). If we demand that
[Aw(®)]! is a solution for the same &, B, ¥, and 5, then
A is fixed and the parameters ¢, B, ¥, and 6 must
satisfy (1.2). From now on we discuss only (1.3).
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B. Function G(t; v, A)

As stated in the Introduction we denote by 7(6;v, 1)
the one-parameter family of bounded {as 6 —« along
the positive real 9 axis) solutions to (1.3). We associate
with 1(6;v, A) the function G(t;v, X) where
1 - 77(6: Vs }‘)

15080, %) (2. 62)

Gy, M) =
and

t=286, (2. 6b)

From (1.3) and (2. 6} it follows that G{f;v, \) satisfies
the differential equation

G”+£1 G- (1+27V) G=G"G*-2(G')* G
+% G'G+G - 27” G (2.1

where the prime denotes differentiation with respect to
the variable £.

Theorem 1 states that the one-parameter bounded
solutions to (2.7) are given by (1.5) and (1. 6). It is the
goal of this section to prove Theorem 1., The method
of proof is to substitute (1.5)—(1. 6) into (2.7) and ex-
plicitly demonstrate that this is indeed a solution.

We begin the proof of Theorem 1 by establishing some
useful identities which we state as lemmas.

C. Preliminary lemmas

Lemma 2.1: A necessary and sufficient condition that
G(t;v,A) as defined by (1.5)—(1. 6) satisfy (2.7) is for
£=0,1,2,¢°,

1 2v
& T 7 &~ (1 + T) &ornt

k=] kel-1

=2

1=0 m=0

1
{gzm[gfu-z-mm t7 83 (het-m)-

2y
- (1 + 7) g2(k-z-m)-1} Samet + 282 retemratl 82191 Bamet

- géhngImd]
(2.8)

where g,.4(t;V) are defined by (1.6} and for =0 the
right-hand side of (2. 8) is defined to be zero,

Proof: Since for £> 0 G(¢;v, ) has a finite radius of
convergence in the A plane we are allowed to equate
equal powers of X when (1.5) is substituted into (2. 7).
The precise form of the right-hand side of (2. 8) fol-
lows by simple manipulations of power series, Clearly
if (2.8} is true, then multiplication of this equation by
A4 and summing over & reproduces (2. 7).

If we define gy,,4(4;¥), n=0,1,2,++* by (1.6), then an
alternate representation of these functions for
n=1,2,*°" is

Lemma 2,2:

G (H;v) = (- 1)" f dyy*** f Y341
1

1
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i exp(-ty,) yl-1> "]

x {1 —z—"Th
[m {»5-1) (yﬁl

x |1 (9, 49,0 | (9gyama = D 11 (53,4 = 1)
i VitV Y1Yane 2 Yaja1 ’

(2.9)

where for n=1 the last product is replaced by unity.

Proof: (i) n=1 case

From (1.6) we have
et =) [Can [ [ o[ SRR
1 1 1

X(JU'1>V] yzz'l .
yj—l (3’1"‘3’2)(3’2 +3)

(2.10)

If we cyclically permute the integration variable labels
in (2.10), then we can write gy(f;v) as

, [T N N 3 exp(-fy,)
ga(t;v)=-§/ dy f dy dys [H P e 741
1 ' 1 2‘[ (55~ 1)

i=1

g (;:li) v ” :ym][(y%'l)(””‘)
+ (3% = 1)(9; +39) + (3] = 13, +93)]
(2.11)
with y, =y,.

The quantity in the second square brackets in (2, 11}
can be written as

(33 - D(y3+ ) + (3= Dy +39) + (93 = 1y, +33)
=(y; +9)(yy; = D)+ (91 +y) ¥y~ 1)
+ (3, +33) (3295 - 1), (2.12)

Using this in (2. 11) and writing the three resulting
terms as one term (again by cyclically permuting the
labels of the integration variables) we obtain

gs(t;v)=-f dy:f d3’2f dy; [131 9522%%
1 1 1

Il (yj

x yj—l) "] y193=1
y;+1 (y4+ 303, +33)

(2.13)

which is (2.9) for n=1.
(ii) n=2 case
For n=2 the part of the integrand in (1. 6b) that is

not invariant under cyclic permutations of the integra-
tion variable labels is

(¥ = 1)(¥2 - D(ys + ). (2.14)

Under the five cyclic permutations of the labels
(1,2, 3,4,5) the quantity (2.14) becomes the sum of
five terms, viz.
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(%5 = 135 ~ (35 +99) + (3 - D(5E -
+ (3% = V(9] - D3y +35) + (3E -
+ (9§ - (¥~ D(yy +5)
= (95 = sy — D5 +31) + (51~ (339, = 1D (9 +3,)
+ (93 = (3293 = I3y +93) + (3] = D(syy - D{y; + )
+ (93 = D(3435 = D34 +ys).

1)(yg + ;)
(3} - 1(y; +,)

(2.15)
This can be written more compactly as
(¥ - 1)(y} = 1)( 95 +9,) +cyclic permutations
= (3} - 1)(y5yy = 1)( y5 +y4) + cyclic permutations.
(2.18)

If (2.16) is used in (1. 6b) for n=2 we obtain (2. 93) for
n=2,

(iii) General case

We write integrand of (1, 6b) as

i exp(-ty,) [y;-1 .
[ -1 (_T_Thl) (y +1) (3’;"’5/;.1) 1]

n
X (ypna +91) 11 (38, - 1), 2.17)

where ¥;,.0=¥;. The quantity in square brackets in
(2.17) is invariant under cyclic permutations of the
integration variable labels. We claim that

n
II'I‘ (9%, — 1)( 3304 +¥4) +cyclic perm.
n
= ,l:% (935.1 = D(¥192ne1 = (Yzng +¥4) +cyclic perm.

(2.18)

From (2. 18) the result (2.9) follows. To demonstrate
(2. 18) we first examine that piece of the left-hand side
of (2.18) which is of degree (2n+1). There are 2(2n +1)
such terms and they are of the form

Y393 e+ 2 32, Vonay + 333 ¢ * 233, v, + cyclic perm, (2.19)
‘This can be rewritten as
Y38 0 2 Yhnay 31 T 9193 ¢ * 930t Yanay + cyclic perm.

= 939%* ¢ * Y3nat Y1V2ne1 (91 + V2nug) +cyclic perm.  (2.20)

Now consider the terms of (2.18) that are of degree
2n ~ 1, These terms arise by replacing some y%, in
(2.19) by - 1 or y¥;,,4 by — 1. This can be done at »
places, Thus the second term of the left-hand side of
(2.18) is

= (b 3hna Vonaa 31+ 9392 o < Vhns V3nt Vamer Yy o 0

+ v} yhs 95 ¢ 9Enut)(Vpms +39)
+cyclic perm.

(2.21)

If one compares (2.20) and (2. 21) with the right-hand
side of (2.18), then one sees both of these terms are
present. The third term comes from leaving out an ad-
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ditional y3, 4 Or ¥{¥s,.4, a term which is again clearly
present on the right-hand side of (2. 18). Continuing so,
we see that the lemma is proved.

Our final lemma is

Lemma 2. 3:

1 2v
(V) + 7 &l (t;v) - (1 + T) gnat;V)

—a(= 1) f P f B

1 1
e+ exp(-ty v
x[m (y 2--1)”2 (y,+1)]

2
X [}31 (y; +J’M)'i] (3’13’2;,.1‘ 1) ,I:[z (J’%M -1)
k=1 Ral-1

“H &

= (¥214 + 9212 Vonaam + Varotazm)

{2.22)

with £=1,2,3,+++ and IT) ;(},., - 1) is defined to be
unity for k=1,

Proof: For notational convenience we denote by L,
the differential operator

_d [ 1d 2v)
Ly=gn+ig- (“1 .

From Lemma 2.2 we have

(2.23)

L, gpa(t;v)
=(- l)kf dy1"'f Y24
1 1
2k+1 exp(_ ty ) 1 2
X I;Il (YJ _ 1) (y F1 =1 (yj +yjd) (yiyud "1)

®
X Ez (J’%:-l -1) [(yl + g+t Yo

1 2v
- ;(3’1"‘3’2*'”'*'3’2».1)‘ (“‘T)] .

We now proceed to integrate by parts the 1/ terms in
(2.24), We first note the following identities:

2. 24)

+2v ~1\*
. Y214 ) d
(9254~ 1) (yzm +1 Y24t

1 ~1\*
= T 2 _1]
a [W (y2,_1+1) (9341=1)

(2. 25a)
and
Yo; = 2V y“-l)" d
(»,-1 (yu+1 Y2
1 Yas— 1) v]
=-d . (2. 25h)
[(3’31"1)”2 (J’21+1

We write the 1/¢ terms in the integrand of (2.24) as
1 1 1 1
—;(3’1‘*‘21’)—;(}’2-2”)—;(}’3‘*‘21')- —?(yz,m+2v).

(2.286)
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The 1/¢ part of (2.24) in view of (2, 26) is a sum of

2k +1 terms. Each term is a (2k+ 1)-dimensional in~-
tegral, We integrate by parts a single integral of each
of these multidimensional integrals. The term we
choose to integrate by parts is the term with the struc-
ture of (2.25), We integrate the factors according to

(2. 25) and differentiate the remaining multiplicative
factors. The differentiation creates terms of two
classes. One class of terms will not contain a 1/¢ factor
(these terms come from differentiating the exponential
factor which brings down a ¢ factor canceling the 1/¢
factor in front) and the other class will contain an over-
all 1/ factor. We denote by [L, g,,,4(£;»)); that part of
(2. 24) which upon integration by parts in the above de-
scribed manner containg no 1/f factors, and by

(L, g30ss(#;)]; the part that contains the 1/¢ factor. Thus
we have

L, oz v = [Lv B2req {t;v) ]1 + [L, St V)}z .

We have, carrying out this integration by parts (all
boundary terms vanish),

[Lv g2k+1 (ty V)]1

=(- l)kf dyx"’f AY2pu
1

1

2.27)

W1 exp(=ty,) [yv,—1\" * 4
X JI:[x (_3;3_-—15#7 (y,+l> 11:11(}'44'3’;.1) (y1¥apeg — 1)

X{(yy+3+  + ) - (3= 1) = (3}~ 1)~ + -+
= (P =D+ W=D+ (9] =1+ oo+ (¥h~-1) -1}
@.28)

The last factor in (2.28) can be combined to obtain

[Lv 2rei (t; V)]i

=2(-1)h‘[ dy1"'f dYapu
i

1
- v 2k
(exz—(lfym (y +1) {I(yx*'i"m)"(yiyzm -1

XM P (3’2k-2m+y2k-2m.1)(y2m*‘yzm)

2k¢1

lti

(2.29)

Comparing (2.27) and (2. 29) with (2. 22) we see that to
prove this lemma we must establish

[Lugzm ;) =0. (2.30)
We have from the integration by parts
[Lu 4TI (t; v) ]2
1 - -
= ? (_ )ﬁ f dy1 sese [ dyZlHl
1
”" eXp(— ty,) )
e i s 2 (a1 g o
R
- -1
.E; dj! (yZJ 1)] [}I:I‘ (yj"'yjq)
L]
X (Yaau¥s = 1) 1T (95,4 - 1)] .
i (2.31)
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Performing the indicated differentiations
(L, 2234 (t;»)); becomes

[Lv g2k~$(t; V) ]2

1 -
7(-”"/ dyx“'f AYapa

i 1

Zhi

exp(- ty,) v 2k
m( -1 (y +1) 4a1

I} (s + 9,4 )

2oy
X J1'12 (934 = D(Popy 31~ 1) {Z—Z (93,4 1)

1 1 2954, ]
- - + -~y
[ Yozt Vg2 Yos ¥ ¥2ye Yz —1
1 Y
ORI SIS DO
(v [ Pty Vapa¥i -1 (Y20

1 Y1 ; [ 2
X f~ + - 29y, = (95, - 1)
[ Yt Yoot Va1 1] lz':‘ Ya = e

1 1 ]
X + .
(yzm tyy Yyt ywi)
(2.32)

We now claim that the term inside the curly brackets in
(2. 32) is zero. To see this we group the terms in (2.32)
with common denominators. Thus the sum of terms that
have the denominator (y; +y,) is

y:iyz [—(y¥—1)+<y§—1)] =y, -9 (2. 33a)
and similarly for the other denominator factors:
5,:11'3_,2:; [‘ (¥s3= 1) + 9, - 1] =325 = 24015
(2. 33b)
— [‘ (31— D +3352- 1] =Yag.2 ~ Yase1»
Y2se1F Y2y
(2.33c)
and
1 [— CC VD VR A 1] =Yor = Yarete
Yan + Varet

(2.33d)

As a result of this combination we see that the term in
curly brackets in (2. 32) becomes

kay
Vo=t 2y (9= 9p00) + Z) (92502 = Y250) + on = Yant

k-i
g (V5= 1) +94(94, - 1
+' *
+ZZ;J’2M—22372 [yk (-1 y(lyk )]:
Y1Y2re ~

a quantity which is identically zero. Hence (2. 30) fol-
lows and thus the lemma is proved.
D.Casesk=0,k=1,k=2

The problem is to show that (2. 8) holds for all £ For
k=0 (2. 8) reduces to showing

L, gy(;v) =0, (2.34)
where L, is given by (2. 23). That is we want to
demonstrate
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/’ dy exp(-ty) (i’_:_-_%)v[yz_%y_ (1+2tv)] 0.

(2.35)

This clearly follows by using (2. 252a) in the integration
by parts of the 1/t term. This result is well known.

For k=1 (2, 8) reduces to showing

L, gs(t;v) =2g4(gy - gf). (2. 36)
From Lemma 2.3 we see that
Lpga(t;v)=—2f d%[ dyz/ dys
1
) sty (-1 ]
x| 1 e -1),
[m (5] - 1172 (y 71) } (s
2.37)

Using the definition (1. 8a) of gy(¢;v) we see that the
right-hand side of (2.36) is precisely (2.37). Hence
(2.8) is true for B=1.

The case k=2 is somewhat more involved. This case
along with =3 must have separate proofs from the
case of arbitrary k (= 4) as for k<3 the structure of
{2.8) is lacking certain complexities that are present
in the general case. This will become apparent as we
proceed into the proof.

However certain general comments concerning (2. 8)
can be made at this point, To prove (2.8) we have found
it necessary to put the integrands of the integral repre-
sentations of the terms appearing in (2. 8) into such a
form that the integrands contain the same number of
denominator factors. By use of Lemma 2.3 we see that
L, g3:.4(f;v) has 2k — 2 denominator factors in the inte-
grand of its integral representation. This same nhumber
of denominator factors occurs in the term

e
2 gZ(k-m-l)-i[gZI*i Lamst = &h141 gzmn]

=0 msl

which appears in (2.8). However the term

xez.;; Relag
L m@q &r141 BomniLo £2 reme1yo
which also appears in {2.8) has only 2k - 4 denominator
factors in its integral representation (apply Lemma 2.3
t0 L, £3(kumog3g 04 use the definitions of gy;,q and gym.).
Thus instead of (2. 8) we will prove the equivalent
identity
kel Rejmq

ngde(t;V) -2 g mzo g2(k-m-t)-'l[g2 141 82m+1 — géld g{md]

Bel k=lei
=25 Zo 82141 82ma Lo 82 kemenr o1+

=0 M=

{2. 38}

The key to proving (2. 38) will be to write the left-hand
side of (2.38) in a form that contains only 2% - 4 denomi-
nator factors of the type (y,+%;,4). Once this is done
the two sides of (2.38) can be successfully compared,
The remainder of this section is the proof of (2.38) for
k=2,
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Using Lemma 2.2 0T 5,4, 8zmet &334t 200 ey,
Lemma 2.3 for L, gy.4, and the definition (1. 6) for

Satram-1~4 We can write the left-hand side of {2.38)
for k=2 as

1 1.
Lg-2 Z—E Z;)o 822emen)=1] 82141 B2met = G101 Ehmor)

zzf”dyi"'f dys 11 exp(=ty,) (2,__1)"
1

/ Y -1 y;+1

4
xlni (y, +yj+1).l 15(3/1, very 3’5),

(2.39)
where
Ls(gyevey¥5)
= (31 + 93+ y)(yyy5 ~ (¥~ 1) ~ (535~ 1)
X[py(ys + 95 +35) = 1]+ (35 + 99y +95)
*[(y495 - (35 = 1) = (ygyy = DU +3, +35) 35 - 11],
(2. 40)

where we used the labeling 1,2,...,2l +1 for g,,.4;
21+2, 21+3,...,2(k~m) for gy iom-y; and
2(k=m)+1,...,2k+1 for go,.q. We note that the [ =0,
m =0 term is zero, In this expression for /; we use
the identities

(9135 = (33 = 1) = (3393 = D{yg + 3, +y3) 95~ 1]
= (9195 = D sl (y; +35) = (35 +3))

= (y133 - D ys{ys +y3) (2. 41a)
and
(9995 = D3 = 1) = (ysy5 - DUy + 94 +5) vy~ 1]
= (9195 =~ D ysl(v3+ 35 ~ (3 +95)]
~ (335 ~ D yy(¥3+3,) (2. 41b)

to rewrite /4 so that (2.39) becomes [note that by (2.41)
we have factored out one denominator term]

1 4.
L,g5-2 g g, gz(z.m-n-t[gzmgzmq -gixdg§m.1]

1

{(3’1}’5'1) Y3 Y3, Y3 V3
Yatys Ystyse ity Vet
(s =1 yslps-1L
Yyt Y5 Y1ty
(2.42)

In the last two terms we make the change of variables
9y ¥ and y; « y;5, respectively. Then (2.42) becomes

|93
4 '
?Jo g2(2-m-l)-1[g21+1 Bame — 8214 g2m1]

dy,""/ d)’s"(x?.(;) )(y,+1)
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(5= [_ ysyin

® ° g ex (—t
1 1

S
y2+33

-1\"*
X (%:—;1) (9195~ 1).

(2.43)

A few words are in order to explain this last step.
Suppose we have

=[ndy1[mdyz y _Z—‘ﬁTexpﬁfy) (

) (%5)-

(2. 44)

1= (

Making the change of variables y; ¢ ¥, in (2. 44), adding
this to (2. 44) and dividing by two we find

[T " b expl=ty) ( )"
=3 d. —T——fﬁ
k 2.[ dy,[ yzm( -1) y;+1

The result (2.45) was used in the last step of (2. 43).
We now compare (2. 43) with the right~hand side of
(2. 38). We have [recall (2. 34)]

1 1l

lZ(>J Eo &2141 &amet Ly L32me21 =g% L, g;.
= msz!

(2. 45)

(2. 46)

Using (2. 37) for L, g; and (1, 6a) for g; we conclude that
(2. 46) is exactly (2.43). Thus (2. 8) is true for 2=2.

E. Integral representation of (2.38) for general &

Before we proceed to the case #=3, we derive an
integral representation for the left-hand side of (2. 38)
for general k. If we use Lemma 2.2 {or g7, Smi»
84144, and g4,.4, Lemma 2,3 for L, g5,,4, and definition
(1. 6b) for gy(,m.py-1 and use the labeling 1,2,...,2/+1
for gyya; 20+2,21+3,...,2(k - m) fOr gy(x1om-1» and
2(k-m)+1,...,2k+1 for g,.,, we find that the left-
hand side of (2. 38) can be written as

kel kepei
Ly Zrkey — 2 é% 2—:/0 82aemey-t] Gimet B2101 = Eme1 &h101]

*© b 2k¢1 exp(—
=2(- 1) f dyg+e f @Ygneg 11 P‘ f,

s (-1t
1 1

< Y, - 1\ ¥ ﬁ + )-l
—L“—yl 71 4 (y, Vit Lowa( P15« - ,J’zm)
(2.47)

with /g, given by
®

k=1
I
Lop= 2 (3 +92.)(Yapam +J’2k-2m~1) =2 (y%ni-i -1)
mai nqtkem+y

% {(yiyzm - D(¥3pam1— 1) = (Y2801 Yageamer — 1)

Zm kai
x (3’1 "2230 Varo1m, ™ 1)} + lzf (Y2101 + Y2302) (2n + Yopay)

k

X n;u#:: (y2n 4-1) {(3’13’2»1— 1)(37”.1- 1)
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2141
- (95— 1) (yzm Z y,,3—1)}
n3=1

hef kelef
+x§ 25 {200+ Y2102) (Fonezm + Voncames)

meq

kR
"1112 (y%n1-1 -1) {(J}ﬂ?zm -1D(3,,4-1)
niﬂd, Ram+i

X (¥eamt = D = (39211 = D PorarVaregazm = 1)
21+ 2m
X -
('%‘)1 yn3 n?ﬂ kati-nz 1)} .

As in the k=2 case, the =0, m =0 term canceled.

The first term in (2. 48) (the term involving the sum
*1) is the =0, m+0 terms of (2. 38); the second term

in (2.48) (the term involving the sum 3%}) is the [ #0,

m =0 terms of (2,38); and the third term which involves

the double sum is the #0, m #0 termsg of (2.38). We

write the first term in curly brackets in (2. 48) as

(2.48)

(912001 — 1)(3’%;,.2»;.1 = 1) = (92041 202me1 — 1)
m
X (yi 2 Youeteny — 1)
n2=0
= (9192001 = 1) Yonczme1 ( Vorazmat — Voet)

m
-N "Z/: y2k+1-n2(y2k-2m¢1y2kd -1
o=

Imaq

2m
= (yika-oi ~1) V2ru2meq ( Z y2k+1-n2 - E kao]mz)
ng=l ny=(

2m

- y1(y2k-2m1y2k+1 -1 '?:11 YVaorston,
o=

2m=1

== ka-2m+1(yly2k+1 - 1) E kaﬂ.nz
n2=0

2m

(1= Ymnama) T Sraetemy (2.49)
-

the second term in curly brackets as

219
(¥1¥2001 = D(¥5101 = 1) = (995304 = 1) (yzm E { Yng= 1)

214
=921 (Y1Vape1 = V(Y211 — ¥4) = Yaray ("32__2 yn3) (919254 -1)

21%

="y2h1(y1y2k+1—1) E yn3 y2k-1 y2l+1) "3222 yn3;

(2.50)
and the third term in curly brackets as
(J’ﬂ’qu - 1)(}’%14 - 1)(y%k-2m+i -1 = (39954 -1)
21+ m
X Yare1Yorstam = 1) ":L;li Vng "2230 Yanetony = 1)
== (9192001 = V92101 (Pnczmes = (95 = ¥239)
+ Voneamet (Y3101 = 1) (Vorat = Vorezmer)
+ Y211 Y202met( 94 = J’zm)(:\’zm - kao2mo1)]
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= (919210 = D YorsrYanaamey = 1)

im 24
X [yi Z y?k*i-nz+y2k+1 E yn3
n2=1 n3=2
214 2m
+ E yn3 Z: y2lz+1-n2 >
n3=2 n2=1
so that /,,,, becomes
L‘lkd
ket r
=’§1 (31 + 920 Vap2m + Voneamey) "22 (J’%nt.i— 1)
ng#e=m+i

x [— Yoramat(¥1Y2m1— 1)

Zmat 2m
x "Eo Yoreteny T (¥4~ Vanamet) "z-)i V2retang
-

P "
+ z.:/ (V2101 + Y2102) (Y2n + Vareg) ngz <y%nl-1 -1)
n.‘ﬂd

2 25
x [- Y2ra(1¥ant = 1) T Iy + (Gawer = y2set) 2 y,3]
n3= 4=

k=1 Relai
- (92109 + 92102) (Vopzm + Vonaamet)
1= m=1
k
X "{12 (y%ni-i -1) {(3’13’21“1 -1

ny #them+l, 141

X[ 92101 (Brcames = V(1 = ¥y000) + Yopazmit (¥ipeg = 1)
X (Yanat = Vonazmet) T V2101 V2002mei ( V5 ~ Y211

X (Yopay ~ yznq.zm)] +(¥1¥Y2101 1)(y2k+1y2k-2m*1 ~-1)

> 5
x +
[yi noh kad-nZ YVareg H3Z=:2 yn3

2144 m
+ E yn3 Z kad-nz] .

n3=2 n2=1
(2.51)

Frequently when working with the quantity /,,,, we
will perform operations upon /,,; (for instance, sym-
metrizing the integration variable labels) that leave the
value of the right-hand side of (2. 47) unchanged. Under
these circumstances we will use the symbol “=” to
mean that /5, as given above and the right-hand side
of the equation have identical values when substifuted
into (2. 47). From the context of the equation it will be
clear when we are using this meaning of “=".

F. Graphs and L

It is convenient to develop a graphical representation
of the various terms that occur in /,,,4. The basic
factor appearing in (2. 47) is the quantity

2k + 1

22
Lown(31s -+ o s Yopa) LI‘ (, +ym)". (2.52)

We can represent all such terms by the following rules:

(1) 1% (y, +9,.1)"! is represented by a straight line
with 2k +1 points [see Fig. 2(a)].

1066 J. Math. Phys., Vol. 18, No. 5, May 1977

(2) (9, +9;4) M55, (9, + 9,40 is represented by a
straight line with 22+ 1 points and one additional line
connecting the points j and j+1 [see Fig. 2(b)).

(3) (y2-1) Iﬁ):l (¥, +9,.0) is represented by a
straight line with 2k + 1 points and a circle centered
about the jth point [see Fig. 2(c)].

4) y, e (y, +y,4)7! is represented by a straight
line with 2k + 1 points and a “X” through the jth point
[see Fig, 2(d)].

(5) Suppose we have a term /’ which is a part of
Lopsy. The order of [’ is 2k +1 and by the graph of [’
we mean the graph of the integrand

2%
L’El (35 %950

as constructed in accordance with rules (1)—(4).

Sometimes we wish to multiply some integrand factor
[’ by the factor /”. If [/ is a single graph, the product
will be in general many graphs. To illustrate this multi-
plication of the graph /’ by some other factor /” we
draw the graph of // and merely place /* to the extreme
left, Of course, we may also explicitly draw all the
graphs corresponding to /’/” in accordance with rules
(1)—@).

G.Case k=3

For k=3 we write
(2.53)

where from (2.51) it follows that
£4(0,0)=0,
L1400, 1) = (g + 9 )(ys +35)(¥3 - 1)
X[~ 95 (3497 = (36 + 97} + (91~ 95) (95 +95)],
L400,2) = (3; + 903, + ¥3) (32 = D= p5( 3,97~ 1)
X(¥7+ 6+ 5+ 39 + (31— 93) (¥ + 35+ 34 +35)],
L1(1,0) = (33 +y)(yg + ) (¥t - 1)
X[~ 933997 = D(3g +532) + (97~ y:)(9; +33)],
L1(2,0)=(y5 +36)(36 + y)(3} - DI=35(py3;~ 1)
Xy + 92 + 93+ 30) + (31 = 5) (92 + 33+ 34 + 35,

2 .
-_— I (y"* yi..,l)

{a)

[ 2 3 4 5 62k 2+ b
- N — X 4y s 1))
Y TR e 2 ke (ylﬂ“lﬂ’gf.”n"’#"
13

——ar—a U — 2. ey )]
©  TETE AT Tk 2k b ",ﬁ."; Yiwt!

e I -
@ TR R e Vi Ot ved)

FIG, 2. (a) Graphical representation of [1%%(y; +y5.4)"L.

(b) Graphical representation of (y 4+y DR G +y )

(c) Graphical representation of (y5—DIE%(y;+y,,0™. (d) Graph-
ical representation of y JB(y; +y;, 0,
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-( yly7-|) Q_Q_Q_—Q

Lo 24 56 7
YT e 5 7

o N R e
Yr¥ 3 4 6 7

L1, == (93 + )35 + s H(y397 - V(38 - 1)
X (91 = y3) +35(35 = Dy = 35) + y595(y1 = )
X (37 = 95)]+ (3193 = V(3795 = Dl 94(y5 +5)
+ 33y +95) + (v + )y + 35) I}

) FIG. 3, (2) Graph of £4(0,1)

as defined by (2.54). (b} Graph
of / 4(1,0) as defined by
(2.54).

{2.54)

The graphs of /;(0,1) and /(1, 0) are given in Fig.

3(a) and Fig. 3(b), respectively. From the graphs it

is clear that /,(0,1) and / (1, 0) are equal [in the sense
of “=" following (2.51)].

[ (0, 1) consists of two terms as illustrated in Fig.
3(a), If we let 1 + 5 in the second term, the integrand
is antisymmetric and thus when integrated gives zero,
Hence

L0, 1) == (31 + 32X, + ¥:) (33 = D5 (9197 = Vg +37)
(2.55)

and similarly (1 < 3)

L7(1,0) == (95 + y)(ys + 3033 = 1) 35(y37 = Dy +3,).
(2.56)

Both (2.55) and (2. 56) can be reduced further. This
reduction is essentially the same as that of (2. 44) and
(2. 45) [in (2.55) symmetrize 5 < 6 and in (2.56) sym-
metrize 2 ¢ 3]. Thus /,(0,1) and /{1, 0) become

[(0,1) =~ %(yﬂ"{ ~ (g + 92 (g + y5)(y5 + v5)

X(yg+y)(y3-1) (2.57)
and
L1(1,0)= - 3{y3y; = V{31 +32) (32 + y:H{v3 +34)
X (g +y)(yE - 1), (2.58)

respectively. The graph of /,(0,1) is displayed in
Fig. 4.

We now examine the term /;(0,2). There are four

basic terms in /;(0,2) and these are displayed in Fig. 5.

The second graph has the reduction
= (397 = (34 + 32032 +93) 9394 +95) (95 - 1)
= = ${yyr— Wy + 3032 + 933 + 33, + 95 (35 - 1)
(2.59)

which is obtained by symmetrizing the y; variable

(3 <+ 4). This reduction always occurs when the graph
is of the type Fig. 5(b). The general structure required
for this reduction is shown in Fig. 6. The third graph
of /,(0,2) [Fig. 5(c)] gives zero weight to the integral

]

Ly e

T T s e 7 FIG. 4, Quantity (2. 57).
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Al R
RIS S
A I IR S
R s S

FIG. 5. Graph of /[ 4(0,2) as
defined by (2, 54),

(2. 47) since the integrand is antisymmetric under the
interchange 1 <3, Thus / (0, 2) becomes
L400,2) == (3397 = D(y1 +9)(y2 +33) y3(} = V(95 +97)
= 2(ywr= D9+ 9032 +33) (33 + 34)
X (94 +3:) (93 = D+ (31 - 9:)ys +3,)

X (y2 +93)(¥E = 1)( 5 + 9g)- (2. 60)

This reduced form for /,{0,2) is shown in Fig. 7. The
second term in (2. 60) [Fig. 7(b)] has the correct num-
ber of factored denominators (in a graph this always
corresponds to four loops).

A similar reduction for /;(2, 0) gives

L1442, 0) = (95 + 36) (35 + ) (9] = D= p5(v49: ~ 1y + )
= 33197 = D3y +95) (93 +34) + (37~ 95) (¥ + y3)).
(2.61)

The graph of {2, 61) is shown in Fig. 8 and should be
compared with Fig. 7.

From {2.54) we can write [,(1,1) as
L1, 1) == (y3+ 9 )pq + ysH(yy: ~ DI V395(3y ~ ¥3)(y7 = ¥5)
+ (98 = D393+ 92) + (55 - 1) p5( 97 + )]
+ (3 + ¥l yi(y195 - D(psy - 1)
= y3(yy7 = D(9E = DI+ (35 + 9g)
X[ 91(v19s = V3597 = 1) = y5( 3397 - D53~ 1]
+(99¥3 = (537 = Dz +93) (95 + 30}

(2. 62)
We now use the identities
yam(}‘ﬂ’zm - 1)(y2k-2mdy2k+1 -1)
- y‘llq(ygk-bnd SR EARESY
= (Yiretzm = D(F2101 = Vane1) + Vone1V2neamey
X (192100 = (Y2501 = Vap2mat)
(2.63)

and
Y1{31Y214 = D(Maamu¥arg - 1)
- y2k-2moi(y%ld - (91904 - 1)

- O\ = X

FIG. 6, General reduction formula. See discussjon following
(2.59).
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FIG. 7. Quantity (2, 60),

= (y%m = D(Yapamet ~ ¥1)
+ 35320491 ~ Vor ) (V2naamaVarag — 1)

for k=3, I=1, and m =1 in (2. 62). The second and
third terms multiplying the factor (yyy, - 1) can be
further reduced (these terms are of the general struc-
ture of Fig. 6). Carrying this out we can write /,(1,1)
as

L1(1,1) == (y3+ 33 + 9:) (997 = Dl vgps(v; = 3) (97 = v5)
+3(yg + 320 (92 + 93035 = V) + 5095+ ye) (g +37)
X (9§ = DI+ (3 + 3 (vE = Dyy - 97)
+ 9597913 = D7 = y5)]+ (35 +3¢)
) {98 = D5 ~ v} + 9193034 = y3) (3537 - 1)]
+(yyy3 = D(ysr = D3, +35) (35 +99)]

(2. 64)
We now examine the term
Yo ys + 90 va +95) y395( 91 = y3) (37 = 5)
= (33 + 9 (94 +35) 193953l (31 +32)
= {3y + 3 0y1 +36) = (3 + 35)] (2.65)

occurring in /;(1,1). We draw the graph of (2. 65) in
Fig. 9. The first term cancels the second and third
term, the fourth (let 5—7 and 7—5 in the first and

third graphs).

We now combine the terms /;(0,2), /,(2,0), and
£4(1,1). One way to create denominator factors from a
term like (y, - y,) is to write this as (v, +¥,,)
= (¥ T ¥50) + 2o *— (¥pg + ¥,). This identity has been
extensively used already. However there are terms
where this is of no use. For instance in (2. 60) for
£7(0,2) there occurs the term (y; —y;). If we were to
rewrite this as (yy +3,) — (¥, + ;) we would introduce
the factors (y; +¥,)* and (¥, +y;)*. We do not want terms
of this form. Such a problem term occurs in (2. 61) for
£1(2,0) [the (y; - ys) term] and two such terms in (2. 64).
We combine these terms:

Jr= (1= 93 (¥4 + 903y + 93095 +ye) (35 = 1)
+ (7= 95) (93 + v3)(v5 + ) (g +y7)(y§ -1)
= (93= 932 + 92093 + 93y + 95 (9% = 1)

= (5 = v ) (v3+ 3 (v +95) (35 + ve)(¥E - 1). (2.66)

~lyy2-1) Q_e.____)m

FIG. 8. Quantity (2,61),

'Jf(y"f')l 2 3 45 6 7
WY T i s 6 7
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YN O
2 34 56 7

£ LN
1 2 34 5 6 7
DO L FIG. 9. Quantity (2, 65),
I 2 3 4 56 7

12 3 456 7

The graph of J; is shown in Fig. 10. The first term
cancels the third term and the second term is canceled
by the fourth term. This can be seen by the change of
variables 1~3, 2—+4, 37, 4—~6, 5—5, 6—2, and
T ~-1 (this relabeling is seen most easily by comparing
the first graph with the third graph of Fig. 10},

Thus we have

1103+ 3,001 35) (91 + 220+ 99 (35 +39) (53 - 1]

(y3— yT)(yzL" 1
(3’7 +yg)(ye +y5)(y1 +y2)

I =yE-1)
(v3 + 30 (yg +95) (v + y7)

:}i (95 + ;) (93~ 37)
X (95~ 132 +9)(y3+ ¥4) (94 +35)]
which is the third graph. Hence we have demonstrated
Jy=0 (2.67)
where we use the sense of “=" as discussed after (2.51).
We now examine the term
= (w3 + 9)(9g + ¥5) ¥193(91 ~ 93} (3537 = (5 + 36)
{2.68)

in /,(1,1) [see (2. 64)]. This clearly gives zero contri-
bution since the above integrand [multiplied as always
by 115.4(¥; +,.4)7!] is antisymmetric under the inter-
change 1+ 3. The same is true for the term

(93 + 3y + ¥5) (35 +3e) y5y0 (31y5 ~ Dyy - y5) (2. 69}
occurring in /,(1,1). Collecting these results we have
[4(0,2) + [,(2,0) + [4(1, 1)
== (3197 = V(33 + 909 + 93)(93 = Dl ys(yg +37)
+3(y3+ 30 (95 + ¥5)] = (9397 = V{5 +96) (96 + y7)
X (9% - Dl ys(ys +32) + 33y +35)y3 + 3,)]
= (yyy7 = D3+ 9 (95 +95)5 (3, +92) (31 +9,)
X (32— 1) + 25+ y) (36 + 955~ 1))
+ (3 + 934 + 95) 9395 ( 91 = ¥3) (97 ~ ¥5)
= (93 + ¥ (94 + ¥5) (9193 = D(y597 = Dy, +33) (35 + ).
(2.170)

Though the last term in (2. 70) contains four denomina-

by D €N

| 2 34 5 6 7
by — O
YW T2 % 4 5 6 7

lyy) Y FIG. 10. Quantity (2. 66).
W2 3 4 § 6 7

-(_————-m———-
W TS s 6 7
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FIG. 11. Quantity yps(y3+y9 34 +y5) 01—y (v —y5).

tor type factors, the presence of the two terms
(y4¥3 = I{(y5¥; ~ 1) is not desired. Thus we expect
further reductions of this term along with the other
terms in (2. 70) that do not have four denominator
factors.

We examine the combination

(v3+ 93 + 9) ¥395(91 = ¥3) (37 - ¥5)

= (3333 = (9597 = D32 +33)(35 +ye)]. 2.71)
Now
v395 (1 = v3) (97 = ¥5)
=3395( 91 + ¥ {36 + ¥0) = y595( 31 + ¥2) (5 + v)
- ¥395( ¥ +¥3) (95 +37) + 9395( 3, + 95)( w5 + 36)
(2.72)

so that the term y3y5(y3+90) (¥4 +¥5)(¥g = y3)(y7 = y5)

can be viewed as a sum of four terms. These terms are
displayed in Fig. 11. In the first graph we let 1o 3

and 5« 7, in the second graph 1+ 3, and 5 ¢ 7 in the
third graph to obtain

Y3¥5( 31 = ¥/ (7 = ¥5) = (91 = 9s)(yr = 35 ) (9, + 95) (95 + ve).
(2.73)
Using (2. 73) the expression (2. 71) becomes
(93 + 9 (92 + ¥5) (92 + 93) (95 + 3¢)
X[(y3 = 95) (37 = 35) = (393~ D(y5y, = 1)]
== (3 + 93)(¥3 + 93 + ¥5) (5 +3¢)
X[(v197 = (3395 = 1) + 91(y5 = v3) +y2( 93~ 35)].
(2.74)

By letting 5 ¢ 3 in the second and third terms in (2. 74)
we see that the integrand obtained from (2.74) [that is,
multiply (2.74) by IT5_{(»; +v,4)"] is antisymmetric.
Hence (2.74) is equivalent to

=~ (9 + 90 (¥3 + 9 (g + 955 + ¥ ) ¥1y7 - 1) (ygy5 — 1).
(2.175)

Multiplying (2. 75) by %4 (v, +5,,;)* we have

_ (J’xyz - 1)(}’33’5 -1)
(y1 +32) (5 +37)

which will be integrated over in (2.47). We relabel the
variables by 1 -3, 3—7, 5—~1, and 75 (keeping the
even labels fixed) so that (2.76) is equivalent to

(2.176)

_ Oy =1(y3y: - 1)
(¥, +y3) (35 +5¢)

(2.77)
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which implies (2. 75) is equivalent to
= (91 +9)(95 + ¥)(¥3 + 9 (g + 95 ) (9197 = Dyays - 1).
(2.78)
Using these results (2, 70) becomes
[40,2)+ [ ,(2,0)+ /,(1,1)
== (yr = D{(y;+9)(p, +9)(38 = 1) p3(96+37)
+3(93 + 303y + 95)] + (35 + 96) (3 +y2) (95 - 1)
X[ y5(y+32) + 5(y3 +9,) (94 + ¥5)]
+ (93 + 3031 + )3, + 93) (2~ 1)
+3(y5 +ye)(yg +y)(95 - 1)

+ (3335 = Dy + 32035 + 3]} (2.79)
Making use of the identity
y3(¥E = 1) =(y3+9) (¥ = 1) = (p, + 9s)( 9495 = 1)
+ (¥~ I35 +y5) = vl ¥ - 1) (2.80)

we see that by a relabeling of the integration variable
labels the quantity

3’3(252"13
(93 +v4) vy +95) (y5 +35)

can be replaced by

(y4+5)(yg95 = 1)
(33 + 90 (34 +95) (35 + 35)

(y3+y)(¥3~1) _
(93 + 3 (vq +95) (¥5 + 35)

1
2

in (2.79). A similar transformation on the term
¥5(vy + ;) in (2. 79) results in the equivalent expression
for (2.79),
L4(0,2) + [(2,0) + £4(1,1)
== (997 = V{91 + 3000, +92) (92 = D (35 + 35+ 37)
+ 353+ ) (90 + 95)]+ (35 +36) (35 + 9 (95~ 1)
X [(34 +35) (91 +32) +3(33+3) (34 +5)]
+ (93 + 30 (30 + ¥ (y; +92) (32 + 9308 = 1)
+5(35 + 96 (95 + ) (¥ = D] = 33, + ¥5) (3435 - 1)
X (y4 + 3 )y + ¥ ¥ +31) ~ 2(¥3 + v {339 - 1)
X (91 +32) (35 + y6) (36 + ¥0) + (91 + 920 (33 + 3)
X (9, +95) (6 + ye)(¥335 — (2.81)

The last three terms of (2. 81) cancel. To see this we
multiply these terms by the factor IT¢_; (y, +,,4)™! to
obtain

Y (e =Dy =1 1 (v - Diygy, - 1)
2 (93+3)(s+2) 2 (9, +)(3, +5)

+ (yij - 1)(y3y5 - 1)
(2 +3) (95 +3g)

(2.82)

Letting 3 -2, 4 —3 in the first term and 4 =5, 5 —6
in the second term we see that (2. 82) is zero. Hence
using this in (2. 81) and adding the result to /;(0,1)
+£4(1,0) [see (2.57) and (2.58)] we find that (2. 47) for
the case k=3 becomes
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2(_1)3'/-”@’... [ndyu?‘(Vx%—T)fh ( )V

1

3
Xjn: (3’1 +yj+1)-1 Ly

=2[”d3’1""/; dyr =1%79£:1_§¥h (yﬁl)"

_ (%=1 3 (yi-1)

(g1 1)(2 (9, +}’3)(3’3+1V4)+ 2 (yy+95)(y5 +v)
($2-1) + (¥4-1) )

(y5+y ) ys +31) (v +3)(y, +33)/ °

(2.83)
We now compare the result (2. 83) with the right-hand
side of (2.38). From (2. 38) and (2. 34)

2 2.1
20 2 Za1a&imet Ly 823emeny -t

1=0 m=0

=g{L, g +2& &L, & (2. 84)

Using the definition of the function gy and g; and Lemma
2.3 for L, g; and L, g; we can write (2.84) as

~

2 2-1
2

1=0 m=0

=2f.;y,'“[ud3’7,=1(ix’g—(:l—’?% (3’:+1)

((y125 -1)(y}~1)

&21182met Ly 2(3em-1

+ 9= D0GA-1)

(3, +93)(p3+3) (33 +2) (¥4 +5)
L= DOA=1) ) (949 - D(GE=1) 5
(3’1"‘3’2)(3’2 +y3) 2 (y4+ys)(y5+ys)> (2.83)

By relabeling the integration variable subscripts we see
that (2. 85) and (2. 83) are identical. Hence we have
proved identity (2. 8) for k=3,

H.Cases k =>4

We have proved (2.38) for k=1, 2, and 3. To prove
Theorem 1 we must prove (2.38) [and hence (2. 8)] for
k= 4. In the preceding section the £=3 case of (2. 38)
was presented. Rather than give the most direct proof
possible for £ =3, we presented a proof that paraliels
as much as possible the general proof of this section.
Even so the general proof is involved and at places
special cases are presented to help see the cancellation
that is taking place.

1. Alternative form for L a4 11

We start with /,,,4 as given by (2.51) and write

k-l B-l-1

L?kd = :L:/ MEBO L‘Zk#l(l) m) (2- 86)

with /4,,4(0,0) =0, Equation (2.51) can be rewritten (by
adding and subtracting terms) as
%=1
Lo = E (91 +32)(Y2n2m + Y2namst) ,,{[2 (3’21-,-1 1
nqtkem+i
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2mel
X (- Y2rezmet (¥1¥2rey — 1) "Eo P2re1ny
o=

m

k=
+ (- y?k-ZmH)nE_‘ yzkd-n2> + :L-/: (¥2101 + Y21.2)
o= =

k
X{¥ax + Yarst) "gz (¥4~ 1) (— Y21a(¥1V2rg = 1)

nlﬂd

214
X Eg Yng T (V2ret = Ya141) E y,,)

kel Rei-d
=20 20 (Mpg +212)(Vakazm + Vareamar)
1= m=1
k 9
X ngz (y2n1—1 -1) (92 = 1)

ny#kamsl, 141

X Y e1V2razmet (V1 = Y2001 (V2ret = Yonazmet)
+ (yly'lld - 1)(y2k41y2k-2m41 - 1)

21+ im
X E Vn E_ V2rsiang + (yiy%ﬂ - 1)(3’31"1 - 1)y2k-2m~1
ng=2 3 ny=1

2mei
x Z_: Varstony T (9192001 = D(9heamet = 1) 92101

X E yn + E Vokagen [yl(yiy‘lld—l)
ng=1 ny= 2

X (y2k+1y2k-2m+l -1)- y2k-2md(y%t+1 = (91 Y900 — 0l
21+

+NZ_;2 yn3[y2kd(y1y2hi = D(¥2.2met Yorer — 1)
=

- y2l+l(y%k-2m+l - 1)(3’13’2}“1 - 1)]) .
(2.87)

We first examine the I =0, m =1 term of (2.87), i.e

ket
L (0, 1) = HEZ (y%w = 19y + ) (Yapa + Yoroy)

X [= Yaret (¥1V200g = V(¥2n + Yarar)
+ {34 = Yapat) (Vanq + v, ],
(2.88)

The term contammg (3, - yzm) in (2. 88) gives zero
contribution to l’I, k(9 +y,,,) L32s4(0,1) (et 1 2k~ 1),
Hence we have

ket
Laxag(0,1) =~ nnz (y%n1-1 = V(51 +92)(Yapez + Yaret) Yara
.=

X (91 Yame1 — I yop + Vapat )
(2.89)

Furthermore, symmetrizing the v,, 4 variable (recall
argument associated with Fig. 6) we have

et
Logn(0,1)==~3 "1;}2 (¥8ng-t = D1+ 92) Yoz + Yoret)

X (Yapat + Vo) (Y22 + Yara) (Y1201 = 1. (2.90)
Similar transformations result in
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k
Logu{l,0) =~ %"Es (J’%nri = D(yy +3.)(9 +33)

X33+ ¥ (¥2n + Y2t) (933200 — 1). (2.91)
Both /,,,1(0,1) and /,,,4(1, 0) have the required four

denominator type factors and a single (¥¥5,.1 — 1) factor.

We now analyze

k-1 ki
Z% LZkei(Ox m) and 122 LZsz(l’ 0)°
M =,

From {(2.87) we have

L4
"Q szﬂ (0, m)

rg k
=z (91 +92) (Papezm + Vopaameg) 1

n,:?

(y%nld - 1)
2mo3 ny#k-mai
X [- Varamat (Y1Y2p = 1) "2230 Yarstang = Yar-2met

X(¥1Y2001 = D(Y2ramez + Vonaamss) + (91 = Voneamer)
2ma?
X(Yaramet + Yorzma) T (95 = Vonamet) n21 yzm.uz] .
o=

(2.92)

Symmetrizing the yy;.,,.4 variable in the second term in
square brackets in (2.92) (5 « Yorome) and observ-
ing that the term (ka-Zm +y2k-2m¢1) (y‘l - ka-Zmd)

(Y2re2met + Vanamea) (91 +73;) is equivalent to zero (1< 2k
— 2m + 1) the quantity (2.92) becomes

p 551
Z) L2k+1(01 m)
m=2
k=1 3 9
="§ (¥1+52) (Vapaam + Vana2mes) "Ez (J’zn,-t -1)
nqtk-m+l

x[- Vopamet {V1V2re1 = 1)
2ma3

X 2.0 kad-nz - %( Yarama +y2k-2m+2)(y2h-2m¢2
"2 2ma2
+ Yaramed) (31¥2ee1 = 1) + (91 = Yyu amat) HZ% J’zm-nz]-
o=

{2.93)

Similarly for i £y, (l, 0) we have

1o
g LZko—j(z’ 0)
k=1 3 5
= Q (Y2501 + Ya1e2) (Y2 + Vaney) nnz (¥3nge1=1)
i niil*i

21.2
X [— Y211 (Y1200 = 1) HZLZ Yng — (%201 +920)

2=
X (921 + Y2101) (91V2001 = 1) + (Y2pa1 = Y210) n J’ns] .

(2.94)
We now claim
kel  Ralei ®
Pari = nyal (y22n1-l = D331 + 2102
niﬂd.k-mi
X Yga2m + Vanaamet) V1Y2101V202me1V2re1
X(J’t _y21+1)(y2k41 _y'lk-Zmol)zo (2.95)
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which is the generalization of (2. 65). To demonstrate
this we write

V1= Vo = (P F 3} = (Y +yg)+
+ (Y14 +¥20) = (¥2; + ¥a149)
Yaret = Vanamet = (Vaeor T V2a) = (Von + Yoct)

+0 0 = (Vopazm T+ Voreamet)-

Then for a fixed I and m each term in (2.95) can be
written as a sum of 4/(m + 1) terms. A typical term is
of the form

(2.96)

k
(_ l)ha 1
nyee
ny#i+t, Rem#+l

(ygnl.x = D(¥2101 + Y2 1s2) (V2p2m + Yorazmet)

X ¥1Y2101Y202me1 Yaret (3p +J’M)(y., + Yert)s
(2.97)
where p=1,2,,.., 2l and ¢=2k+1, 2k&,...,2k-2m,.
Keeping g fixed we examine the term with p replaced
by 2l +1-p, Itis
k
(_ 1)#*0 I
ny=2

nq#l+l, kem+l

(ygn‘-i = (92101 + V2002)( Voazm + Vorcamet)

XP1Y2101Y20e2met V2re1 (V210109 + V210200 (Vo + Vaut)-
(2.98)

These two terms [(2.97) and (2.98)] are equivalent as
can be seen from their graphs (see Fig. 12). They dif-
fer by an overall minus sign and thus add to give zero.
Since this is true for fixed I, m, and ¢, we have pair-
wise cancellation as the index p runs through 1,2,...,21.
Hence it follows that (2. 95) is true.

The term

(Y2101 + Y2002) (V2ncam + Voreamet) (V12001 — 1)
2may

X (3’%1,1 - 1) y2k-2m91 HE-O y2k+1-n2 (2- 99)
o

occurring in (2. 87) is equivalent to
(Y2101 * V2102) (Voraam + Voraamet) (Vi Varet = 1)(5’%1.1 ~1)

X é(y'lk-Zmd + y2k-2m+2)(y2k-2m#2 + y2k-2m03)

+ (Y2101 + V2102) Vopam + Varaame) (V12003 = 1)

m~d
(2. 100)

xy2k-2m+1 Z; 3’2k+1 Ty
n2=0

as can be seen by symmetrizing y,,.,. When it multiplies

P N VP v S

! 208 2442 2k-2m Dol x

g

-] i
p-l units 2¢-p units

Y N M S
24+ 2442 2k-2m 2x-2mH

p-l units

24~p units

FIG. 12, Quantities (2.97) and (2, 98), The loops that are
moved are with wavy lines,
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(a)

{b) XYY

P YN

©

LYY

FIG. 13. (a) I +m=1 terms for k=3, (b) I +m =2 terms for
k=3,

the last two terms of the sum Jim¢ ¥2p1.n,- Likewise we
can symmetrize the variable y,,,4 occurring in (2. 87)
when it multiplies the last two terms of the sum

21
2% Yn.-

n3=1 3

Collecting all these results and using the identities
given by (2.63) we find that /,,,4 as given by (2,87) can
be written in the equivalent form

L 2k+1

ket
=- %nqz (3t = D31 +92) (92 + 9553 + Y1) (920 + Yaet)
=

*ed
X (1Y = 1) — 3 "EZ (3’%"1-1 = D3y + 219202 + Yoat)

A %
$ OO+ )+ 34 ML, Oy =)
ntﬁk-md

XLy + 9N Vonam + Vogeamet) [— 3 1Yoneg — 1)

X (Ygpe2mer T Vapoame2) (Vancamez + Vorezmsa)
2mal
+ (91 = Yorama) "El Yareony = Youzmat (¥1Y2pn = 1)
.=

293
x ’g-:/o y2k+1-n2]

&
* 1L ($ng—1) [— 2(9192ne1 = V(3211 + 92)
1
ng#i+l

%
+ & (V2201 + Vare2) Dox + Vopy)

21-1

X (321 2100) + (D2ret = Y2101) "3E=2 Yny = Y2141
R=1 hel-i 1 \

y"3] - IZ=1; "}Ez (y2n1-1 = 1)

ny#k=m+i, 141

X{ 912001 = 1) 21
713:

X {9210 ¥ Vop2 (Yonaam + Vapaamet) {%( V1Y2re1 ~ 1)

X (V3101 = D (Vopamet T Verazmez) (V2pe2mez + Vapezmes)
+ 3 (919200 = D Wcamet = D321+ 920) (32 + 92004)

= Y21 V2ramet (Vs = Vart) (Vonag = Voneamet)
2ma3

+ (yiy‘lkd - 1)(3’%101 - 1) YVog-2mei "ZEHO

212
+ (12001 = I Whazmat = 1) 9210 "21 Yng
o

y?kd-ns
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im
+ 2 Vareten, [(y%m = (¥anameg = Y1) +91¥250
)
211
X35 = Y214) (Vapcamat Vanes = 1)] + nzz In,
32

P
X [(y2k~2mﬂ ~ (Y201 = Yanat) + Vanot Varamet (V12501 = 1)
X (Yane1 = Yaramet) |+ (94¥o101 — 1)]

2:231 m
X (P -1 .
Y2ra2megVored ) i yn3 ’E;I‘ yz”"-“z}

(2.101)

The advantage of the representation (2. 101) for /,,,
as opposed to the previous representations [as for ex-
ample (2.51)] is, for one, the separation of the “end
effects” and the “bulk effects” of the integrand. Also
the splitting (2. 63) has been introduced into (2. 101).

2. Summing Lax + 1U, m) form+/=k -1

For the case k=3 the graphs that appear in /(0,1)
and / (1, 0) when all reductions have been completed
[see Fig. 13(a)] can be obtained from the set of graphs
for /[4(2,0)+ /4(0,2) + £4(1,1) [see Fig. 13(b)]. We
claim that this is a general result. That is to say, if
we sum all Lzm(l, m) such that I +m =k -1, then from
the final reduced form for this sum there is a simple
prescription to obtain the remaining terms. Therefore,
we examine the sum

el ketal

SZk+1 = IZ(:;, Z)or Lekq (l, m)

1 +makel

(2.102)

and proceed to reduce this to the desired form [four
loops in all graphs and a single (y{¥34,4— 1) factor].

From (2.101) and the definition of S;,,4 we have
SZk+1 X
= (y, +y2)(y2 +y3) ﬂ££3 (y%n1-1 -1) {— %(yﬂ’qu - 1)(3’3 +34)

2kay

X (3 95) + (1= L Yonutony = s(¥¥ara = 1)
=

2k=5
X E=0 yz;m.nz} F{(2pes F Y2 (V2 + Vart)

n
2
ke )
X “112(3@,.1_, = IR-3(91Y2na1 = D(Vapar + Vaput)
s

2ka3

X (Y2nez + Yapa) + (Yomt = Vonet) "3E=2 Vny

2ot ka2
= Yort (Yot = 1) 2 yn3} = 25 (Ya1sg * Ya12)
ng=4 1=1

R
X (Y2102 + ¥a103) "22 (y%n1-1 -1) {%(ytyzm -1)

ny#1 1,142

X (9310 = (V3103 + ¥210) (V2100 + Ya105)
+ %(yxynq - 1)()’%;.3 = (521 + Y20 ) (Y214 +921)

— Y2re1Y2se3 (¥4 = Yaret) (Yareg = Y2rad) + (9V2p — 1)
) 2p=2 a5
X (2101 = 1) Y2103 Yeretn, * (91¥2e1 - 1)
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1 2 3
-l —2 3 a 3 8 10 (b)
-1 I—LZ b:’, ’4l 5 6 T 8 3 10 1

FI1G. 14, Some typical terms contributing to Jyg,q fo;g)k =5,
() Typical graph from JiP’. (b) Two graphs from AP,

212 2k=112
X (y%,.a -1) Y2141 "231 yn3 + o Y2ketany
3

X {92101 = D(¥20,5= ¥1) + 91921434 = Y21a0)

21+
2 -
X (Yap3Vamt = DI + %:_2 }’na[(j’zua = 13001 = V2ret)

+ YanayVores( VY2101 = D Vanat = V200 + (919204 = 1)
23+ 2kl a2

X (Y218¥2001 — 1) ,,;;l Yng Yaregong o *

nzul
(2. 103)
3. ok 41=0

Recalling the discussion that resulted in the definition
of the quantity J; [just before (2. 66)], we see that an
analogous argument for the terms appearing in (2. 103)
leads to the definition

Jane =J3hq + Tiho + Jian +Jiak (2.104)
with
i = (94 + 32 )3, + 93) (94 = 93)
1] 2k-4
XML Oyt =1 2 Yawtony (2. 1052)
520 = (Vaneg + Y2u) (V2 + Yanet) (V2nat = Yaret)
k-1 223
x T ($hpa=1 30 y,, (2. 105b)
uixz n3=2 3

k2 &
Jﬁl, == 122 (yzm +3’2m)(3’zm +¥2143) "11_['2 (y§n1-1 -1)

n1¢l¢1.1+2
20+ 9
X 22 ynz(yZHS - 1)(}’2“1 - yzkd)’
5=
(2.105¢)
and
kw2
Jihm =— IZ_; (Y214 + Y2rs2) (V2102 T ¥2103)
& ) 2k
X I (yZnt-l—I) E ynz(ygzd—l)(yzlﬁ‘yt)
ny=2 n2-2l¢3
niﬂﬂ, 142
(2. 105d)

where we changed the labeling in the last sums appear-
ing in (2.105¢) and (2.105d). Furthermore the result
J7 =0 of the previous section leads us to conjecture that

(2.106)

where “=" is interpreted in the generalized sense.

Sorey =0

We now prove that (2. 106) is true. From an examina-
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tion of the graphs associated with J%;’,‘,’,, «¢=1,2,3, and
4, it is clear that

» _ )
i =Jd38y and iRy =5k

A typical graph coming from the set of graphs associ-
ated with J{’ is shown in Fig. 14(a) and two types of
graphs appearing in Ji}’ are displayed in Fig. 14(b).
The important point to emphasize is that all graphs
associated with Jﬁ’q are such that the three loops ap-
pearing in the graph divide the line connecting “1” to
“2k+1” into two disjoint lines [in Fig. 14(a) the disjoint
lines are from 3 to 5 and from 6 to 11]. The graphs
associated with J{3), are of two basic types. There are
the graphs that divide the line “1” to “2k+1” into two
disjoint lines {the first graph in Fig. 14(b} is of this
type] and there are the graphs that divide the line into
three disjoint lines [the second graph of Fig. 14(b) is
this t]ype and the disjoint lines are 1to 2, 3 to 5, and 7
to 11].

We now claim that the subset of graphs of J§3); with
two disjoint lines exactly cancels all the graphs of
Jii). The remaining graphs of Ji3); that are of the
three-line type cancel amongst themselves to give zero.
Once these two statements are demonstrated we will
have proved (2. 106).

(2.107)

We first count the number of two-line graphs in
i, and J§3,. In Jii), there are clearly 2(k - 2) terms
[factor “2” comes from (y, - y,)]. The two-line graPhs
of J33), come from the last two terms of the sum 22,, :12
¥s, in (2,105¢). Thus for fixed I there are two two-line
graphs and hence 2(2 - 2) graphs in all. The three-
line graphs of J{3), result from the 2,,’2‘_‘2 y, terms. Fix
the integer I (< k- 2) and let ¢ be one of the values
1,2,...,l -1, Then one term in (2. 105¢c) can be written
as

= (%210 + Y212 (Y2102 + 2103)

]
x I (J’%n,-t = D320 + Y2aut) (33123 = V(Y2104 = Yarat)-

nyLe, 142

(2. 108)

The graphs corresponding to (2.108) are shown in Fig.
15, To these two graphs we consider the complement
graphs as shown in Fig. 16 [these are obtained from
(2.108) by letting ¢ =g and I —~k-1-1+g]. From Figs.
15 and 16 it is clear that the sum of the diagram and
its complement gives zero (the first three-line graph in
Fig. 15 is canceled by the second three-line graph in
Fig. 16), Hence the sum of all three-line graphs in
Ji3) gives zero.

The two-line graphs of Ji3), are of the form

- ...Q_Q_._.Q...Q—m—_omg___o__—
i S 291 2qH  2q¥3 2l i+ 24+3  24452k3 2kl 2k+l
J — —

length 1 length T
+) Y 4 - E—
| 3 2q 2qH 24+ 2142 2443
o J
length I length I

FIG. 15. Three-line graphs of J§3), for ¢ and I fixed.
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2 Y e SRS . ' UDUD S

oo \ 4 O ©

“ —
length T length T
LD o0 LY o o
length T length 1

FIG. 16, Complement graph of Fig, 15, The second graph
cancels the first graph of Fig. 15.

22
- IZ-; (%21 + 9200) (P2103 + Y2102) (Vo102 + Vora3)

]
X I (0nges = (9200 = 2000) (2. 109)
n}l-‘l
and are shown in Fig, 17. In Fig, 18 we draw a two-
line graph associated with Jé,,,, If we choose the lengths
as shown (which is always possible), then we conclude
from a comparison of Figs. 17 and 18 that the two-line
graphs of J§M and J‘2 11 cancel to give zero. Thus we
have established (2.106).

4. Further cancellation in (2.103)

We examine the terms
k=2 R
Ay :zzq; (32101 + Y2102 M D2202 + Y213) nI}z U%n,-t -1
nléllﬂ, 142

2%
x . =Zz;“3 In, Y1¥2101{ V1 — Y2140) (V2 1e3¥2001 — 1) (2.110)
2
and

k=2 3
Ay= zEx (Y2101 + V2102 (V2102 + V2103) H2 (3?%"1.1 -1)

£

nltlﬂ,ld
229
X "2232 Yny Voot Y2103 Vanst = Vorat) (9204 - 1) (2.111)

that appear in (2. 103} {note that 23,";%"2 Y2reteny

22,, <2143 Yn)). We now demonstrate that when A, and A,
are used in (2 47) (A; and A, are parts of /,,,;) and the
integration is performed the result is zero. That is to
say, we show

A=A, =0, (2.112)
where =" is used in the generalized sense.

For fixed I we examine one term in (2.110), If we re-
label the integration variables 1—+2+1,
2—+2l,...,21—+2, and 2l +1 —1 while the remaining
labels are fixed, then the integrand is antisymmetric in
¥; and Y54 [recall that we are always implicitly multi-
plying the factors A, and A, by l'I,_t(y, +79,44)"!] and hence
zero, For the term A, we relabel the variables y,;,;
~ Vanats Y2ued " Yops+ -+ s Yar " Y2radr ANA Popet " ¥pp43 and
note that each term in A; is antisymmetric in yy,,4 and
Vy103. Hence (2.112) is proved.

5. Final form for So + 1

Summarizing the results so far we have demonstrated
that Sy, of (2. 103) can be written as [this is the gen-
eralization of (2.70)]
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[ S W— - e ———
i 3 S 241 20 Ui 2443 2kt 2K
fengih A fength B

4| ————— O———x
| 3 5 261 240 2840 243 2k 2+

FIG, 17. Two-line graphs of Jﬁli.

®
1= 01 #3001 499) 11, O =) (- 00 - 1
2h+q
X (y3+ 93y +95) = ¥3(9yy2peq = 1) E ynz)

T (Yanag T ¥20) (322 F V2reg) nH2 (y%m‘d -1)
.=

x (— 2912001 = D (YVancz + Voret) (Yanes + Yaraa)
24 R

= Y2e-1{ ¥1Y200 — 1) nzc;l yn2)' ?:% (3230 +92102)

" z

]
X(yor2+ ¥ 1 (y%,.‘.a -1)
n1=2
niaﬂd.h‘l

x (%(yiyzm = 193 0 = D213 + Y20.0) (V2sas + V2105)

+2(3m = D3~ D3 + 9200 (3200 + 320
= Y2 Y21e3{1 = V21 ) Vanet = Y2143
+ (y1Yaret = 1) (33104 - D yngas
Tkeg
X 20 Yn, + (939200 = D(¥hris = D Y31
"2=2!46

2222
X "21 Ymp T (91200 = W D2103920m — 1)
=

21+ W
X 2, Yoy 2 y,.z) -

n3=2 3 nz=21¢3
(2.113)
The generalization of the term in (2.71) is
ke & 2
2 (92141 + V2122102 + Y2143 1 (y2u‘-1 -1)
=1 n1=2
n;#!‘i, 142
X [yzmyzus(% = ¥214) (Vapey = Yar143)
2ge1
= (3192501 = D(¥2182001 = 1) Z Yny "SZZ;I \ yn3] .
(2.114)
" 3 5 6 . 2k3 2kl 2k 2kH
length B length A
e " VY . Y i WP N D dh S
' 3 5 6 24 2 2
length B length A

FIG. 18, Two-line graphs of J4),. Moving loop (denoted by

wavy line) starts at 5 and goes to 2k —1 (shown in dotted lines),
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As was done in going from (2. 72) to (2.74), we want to
write the first term in square brackets in (2.114) in 2
form so that the two sum-terms appearing in the second
term in (2.114) become a common factor. To do this
we write

(yl - yzm)(J’zmi —y2h3)

21 214 2kl 113
= (E yn - Z: yﬂz) E yll3‘ 03§I‘3 y"a)

or W Bl nqedied
(2.115)
and examine the graphs of
Vou1YV2res{ Vaset T ¥20e2) (Y2102 + Y2143)
X Ol - DO =) O = ). @2116)

ny#l+, 142

It is clear that we can relabel the integration variable
subscripts so that the following is true {when used in
(2.116), which in turn will be used in (2. 47)]:

V2raYareslye = yzm)( Varet = ¥2153)

21+ 2%
= (M=) = Y218) 27 Yny 20 g
ﬂ,lxz "3‘,2},3
(2.117)
Using (2.117) in (2.114) we obtain
k=2 k 21+
b (Y2105 *+ P2102) (Y2102 + Va103) n (J’gni-x -1 E Yn
I=1 ﬂ‘-2 ’l2-Z 2
ny#ied, 142
20
x5 J’ns["(yﬂ’zn.i R ETWOYRESY
nge2143
= 91{ 32043 = Varet) = Yorut (yzm - yzns)]:
(2.118)

where we used the algebraic identity

= (91~ Y214) (Yopat — Y213 + (9192504 = D(32743¥2001 = 1)
= (912001 — 1y, 11Y2108 = 1)+ y4( 3103 - yzm)
+ Yount (Y211 = Yaru3)e (2.119)

It is clear that the last two terms in (2. 118) give zero
as the second and third terms will lead to an integrand
that is antisymmetric in y,,,; and y;,,4. Also by relabel-
ing we can let

2144 1 2 2841
Yng 20 Vg™ L Vny 2 Dnge
ny=d nqe2 743 ny=1 n3ali+d

Hence S;,,4 of (2.113) becomes

R
Sapet == (9201 = V(91 + 32032 +33) gL (J’gn,-t -1
1‘

2R+
X [%(y3+y4)(y4 ECASCID) y,.z] - (9Yuaq - 1)
"2-

-1
X (ka-i +J’2k)(3’2k “"J’zm) kl'lz (y%,,,., -1)

n‘.
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2xed
X [%(5’2»-3 + ¥25.2) (Yanaz + Youet) + V2uet "E‘ yn,]
2.

=2
= (yyq~-1 YZ:I (¥210 + Y202 (Y2102 + Y2r3)

1
B b= [ 408 = D0t 30
nlﬂli, 142

X (Yyr00 +Y2105) + 3 V3103 = V(92000 + Y20 (32; + Y2109

2k
+ (93114~ 1) 92103 Zz; ) Yny + (Y3143 - 1) ¥250
"2I +
212 21 2h+i
% 2t v =) 2 o, B om]
ng=l el nz=2lvd

(2. 120)

This can be written more compactly by combining the
first two terms in (2.120) into the I=0andI=k-1
terms of the third term. Doing this (2. 120) becomes

k=1
Sppg = = (¥1¥20e1 = 1) Z()) (9200 + Y200) (V2102 + Y2103)

k
ol A (¥inget = 1) 2(V2008 + Y210 (2000 + V2105)
ny #a2

R
+ nﬂz (y%nl-i ~1) 3251 + Y20 (921 + Ya14g)

ng#t+l
k ) 2% 4 13 2
+ 11 (y2n1-l - 1)y21¢3 Z) yn2 + I (yZni-i - 1)
=2 ngaZlse6 S e
"‘ﬂOz nﬁhi
212 13 5
xyﬂd Z>1 y"'l + ":_12 (erl‘-i -1 )(y2l01y2103 - 1)
Noz
2 nlﬂo‘l, 142
21 24+
X2 Yy 2 Ing|
"2’1 n3=21"4

(2.121)

where we must have the convention that any product
term

L]
Il (y%"‘-’— 1)

’l112
ny#A

is zero for [ =0,

3

1 2 -
nge? (yZn,-l 1)
ﬁiﬁbi’

is zero for I=Fk~1, and

(y%’I‘-’ - 1)

LT
nyEIel, 102

is zero for either I=0ori=k-1,

Consider the term
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-, —,

- - gt}
| 3 5 201 200 2143 2452056 2457 2q 2g¢1 2k 2k 2k+l
FIG. 19, Graph of (2,122) for a particular value of . The

range over which ¢ varies is indicated by dotted loops.

(92001 + V2122) (Y2102 + Y2108) (y2n1-1 1) y2143

n1 2
4 #142

x Z (y'la + qu#i)

q=l+

(2. 122)

which is the third term in (2. 121). For a particular ¢
the graph of (2.122) is shown in Fig. 19. From the fig-
ure it is clear that the integrand is divided into three
parts, We examine the integrand associated with the
graph between the double loop and the single loop. It is

q 2¢-1
[yzus I (ygn-t' 1)] i1 (y,+ym)"‘. (2. 123)
nel+d J=2143

We claim that this integrand factor can be replaced by

(3,-1) 11 (shpy-1)

nelad+p

q=1=2
[E (¥210302p + Varesers) 1'[

q=1-3

q
I (y%n-l - 1)
n=1+3
n#l+34p

,Z.% (V2104020 + Y2r14502)

2¢-1
X (Va143Y 2145420 — 1)] I (y +3,407, (2.124)

§=21+3
where the product symbol is to be interpreted as unity
if the upper index is less than the lower index. To
prove {2, 124) we start with the algebraic identity

Q
Yoz T (93q~1)
n=l+3

d=le2 1+14p

q
= Z) (y2l-r3+2p +y2h4+’2p) I (ygn - 1) I (ygn-i - 1)
b=0 n=1+2 n=l+3+p
q=1=3
- Z‘)j (y2h4+2p +3’21¢5+Zp)(y21+4429 Yarese2p — 1)
P=
1+14p q 2 L] 5
x Il (y%n"'l) ! (yZn-l—l)—yh I (y2n'"1)
n=l42 nejep+d nad+2

(2.125)

and note that when used as an integrand [mulnphed by
T2 a( 9, + ¥pq)1] the last term in (2.125) is equivalent
to the term on the left-hand side of (2.125). Hence

(2.123) is equivalent to

qal=2 1+isp q )
[Z (3’21+3+3p+3’2u4+zp) I"[ (yzn—l) 1 (3’2"-1"1)

n=l+3 4

g=i=3
- Z)o (¥21002p yzzﬁ+2p)(yzz~4+zy Vo528 = 1)
b=

I+i+p a 2q=1 1
X I (3,-1) 1T (3deq- 1)] O (yy+y,u)
nel+2 nel+ped #2143

(2. 126)

By the change of variables 2I +4+2p —2[+3, 2I1+3+2p
~2l+4,,..,20+4—~214+3+2p, and 21 +3 ~2 +4+2p
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in the last term in (2. 126) and remembering that the

quantity 554.3(9, +9,04)" (921,20 + Y2145.25) TEMAINS in-
variant under this change of labels we obtain the equiva-
lent expression (2. 124).

Similarly we have that the quantity

21
[y‘ltq I (J’zni‘l)] jrzl (3’1‘"3’14)'1
=2q

LETTY S

(2.127)
occurring in (2. 121) can be replaced by

i-q 1
%[230 (y2q42p +y2qo2pﬂ) n (yz,, - 1) n (yz;, o g 1)

n=p+q+i neq+l
leq~i
- p:EO (¥20s1420 + V2goza20) (V2 utazp Ya1og — 1)
1 %
x U (9hna~ I)J,Sq (9 + 3541 (2.128)
n#p+q+i

Using these results Sy,q of (2.121) becomes (see
Fig. 20)

k-1
Sopet == (¥4¥2pn — 1) lz\a (Y2541 + Y2202) (Va2 + ¥2043)

%
x { 31;12 (ygn,-t ~ 1) 292103+ ¥2100) (Y2104 + V2105)
niild

]
+ "EZ (y'gn‘-i = 1)z (3954 +92) (Y2 +¥214)
n1¢1--1

1+1 k
+ H (¥3pg ~1) E (yzq*'hm)%

(y2n - 1)

nnlel

0-1-2
[ 2 Dz ‘*‘yzmm)
Qel=d

X H (Mnet = U= 23 (eretaas * Yaresaap)
neledep p=0
kR
X T (¥ = D(¥21a3Vares02p — 1)]
ne1+3
ntl+3+p

+ ﬂ (9%pq—1) E(yza-i +9) 2

n=i+2

1-q
[E (920025 + Vagsapet) H (Y4na- 1)

2-q-1

X H (3= 1= 35 (Vogutszs + Yoquznzp)
nepg+l p=0
!
X(y2q+1+29y2141_ 1) nI;[‘Z (y%n-i_ 1)]
n#p+g+i
k 27 2k+1
+ I (y%n-i— D(voa¥2is =1 20 ¥a 20 Va( -
n=2 n=1 n=21+4
nElel, 142
(2.129)

We now consider the term

2t 14
Dt = 2 (Y1 + Y2100 (92102 + V2108) {- 3 "HZ (Y3t - 1)
1=0 =

-~ N,

) 263 24-2 244

3 5 2q-1 2q 2q+1 203 21 2kl

FIG. 20, Graph of one term of (2,129). Dotted loops indicate

range of the wavy loop.
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Y "0 VI W

S i\-l_x,2 QQ FIG. 21. Graphs associated
with I3, The first eight graphs

ﬂ—ﬁ“—"»—e———m are multiplied by — 3 and the

&_9____{'_"5__,@ last four graphs by +1.

N . S i WV 40

&.—M__—

k q=1-3
X 20 (¥2g+ ¥201) 27 (Daressnp T Varasezp)
q=1+3 p=0
Y 2 1k 2
X nI;I-vB (yzn-l_ 1)(}’2;,3}’21.5,29"1)— 2 II (erl-l" 1)
= n=1+2
nt+l+p
1-1 l=q~1
qui (qu-1+y2q) EO (y2q¢102p+y20+2+2l’)
= p=

7 ®
x I (y%n-i - 1)(yza+1c2py21+1 -1) + ,,1;12 (J’gn-i -1

n=2
np+q+l

21 2041
X{(YypaYares = 1) 25 9y ; yn}
n=1 nelled

n#re, 1e2

(2. 130)
which is part of S,,,4. We claim that

Ly =0, (2.131)

where equality is in the generalized sense. We first
examine a special case. Consider 2=4, then there are
twelve terms in (2, 130) and the graphs of these terms
are shown in Fig. 21,

Concerning the terms with the structure (y,y,-1)
we indicate by “X” the presence of the y, and y, terms,
From an examination of Fig. 21 it is clear that graphs
5—8 are just a reversed labeling of the first four
graphs. Hence we need only consider the first four
graphs with weight — 1 and the last four graphs. How-
ever, it is clear from Fig. 21 that the last four graphs
have the same structure as do the first four graphs.
Hence they add to give zero, i.e., Iy=0.

The general case proceeds along similar lines. Some
typical graphs are shown in Fig. 22, As in the 2=4
case, the terms arising from the second term in
(2.130) can be combined with the first term as they are

Y, Pt W i
jo—B— |—C |-D-=

jo—A—wf

e Ve VY i,

j—A—w —B—sf j—C-ol =Dl

FIG. 22, Typical graphs of I5,,;. The first graph comes from
the first set of terms and the second graph from the third set
of terms.
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Wy L NNy 0
T 2m 2443 245

odd ..odd
24-1 244 2443

090 NN g N Ny oW

& O-—o—F—X——0"—6 & —e
il 2RI 2ES 5120 20aezp 2a 2a
odd odd even odd
24+ 243

2q-1 2q 2a+2p Eq.gpq

FIG. 23. Graphs of terms appearing in Sy, as defined by
(2.132). The labels “odd” and “even” refer to whether (y% —1)
ocecurs at an odd site or an even site, respectively.

of the same structure. Furthermore, if the distances
A,B,C, and D as depicted in Fig., 22 are made equal,
then the two graphs cancel. One need only check that
the (y% — 1) type terms are in the correct place. An
examination of (2, 130) convinces oneself that they are
in the correct places for cancellation. Hence (2.131)
follows, and incorporating this result into (2. 129) re-
sults in our final form for S,,.q,

k=1
Symt == %(J’ﬂ’zm -1 IEO (3211 F Y2102) (Pa202 + ¥2143)

L]
x{ I (93t = V(32103 + 92100) (D210s + Y2105
n#l+d

k
+ I (Whes = D021t + 920921 + 32109)
n¥1+1

1+ 9 L q=1-2
+ (95,4 -1) _2 (D20t 2001) 25 (V2143020 + Voraaurs)
7n=2 e=1+3 #=0

1+14p ( 9 1) k 2 k 9

X - - -
n=I;I¢2 Vin n=11:13¢ (y2n-1 1) + n:I;Ioz (y2n-1 1)
1= 1~q

X E (y2q-1 + y2a) (y2q+2ﬁ + y?d*hZP)
e=1 =0
b o ! P

XTI (y2"_1—1) I1 (y2n'1) .
n=? n=p+gai

(2.132)

In Fig. 23 we display a graph of a typical term from
each of the four basic terms in (2. 132). In the last two
graphs the “even” and “odd” structure of (y% - 1) should
be noted.

6. Final form for Lok + 4

Equation (2.132) is the result of summing /,,,4(, )
subject to the restriction I +m =k - 1. We now claim
that /,,, [(defined by (2.86)] is in fact

ket k=iwl
Low1 == 3V 1oy = 1) IZ_(;)(yﬂd +¥11a) ”{V_J‘o (¥214200m™ Vareasam)

2
-2 (y2n-1 - 1) (yz 14392m
N#142, 000y 4m42

T+m+1 9 3
x n=I;I+2 (yZn-l - 1) { nI:I

k

+ Y9 1uts2m) V2 radszm T V21s502m) + "I:I2

nEl+i 142000y 1Ml

I+
(inat = D (gpeg + 321 (327 + Yap0g) + ﬂz (Y3na—1)
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244 2442 2442+2m 24+5+42m
Jodd odd odd
2¢4 281 2492 24+3+42m

2ud odd even odd add
L]
24+ 2442 24+3+2m 20392me2p 2q 2q+
0dd odd even odd odd

29-1 2q

201 2442

20420 5o o0 2432m

FIG. 24. Graphs of terms appearing in /[ 5.4 as given by
(2,133).

k qula?
X q§3 (yzq * yz“ﬂ) pz; (y21#3+2m42p +y2104+2m+29)
1smlap
x I

n=1+m+2

k k
(y%n—l) I (3’%,..1—1)"‘ I (y'gn.j‘l)
34 n=j+2em

n=l+m+,

5 3 )51 (shg =1
x + Yaqes: -
¢Z=2 (yzq..1 +3’gq) ’1?6 <y2q*2p Yaq+ta2p "1;12 Yang

1
X I (y'zln - l)} .
neprast (2.133)
A graph of a typical term from each of the four basic
terms of (2.133) is shown in Fig. 24. Figure 24 should

be compared with Fig. 23, the m =0 case of Fig. 24.

To demonstrate (2, 133) one can proceed in two ways.
The first method is to repeat the analysis starting at
(2.101) leading to (2.132) where now [ +m is fixed to be
less than k- 1. This will result in (2, 133). Alternative-
ly one can study special cases and note that the general
case (2.133) is obtained from the specific case (2.132)
by letting I I +m in certain terms containing the index
1. These special cases indicate the transition from Fig.
23 to Fig. 24.

7. Proof of (2.38)

Using (2. 133) in (2. 47) we obtain an integral repre-
sentation of the left-hand side of (2.38). We now com-
pare this with the integral representation of the right-
hand side of (2. 38) and demonstrate that the two repre-
sentations are identical. This will establish (2. 38) as
an identity which in view of Lemma 2.1 proves
Theorem 1.

Consider the right-hand side of (2.38). A graph of a
typical term is shown in Fig. 25 (the labeling is first
821415 then 8am+1s and finally ng‘l(k-m-l)-l where we use
Lemma 2. 3 for this last term). This graph can be made
equivalent to the last graph of Fig. 24 by rearranging
the graph in the order 1—2—3~4—5 as indicated in the
figure. The factor “2” on the right-hand side comes
about since there are two graphs in Fig. 24 to each
graph in Fig. 25, The first two graphs are a degenerate
form of Fig. 25 graphs.

Thus Theorem 1 is proved.

tH. THEOREM 2 AND THE FUNCTION ¥t »A)
A. Differential equation and the functions V2, + 1 (& V)

We define $(¢;v, 1) by Eq. (1.7). In terms of the func-
tion G(t;», X) the definition of ¥(t;v, A) is

G(t;v, A) = tanh{$9(¢; v, V)]. 3.1)
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From either (1.7) or (3.1) and either (1.3) or (2.7)
it follows that ¢(f;v, A) satisfies the differential equation

Y+ —tl-zp' =1 sinh(29) + %E sinh(y) (3.2)
with
Bt v, M)~ 2 ()2 (3.3)

as t approaches infinity along the positive ¢ axis.

The X expansion of the function G(t;v,)) [see Eq.
(1.5)] induces a corresponding A expansion for the func-
tion P(¢;v, 1),

Vv, N =2y Ay (85 0). (3.4)
n=
The defining relation (3.1) in conjunction with (1.5)
requires that
gi(t;v) = 3y (8), (3.5a)
23(;v) = 13 (85v) - 539 (5P, (3.5b)

g5(tv) = 35 (t;0) + [0y () PUsts (s 0)] + (30 (5500 P,
(3. 5¢)
etc,

The content of Theorem 2 is the assertion that the
functions ¥y,,{t;¥) as defined by (3.1)—(3.5) possess
the representation (1.9). To prove Theorem 2 we define
P(t;v, ) by (1.8) and (1.9) and demonstrate that either
(3.1) or (3.2) is true, We choose to demonstrate (3. 1).

If (3.1) is true, then it certainly follows that

G

ay
1 271 kel
sy =2 sech’(3y] =

= 41 - tanb?(39)] ¢

“ii-e, ) 2. (3.6)
oA
With the boundary condition
Glt;v,00=1 (3.7

and the assumption that (3. 6) is true, it follows that
(3.1) is true. Equation (3.6) can be written in the
equivalent form

2(2F + 1) Yy (1)

-l
= @+ 1) gy (t50) + '}:0 Y20k = m) = W gpomys89)

m
X 120 &21:4(t;V) G2 (mey s G ¥).

(3.8)

. even odd odd odd odd

Zl!l Zoz 20234 2k 2kl

[——
| 2

FI1G, 25, Graph of a typical term from the right-hand side of
(2.38), The numbers beneath the graph represent the ordering
to be followed to show equivalence with the graphs of Fig. 24
(in this case the last graph).
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FIG. 26, Quantity (3,11),

4 B
3 2n
2

I 2n+i

B. Graphs and a lemma

The defining equation (1. 9b) can be written in a
slightly different form

2 - -
if’zn.x(f;y):m _[ dygere f 25 P

x Tt exp(=1y,) )
3"’ ( -1) (y! ¥ +y;o1
X[H (y,+1D+ n (y,—l)] . . 9)
= i

To prove (3. 8) it will be useful to rewrite the term

Zrhﬂ 2r1|_-i1

I (v, +1)+ n (y,-1) (3.10)
appearing in {3.9) in a different form. To help visualize
the structure of these terms a graphical representation
will now be introduced.

Since the factor (¥;,,; +¥;) appears in the denominator
of the integrand of (3.9), the linear graphs introduced
in Sec. II are not the most convenient., We use circular
graphs to emphasize the cyclic nature of the integrand
in (3.9). Thus the factor

Zrloi
Je1 I (y,+y,.4)" (3.11)
is represented by a circular graph of 2% + 1 points (see
Fig. 26). We adopt the same rules as in Sec. II concern-
ing “loops” and “circles.”

Thus the integrand factor

(.7% - 1)(J’§ - 1(y; +3’4)‘,-,1(y1 +y3.1) - (3.12)

has the graph shown in Fig. 27. As in Sec. II we omit
the term I, (y, +y,,,)" that multiplies the various
factors in (3.9). Thus, for example, when we speak of
the graph of the factor

(93 - (9= D(y; +3,) (3.13)

that appears in an integrand with five variables we al-
ways mean (3. 12).

Furthermore for the graphs considered in this section
we make the additional restrictions:

(1) All graphs have an odd number of points.
(ii) ALl graphs have an odd number of laops.

(iii) Following any loop there immediately follows

H

FIG. 27. Quantity (3,12),
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3,4 3,0\4 3 4 3 & 3 e
5
OO0 D0
2 2
i 2™ 2™ 1 ]
FIG. 28. Quantity G4(3).

another loop or a circle. If a circle follows, then either
a loop or a point must follow this circle. If a point fol-
lows, then a circle must follow this point.

(iv) The sign of a graph is defined to be (- 1)"¢ where
N, is the number of circles appearing in the graph. The
integrand associated with the graph carries this sign.
As a result of the above rule, N,=%{K~ L) where K is
the total number of points of the graph and L is the
number of loops in the graph.

With these restrictions in mind we make the follow-
ing definition:

Gy (L) =the sum of all labeled graphs of K points with
L loops.

(3.14)

As an example the set of graphs G;(3) is shown in
Fig. 28,

We use the word graph and the integrand associated
with such a graph interchangeably, With this under-
standing we now prove

Lemma 3.1:

2kel 2k+3 &

Oy, +1)+ L (5, =13 }2‘6 Gapa (27 +1). (3.15)
Proof: At any site in 2 yraph of 2k +1 points there

are five different configurations at this site (see Fig.

29). We represent each possible configuration at a site

by a vector:

1 0 0
0 . 1 0
JLL>= 0}, Lmw={01], lLt>: 1 s
0 0 0
0 0 0
4 0 (3. 16)
((" 0
[B=1 2., |oy=| o
1 0
0 1

Now consider the points j and j+1 in a graph, We as-
sume j has the configuration la) and j+ 1 has the con-

LYY loop in- loop out {LL}
LN L loop in (L)

——L loop out {Lg)
et point (P}

—— circle (C)

FIG, 29. Five distinct configurations at a slite.
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O Ly,

i+
% = Yj+¥j+
S ~ -y,
._ﬁil—‘ - Y*tYj+

.__m — yj+yi+|

—_—— - I-yjz_H

FIG. 30. All possible configurations at sites j and j+ 1 with
their respective weights, From this Fig. (3, 18) follows.

figuration (8) (a,B=LL, Ly, L,;, C, or P). To this
part of the graph we assign in accordance with the above
rules an integrand factor. We denote this factor by

(alM(G,j+1)]|8). 3.17)
Using the graphical rules we have (see Fig. 30)
r-yi +y5q4 O Vit 9. O 0 7
Yit¥ 0 y, 49, 0 0
M(G,j+1) = 0 0 0o 0 1-y,] (.18)
0 0 ¢ 1-5
0 1 i 1 0
e d

To avoid double counting the circles we assign the
weight one when they occur at site j and the weight
1-y%,, when they occur at site j+1. Then we have

5 . el
7 G2+ =Tr {11 M({§,i+1)5, (3.19)
§=0 1=1
where Vou. =94, ’
If we make the similarity transfc: :-t1on
M(j,j+1)=UM(j,j+1) U, (3. 20)
where
11 0 0 0
00 1 1 0
U= 1~10 0 0}, (3.21)
0 0 1~-10
0 0 0 0 1
then
r-y_f-{-yjq Yty 00 6 7
0 0 0 0 2(1-3iy)
M(j,j+1) = 0 0 0 0 0 .
0 0 0 0 0
1 1
|z 3 0 0 0 J o2

Thus (3. 19) can be written as
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> G2k+1(2j+1)=T1‘{2l§1 vtj,j-n)} (3.23)
with
VitV ¥t 0
V(j,j+1)= 0 0 201~y ].
H 3 Y
(3.24)
We write (3.23) as
Tr {zjfj: V(j,j+ 1)}
=Tr{(B(1) ¥(1,2) B*2)][B(2) V(2,3) B(3)] -+~
x[B(2Ek +1) V(2k +1,1) B},
{3.25)
where we define
7 3 -yt
B(jl={z -3 -y, | (3.26)
: 3 - y;-1
From (3.24) and (3. 26) it follows that
B(j) V(j,j + 1) B1(j+1)
Yy +1 0 0
= yz,;q + %}’jq ~3 0 - y%q + ';%q +3]. (3.27)

0 0 Vg~ 1

Since the second column of the matrix in (3. 27) con-
sists of all zeros, the matrix elements (yﬁ,, + %ym -~3)
and (- 34,4 + 3¥,.4 + 3) do not affect the value of (3.25).
Hence these terms can be set equal to zero when eval-
uating the trace in (3.25). Doing this we see that (3.27),
(3.25), and (3.23) imply that (3. 15) is true.

C. Proof of {3.8)

If we use Lemma 3.1 and let n =%~ m~1in (3.9)
we have

¥ (remyes (£37)

____~2____ e ° 2ke2mel exp(._ ty

1 1

(;’I;;')v(yj +yjol)"] [’ZZ% G2k+1(2j+1)]-

(3.28)

Each term in Gy,,,(2j+ 1) contains at least one loop.
Since the first term in square brackets in (3. 28) is in-
variant under cyclic permutations of the integration
variable labels, each term in G,,,4(2j+1) may be cycli-
cally permuted {by cyclically permuting the labels on
the graph) so that one of the loops occurring in

Gyp,y (2j +1) connects the points “1” and “2k - 2m — 1.”
We denote this permuted version of (3.28) by placing

a prime on Gy, (2j + 1).

Now consider the right-hand side of (3.8). If we use
the definition of the functions gy;44 and gy sy (se€
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A VPOV A VOrvas

] 26 |
2k-2m

FIG. 31. Typical graph occurring in argument following
(3.32).

Theorem 1), the permuted version of (3, 28) just de-
scribed, and the identity
kel Rel=m kel k=laf

> x=x 2,

m=0 J=0 J=0 m=0

(3.29)

we have upon letting j —j+1 in the first sum of the
right-hand side of (3.29)

ket m
2(k~-m)-1
g}o Q —y V2 (hemy=1 2141 82 (met) o4

_ [ e 2 exp(—ty,) (y;-1\"
_f a1 [ dy""[}}i (I -1)17* (y,+1
i

2 (_;Z’k-Zm-] (2] - 1)

YVaraam-1 T ¥1
X (Y3pet + Y V2p2met + Vonazm) (P2nazmez + Voneamernor)

(¥~ 1)} .

4 2 (k= m
X (J’j +y1.1) ]IZ; {Z (-1)

m=0 I=

Remel=]

k
x I (y%hi - 1) Il
S=hem

J=kamal 4

(3.30)

The primed graphs in Gf,_;,,4(2j ~ 1) all contain a
factor (yy,.9m.4 +¥1) which is canceled in (3. 30) by the
same term that appears in the denominator. Hence to
give a graphical representation of the term [valid when
used in (3. 30)]

Gzlk-Zrn-j (2] - 1)
Yar-2mat T V1
we imagine starting with the sum of graphs of 22 -2m -1
points and 2j - 1 loops. Each graph’s labels are cycli-
cally permuted so that a term (y; +¥5,.3n.1) appears
(that is, a loop from “1” to “2k—2m — 1”’), When this
loop is removed from each graph the result is (3.31).

(3.31)

We now claim that

Gy (2i +1)
kef m G! (2] - 1)
= - 1)"‘ [_23:_2&1—_ ( Wt )
mz=>0 ( zzug Yorzmeg T ¥4 ket T V1

X (Yonazmet + Vonezm) (Yoneamezs + Vorzmsz1e1)

"M (ha=1 & (-1
Jukam I Jukam+lel i ’

(3.32)

where equality in (3. 32) is used in the sense that the
left-hand side and the right-hand side lead to identical
results when used in (3. 30).

Congider the set of graphs Gy,,;(27+1). We cyclically
permute the labels of the graphs such that a loop con-
nects the points “1” and “2k + 1.” Imagine proceeding
from 2k +1 until two loops are encountered. This sec-
ond loop must start at an even label which we denote by
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2k — 2m (see Fig. 31). Clearly the smallest m can be
is zero which corresponds to the three loops together
(see Fig. 32). The largest m can be is k- j since the
graph must contain 2j+ 1 loops in all. Thus the set of
permuted graphs with the points 2k - 2m +1 to 2k omit-
ted with just one loop between these points and 2j +1
loops in all is

G (2/-1)
22k-2ma NG 7 (et + 95 Fon. . ),
Varaamg T4 Y2rst T I YV2na2met T Vakatm

The remaining terms in (3.32), i.e,,

(3.33)

kemel=}

Ll
§ IEI,-,I_,,, (ygld-l)(y2k-2mo2l

k
+Vpameznt) 11 (33,-1)

Frkem+lel
are just all ways of putting in the final loop. The factor
(- 1)™ gives the correct sign for the m inserted circles
between 2k - 2m and 2k + 1. Summing this from m =0
to & —j gives all possible (permuted) graphs in
Gy.4(27 +1). Hence (3. 32) is true.

Using (3. 32) in (3. 30) we have that (3. 8) can be writ-
ten as

k=l 2(k-m) -1 m
(2k+1) gypey + Zg 5 Yima on £2141 82(men)4d
ms= =

® hd 2241y (_ ty )
=/ dyg** ‘f dY2rey [}31 (y}p_ 1)

1 1
x 21:—1)"(3; Fy,01| 2 Gy @i+ D)
yj+1 J i+l e 2k+1 »

(3.34)

where we identified (2 + 1) g5,,4 a8 Gy, 4(1). Using
Lemma 3.1 we see that (3. 34) is just 3(22+1) ¢y,.,;.
Thus we have proved (3. 8) and hence Theorem 2.

From Theorem 2 we can prove that underlying the
nonlinear differential equation (3.2} and hence the
Painlevé equation {1.1) with the restriction (1.2) there
is an associated linear integral equation.

Consider the integral operator X defined on
L¥(1,,da,) by

(KA = [ do, () expl- 6(x +)}x +9) (),

(3. 35a)
where the measure do, is
y -1\ ¥41/2
do, =dg(y) = (m) dy. (3. 35b)
The scalar product is
(g, .= J" do()g(3) £(3). (3.36)

The operator X is Hilbert—Schmidt for all real ¢ > 0,
As 6 —- 0 the Hilbert—Schmidt norm of X approaches
infinity (the approach is ~1n6-!). We denote by ¥(6, v)

. V0740, W
Zh-l 2k 2+ |

FIG. 32, Case m=0 in argument following (3. 32).
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the eigenvalues and by ¢3(x;6, ) the orthonormal eigen-
functions of K. For brevity we sometimes write Aj for
A3(6, ). Thus we have

(Ko3)x) =25(8, v) $5(x;8, v),

where + () refers to the measure do, (dd.).

(3.37)

We now prove

Corollary: The Painlevé transcendents 1(8;v, A) of
Theorem 1 possess the representation

where
aj=a5(6,v) =) 7 dg| [7 do,(y)
x exp(~ £y) 3A(;6, v) |2. (3. 39)

Proof: Using
(Vanut +3) 1 = fon dt expl~ £(9g + yypy)]

in the representation (1.9b) of the functions §,4(¢;¥)
we see we can write {y,,4(;¥) as

bt =gy [ dtle, K+ e,k )], .00
¢

where
e{y) =expl-(t +6)»]. (3.41)
Using Mercer’s theorem we can write (3. 40) as
2 N = *\n +
Yo (t5¥) = 57 '0/ dt {jZB% 09 fe, o3). 1
“ 5 05, 17} 6. 42)

Recalling the elementary relation (valid for lx|<1)

= 2 g {1 +x)

,,Z,i 2n+1 # —m(l—x ’
we can conclude from (3. 42) and (1. 8) that for x|
< min[(A}), (A3)] (where A{=2Aj=+sand Aj=A52 )
#(t;v, A) has the representation

:p(t;v,k):/ d¢ {f} (7\,‘)"|(e,¢,’)*|21n(%+—;%)
i< e

0

>\ (y=)e - 1+
+:§ a5 e, ¢f)-|2m(i'-_x;i)} . (3. 43)
Defining a3} by (3. 39) and recalling (1. 7) we conclude

that the Painlevé transcendent n(0;v, X) is given by
(3. 38).

From (3. 38) we see that the closest singularity in the
complex A plane occurs at min[(A})-, (\;)-']. This gives
the radius of convergence of (1.7) in the complex
plane. The restriction IA!< min[(A{)-1, (A)*1] can be
lifted in (3. 38). From the theory of analytic continua-
tion we know that, for fixed 8 and v,n(6;v, 1) is given by
the right-hand side of (3. 38) whenever the infinite
products converge. A necessary condition that (3. 38)
converge in the complex X plane is A #x (A})~! and
A#x(2;) for all j. We conjecture this is also sufficient,
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It is an open problem to compute the quantities Aj
and af appearing in (3. 38).

IV. THEOREM 3 AND COROLLARIES

A. Formal small-t expansion

A formal small-¢ expansion of the differential equa-
tion (3. 2) is

w f+1
P(£) ~ = olnt = InB + 35 75 a; ! 0U*2-2),
isl k=l

(4.1)

The coefficients a; , are determined from (3. 2) by
equating like powers of ¢ and are unique functions of o
and B (and ¥). The requirement that (4.1) be asymptotic
as { -0 requires that

-1<Reo<1, (4.2)
but otherwise the coefficients o and B are arbitrary.
I we define
w(t) = exp{~ ¥(B)], (4.3)
then
w© 4l
w(t) ~Bi° {1+ 2525 b, pti02-2 (4.9
j=1k=1

is a formal small-f expansion of (1. 3) where we again
assume (4.2). The coefficients b, , can be determined
from either (4.1) and (4. 3) (assuming a; , are known)
or directly from the differential equation (1.3). The
first few coefficients are

by ==-vBY1-0)2

bl,Z = BV(l + O')-z,

by =1V2B41-0)* - g B%1- 02

bya==V3(1+0)*(1=0)2,

by,s =15 BX(1 +0)% + 302B3(1 + 0)4,

(4.5)

etc.

Computation of the coefficients of the terms #°-*" and
t44° (by 1 and b, ;, respectively) in the expansion (4.4)
shows that these terms are zero. This is a general
result, i.e.,

b,1=0, n=3,4,5,". (4.6

To prove (4.6) we can proceed by induction. Since the
argument is straightfiorward we omit the proof. Thus
for n> 3 there are no terms of the form ™™ in (4.4).

When ¢=0 (4.4) becomes a formal power series ex-
pansion in the variable ¢ about the point {=0. This
formal power series can be shown to converge. The
result that there exists a one-parameter family of solu-
tions to (1. 3) such that the point # =0 is an analytic
point is known.!'?* Furthermore when £ =0 (6=0) is an
analytic point, the solution to (1. 3) is known to be a
meromorphic function,!+?*
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B. Y2, + 1(t'v) and Y(t; v ) ast >0
We define for n= 2

2 [~ "" * axp(- ¢
szldyl,,,fldy [ expi=ty)

a2 ¥+ ¥ia

n val/2 n - vel /2
x[n(_yﬁ.}_) +H(XL_1> ] @.7
a\y;+1 ja\y; +1

with v,,; =¥, (this merely defines i, for even integers
and coincides with Theorem 2 for odd integers).

Yalt; V)

Lemma 4.1: As t— 0 along the positive real axis
1
blt; ¥) =0, In (t_> +B,+o(1) (4.8)
where

4 1 1 n n
:“f dxl e / dxn n(xj +x,-,1)'15 (]-—Ex]> y (4- 9)
nJo 0 jd i

Xnel =1, and

B,=BY" + BV (4.10)
with
, 4 1 1 n
BH :—/ dx, -+ [ dxey 11 (x4 25,) ™
nJo 0 =1
n
X1nx, 6 (1 _Ex,) (4.11)
IE}
and
B’El)n_;}u‘? {/ dyy .. f dy, l'lexp(—ty, (v, +y,‘1

n vel /2 v-1/2
<[5 A G
a\y;+1 a\y+1
—2/ dyy * 'fdynﬂexp(—ty,)(yﬁyj.;)"
0 0

x[1~ exp(~ yx)]}, (4.12)

with 8(x) denoting the Dirac delta function.

Proof: Let F(y) be such that F(y)/y is bounded for all
vy >0 and F(y) ~. Define

O=0(y1, Vay <+ s Vn r}e(y,-l (4.13)

where

(4.14)

We write
2 © £ n -1
d,":; dy, - - - dy, Mexp(—ty ) (v; +y,.)
0 0 i<l

e(y lfl Y -1 vel /2
[ 1o 20> >yn -1(3>1+1)

n y -1 vel/2
+e(y1,---,yn)n(—1—)
3l

71 (4.15)

- 2F(y1)] +1,,

1083 J. Math. Phys., Vol. 18, No. 5, May 1977

where

4 © oa n
=;f dyl---f dyFOy) 1 exp(~ y,)(; +5,.)
0 ] j=l

(4. 16)

The limit ¢ - 0 exists for the first term in (4. 15) (that
is for the quantity ¢, -~ 1,).

We choose
F(y)=1-exp(-y) (4.17)

which clearly satisfies the above two requirements of
F(y). Thus B"” is just the ¢~ 0 limit of ¥,~ I, with the
choice (4. 17) for F(v).

We make the change of variables

p=x;, x;=pty, i=1,2,...,n (4.18)
x|
in (4. 16) with the choice (4, 17),
Then
wdp 1 1 n
I = f —= exp(- tp) f dxy - [ dx,d (1 -Ex,)
¢ P 0 4 3=l
X[1 - exp(= pxy) 1 T (x; + %;,4). (4.19)
s=1
If we make use of the identity
“d
In (%) - / Llexp(~ ) - expl- ), (4.20)
0

then I, becomes

1
znzf dxl-ufdxb(l Z‘,x,)
0 i=1
n

ist
1 1 n n
=In ) dxy - dxnd (1= 20 %, ) I (x; +2,,) 7
t =1 i=1
f dxy - - / dx,0 (1 X; (x; +xj.1)—l Inx,
=1 7 ja

+0(1) (as t-0 (4.21)
This proves the Lemma.
From (4. 8) and the fact that
e v, N = Z)AZ"" bt {5 ¥, (4.22)
we conclude for Ixl<1/7
(t; v, M) =+0olnt?t = InB +o(1) (4. 23)
as t — 0" where
o=y, g, o (4.24)
n=0
and
-InB=}; X™p, ., (4. 25)

n=0

where 0,,, and B, are given by Lemma 4.1. For the
steps (4. 23)—(4. 25) to be completely rigorous we must
ensure that the error estimate in (4. 8) remains o(1)
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when summed over # in (4.22). We do not present a
rigorous proof of this point. Heuristically, if one sums
the leading term in the o(1) term in (4. 8), then the re-
sult is still o(1). Also the function B{s, v =0) was com-
puted numerically by a procedure independent of the
steps (4.23)—(4.25) and to within numerical accuracy
{five to six decimal places) the result agrees with that
given by (1.12).

C. Computation of ¢,

Lemma 4. 2: If we denote by o, the quantity defined
in {4.9) then

= (2/n) ™2B(3, n/2), (4.26)
where B(x, v) =I'(x)P{3)/T(x +») is the beta function.

Proof: Consider the integral

n-1
J,= fo “dxy - fo dx, T (g + 2,7 exp(— %, — x,).
j=1
(4. 27)
Let
A:ZYJ" QJ:X—}.! .):1;29 ,71-1, (4-28)
=l A
then the Jacobian is
a(xhXZ) "-yxn) __yn-l
B(QI: gy vovy g, X)— X (4. 29)

Since there are (n—~ 1) factors in the denominator of J,,,

we get

Jn: fvl doq _fol-aldaz' . fol-le-...-a,‘_z dOl"_l fom I

nal
X exp [_ AGy - A (1 -5 a,)]
=l
n-2 n=1 -1
x { I (o; + a;,) [Otn_l + (1 -2 aj)]
i=1 3=1

1 2 i .
= {0 day foldaz- .. jﬂl de, & (I—L, ozj) T {a, + a7,
isl

i
(4.30)

where a,,; = ¢,. Hence in view of (4. 9) we have shown

that
g, =(4/n),.

To evaluate (4.27) we use the method of Mellin trans-
forms. If we define

(4. 31)

= fﬂmx'ef(x) dx (4. 32)

then for f and g L? we have the Mellin convolution

formula
w0 1/2+1%
[t dx = f FOe-9dt.  (4.33)
Q 1/2«i=
Now the Mellin transform of (x +v)-!
e L T v, (4. 34)
0 X+y sinw¢

where 0 <Ret <1 while that of exp(~ x) is of course
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.fow x% exp(- ¥) dx =T(1 - §). (4.35)
Therefore,
1 1/2+4i - et
" am ,/:/z.in a <sinn§) r1-9r(@)
1/2+f = n
:_1._/ de .‘n )
27 Jirzie sinm¢
=3 ) ___1__L n-2p (Ll
- [—o dg(coshﬂg)"”zﬂ B(z,n/2), (4. 36)

Therefore, (4.31) and (4. 38) prove the Lemma.

The result {1.11} of Theorem 3 now follows from
Lemma 4.2. We note that for » odd, (4.26) can be

written as
1 7% @2r-11!
O T g (4.37)
D. Relating B,, to integral equations
From (4.11) it follows that
B&Y = / d?xf dx, - f dx, b (1 -2 x,)
$=1
nel
X1nxy I (x; + 55,07 expl= My +x)]. (4.38)

i=1

Reversing the steps that went from {4.27) to (4. 30) we
see that (4. 38) can be written as

Y Y ATy e
nJy 0 0

nal

X In{y, xHo {y; + 3’101)-1 exp{~ Vo= V)
iat

4 - Y1
== f ay,--- [ dy,in(—22—
nj: & /o y"n(y+ +yn)

=1

XTI (3 +950)

j=1

! exp(=y1 = ¥a). (4.39)
Using identity (4.20) for the logarithm term in (4. 39)
we conclude

, d§
B _ ;zf dyy / d)’nf
0

x {exp|- &(y; +
n-l
X T (y; +3500) " expl=v; - v,).

i=1

“r 4+ 9,)] - exp(= &y}

(4. 40)

We now wish to split the above integral into two parts.
However as it stands, the integrals taken separately
are divergent, Thus we write

B =1im[BM(e) + B®(0)), (4.41)
£-{
where
1/¢€
B¥(¢)= f at / dyy - / Ay,
n=1 .
X exp[- (1 + £q] Fll 0y +95:) " exp(=y,)
j=
(4. 42)
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and

B(Z) -z > Ay, >+ d
n (6) n .[ i [ Y1 ﬁ Vn

n-1
X exp(- y1) ﬂl exp(~ &v,) (v, +v;.4)"
j=

X expl~y,(1 + H]. (4.43)

We let x; = £y, in this last expression {(and then followed
by £=1/£) to obtain

4 1 /¢ 23 ©
B;“(e):—/ dg/ dxl.../ dx,,
nJy

X exp(~- £x,) T | expl-x;) exp[— (1+ w1
i=l j +X 3+1

(4. 44)

Since we are interested only in the ¢/~ 0 limit of the
integrals occuring in (4.12), we may write B»" as

B(l)n hm{/ d\y ..-f dyn
1

n n y--l vel /2
xexp[—t(y, + ¥ )1 vy +3,,)7 | D=
i saa\Ys +1

+ 1 21-‘—1>M/2] Z/mdv- /md
a yj+1 0 31 0 yn

Xexp[-— H{vy +3’n)]ﬁ1 (v, +3’j¢1)-1[1 - exp(- 3&”} .

(4. 45)

That is, we do not change the value of (4.12) if we set

t =0 in exp{-tv,), ..., exp(~ tv,_1) and leave only the
factor exp[~ (3, +y,)]. As we did for B{’, we break
B®)” into a sum of terms. As (4. 45) stands, the indivi-
dual integrals are divergent. First we use

expl- t(yy +y,)] _

e [ dtexp[- &y, +v,)] (4. 46)
in (4.45) and then write (also let ¢t — ¢€)
B =1im B + B® () + BSXe)], (4.47)

€~0

where

B®(¢) = -~/ dg/ dv-"/ dy,[1-exp(=yy)]

X expl~ &(y +y.,)]jl.}1 0 +v50)t

4 e‘}'dg d o
;l_/; ‘z‘[ dx,---ldx

x {exp(- x;) - exp[~ (1 + £)x; ]}

n-1

X (xf +xi¢1)-1 exp(— xn)y (4. 48)
i<l

y e e .
s=2 [Car [T [Ca,
nJe 1 1

n=l n Y- 1 vel/2
X exp[- £y +y ) 11T G, +5,.4)MT ( . ) s
j=t m\Y; +1

(4. 49)
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and B*(e€) is just B¥(¢) with v-3 replaced by v + % in
(4. 49).

Comparing (4.42) and (4 48) we see that

AL e [

n-k

X exp(- x;) IT (; +x,4)" exp(- x,).
i

B(“(G) +B(3’(€

(4.50)

The £ integration is now decoupled from the x; variables
so that (4.50) is simply

B e) + B (€) = - 20, In(1/9), (4.51)

where we used the results of Lemmas 4.1 and 4. 2.

The quantities B{#(¢), B#Y(¢), and B{*(¢) remain to
be computed. Equations (4. 44) and (4.49) are in the
form of an iterated kernel. Therefore, we now examine
the integral equations associated with these kernels.

E. integral equations

Lemma 4. 3:

y=1\"9,,0) _
/: dy(v - 1) iy Ay By, (x) (4.52)
with
N, =msechmp, Q<p<eo, (4.53)
Gp () =C, JF(z +ip, 5~ ip; 1 +v; 3 - 3x), (4.54)

where F(a, b; ¢; x) is the hypergeometric function and

Cpp=[TT72(v + 1)p sinhmpT (3 +v +ip)T (3 +v - ip) /2.
(4.55)
Furthermore the ¢, ,(x) are orthogonal, i.e.,
© V= ,
[ a(35) oozt @so

where 0(x) is the Dirac delta function.

The functions ¢, ,(x) can alternatively be expressed
in terms of Legendre functions®

1 v/iz
() =C, ,L(1+) (%) P00, (0), (4.57)

Lemma 4.3 is a special case of the inversion formulas
for the generalized Mehler—Fock transform.”®

To compute B'?’(¢) we need

Lewmma 4.4:

j; e—;‘g(—y——x,,(y dy = XA x(5), (4.58)
where
Xp(0) =(23,)1 2 [“atexpl- (£- 1)x/2]p, (8  (4.59)

and ¢, (£ is the v =0 case of (4.54) and A, is given by
(4.53).
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Proof: Consider the integral eguation

/”Mg(v) dv = Ag(w). (4. 60)
0 u+v
We can write this as

Ag(w) = fowdvg(v) f:d&’exp[- £u+0)]. (4.61)

If we multiply both sides of this equation by exp(~ &),
and if we integrate the result over u from zero to in-
finity, then (4.61) becomes

AG(E) = [ dat’ g E'G(E (4.62)
where G(£) is the Laplace transform of g{u), i.e.,

G(&) = fow exp(~ &) g(u) du (4.83)
From Lemma 4.3,

G(&) =, (8
and

A=, =Tsechmp, (4.64)
From (4.61) and (4. 63),

M) = [ dE exp(- Eu)G(E)

= flmdé’exp(-— Eug, o ). (4. 65)

Letting f(x) = exp{x/2)g(u), x=2u we see that f(x) sat-
isfies (4.58). The overall constant in (4.59) has been
chosen so that

1,7 expl= 0x,()xpe (¥) dx = 8(p = ). (4. 66)

From Lemma 4.4 and (4. 4) it follows that

e-1 ©
Bf,Z)(() :% j; dg '/(; dp X;-l l (exp(-— gx)) XP(x)) \ zy

(4.87)
where
(exp(= &x), X,(x)) = /m expl~ (¢ +V)x] x,(x) dx
0
—(21,)" 2 ﬂ “dtg, o8
Xﬁ dxexpl- (£ +£/2 + ) %]
_ a7/ ® (&)
—eon [Tt
= (20,20, (22 +1). (4.68)
Thus
8 2
B:a)(@:z/ dgf <cosh1rp) |¢p J(2c+ 112,
(4. 69)

Using (4.57) for v =0 we have
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@ 8 "
B (0= f dg f (coshnp)

Xp tanhp [Py /5.1,(1 +22) 12 (4.70)
From Lemma 4.3 and (4. 49) it follows that
n-1
Aig) 2
B,(e) _/ at f (coshﬁp)
x| (exp(= £%), ¢, 0 /2(xN) | (4.71)
and
Giey _ 2 f / -
B9 “n as (coshnp
X [(exp(= £%), ¢y pu1 120N 2 (4.72)

where the scalar product in (4.71) and (4.72) is
* x=-1
(exp(- £, 8,0 = [ ax(53)" exol- £y, 0.
(4.73)

Thus to prove Theorem 3 we need to compute the in-
tegrals (4.70)—(4.172).

F. 8, (e)
In (4.70) we do the ¢ integration first. Now

o1
fo [Py/oip(1+20) P dE= Ef (4.74)

..1/z~u:(z) Z;

where z=1+2¢ and A =1 +2¢!, We are interested in
computing (4.74) in the limit A -,

For any two Legendre functions w, and w, on the cut,
we have’®

[ w,(2w,(2) dz =[(v - D + o + D]

d d b
2 — j— —
X [(1_Z ) (wvdzwﬂ w“dZw‘)]a .
(4.75)

Letting v== 3 +ip, 0 =-3% +ip’, then we have in

particular
flA Az Py y501pZ)P 1 130ipe(2)
=p*-p

- P-l /2+ip'(A)P.,1 /2&»(‘\)]-

2y A2 D[Py /20ip BP0 (M)
{4.78)

Writing

P 1oaip @O =) =[Py 30150 (2) - Psip@)p -9

+P 4 i) - ')

in (4. 76) we obtain

A
_/1‘ dzp-l/ZHp(Z)P-IIZvip'(z)

A2 3 Py jpugpelh) =P (A)
:p+p { _1/2”#(1\) 1/2+ip Py p 1/2+ip
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- aP-l/z»ip(A) [P-l/zvlz'(A) = P.1/ge1p(0) ] . (4.77)

oA p=-p’
We now let p’—p in (4.77),

A A1 (ap (A) 3P (A)
2 __ <1 /2+ip =1 /2+ip
/; 4z [Pt jan@F =55 ETN R

az
=Py jpuip{V) WP-I /zm(A)) .

(4.78)

We need to compute the right-hand side of (4.78) to
order o(1) as A —~=, Using Eq. (3.2.9) of Ref. 6, one
can show for A -« (along the positive real axis)

29T(ip) 1/ 1
P-l/zoip(A)2(2/77)1/2Re(r—(_21_—f:%—)—/\ 1/2 “’)+O(K) .

(4.79)
We have also
Py saeiph) _ 2/BUDGP) a4 s szis
TG Tp) " mztip)A
+ complex conj. +O{A3), (4. 80)

3Py /z0p(A) o ) _ 15102 +i9(p) - i +ip) +1nA]

-1 /2vipp(;
x2 r(;;(g; A"M/2+ 4 complex conj.

+0(A™Y), (4.81)
and

azp—l [24{)(1\)
apoA

=1/2+ip ;.
=i il I (;Jr(’ii)) [(n2 + ¥(ip) = ¥(z +ip)

+1nA)(= 3 +ip) + 1]A-3/2¢p

+ complex conj. + G(A-%), (4.82)
where ¥{x) = (d/dx) InT'(x) is the psi function.

Substituting (4.79)~(4.82) into (4. 78) and using the
relations [(ip)['(- ip) = mp~t sinh~{(mp) and (% +ip)
XT'(3 - ip) = Tsech(mp) the result

A
'[ dz [P-l /z;ip(z)]z
= (mp tanh7mp)[In2 + InA + Rep(ip) - Red(: +ip)]

1 ( r(ip)

+—Im m(ZA)“")Jro(l) (4.83)

follows.

Using (4. 83) and (4.74) in (4.70) we obtain

P =om( ) [ o ()
B{¥(€) =0,Iln (( +1m A dp coshmp

X [In4 + Rey(ip) — Red(L +ip)] ~ % ”

(4. 84)
where we used the result

lim dp (
0

A=

) " tanhmp Im (le_“f_(ﬁL) (ZA)"")

T
coshmp (z+ip

1.ml
2.

(4. 85)

1087 J. Math. Phys., Vol. 18, No. 5, May 1977

G. B8 (e), B'5)(¢), and B,

The matrix element needed in (4. 71) and (4. 72) is
[recall (4.57) and (4. 73)]

(exp(- £x), ¢, ,(x))

= (x-1\"/? -
=CMI‘(1 +”)/1 dx(x +1) exp(- Ex)P-ilzup(x)-

(4. 86)
The integral (4.86) is known™!® and the result is
(eXP(— Ex), 4’), v(x)) =Cp,vr(1 + V)g-lW-v,u(zg), (4- 87)

where W, ,(x) is a Whittaker function.!! Using (4.87) in
(4.71) and (4. 72) we have

BY(e) +B,7¢)

2 (" ° T 1 p sinhmp
_n[ dE[ dp(cosh‘irp) T

XEUDW +1 +p)T(w + 1= ip)(Wey 5y, 1,(28))

+ TV +ip)T(v = ip)(Wy /5.,,1,(28)]. (4.88)
We first examine the £ integration. Define
Fyl@)= [, de €W, 00, 1(26) ] (4.89)
and
Fp@)= [ de £ W, 130, 1,201 (4.90)

Let Iv:m(Z) be the respective Mellin transforms, i.e,,

Fy.2)= f0° ¢?"1F, ,()de, ReZ >0, (4.91)

Using (4. 89} and (4.90) in (4.91) and interchanging the

orders of integration so that the e integration can be
trivially performed, we obtain

F(z)=2z" foua dE E2 Wy g, 1,201

=272 [ 7 dg £2HW, 00, ) (OF (4.92)

and
Fy2) =222 [ 7 g £54W_ g, p(DF. (4.93)

The integrals appearing in (4.92) and (4. 93) are
known'? and we have for ReZ >0

fon E2Wy sy, (8P dE

_TZ +2ip)T(Z)T(~ 2ip)
TT(w-ip)TWw+ip+2)

3F (2ip+Z,Z,v +ip;

T'(Z - 2ip)T(Z)T(2ip)
T(w+ip)T(v—ip +2)

1+2ip, v+ip+Z;1) +

XoFy(Z,Z ~2ip,v=ip;1=2ip,v=-ip+2Z;1), (4.94)

where 3Fy(ay, ay, a5; by, by; Z) is a generalized hypergeo-
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FIG, 33. Contour C used in (4, 95h).

metric function.’® From (4.92)—(4.94) we see that
Fy,4{Z} has poles on the line ReZ =0 at Z =+2ip and Z
=0. To compute the small-¢ behavior of Fi,g(e) to order
o(1) it is sufficient to study the behavior of F, »(Z) on
the line ReZ =0 since

1 c+f o -
Fi'z(e):i-ﬂ—_ . G-ZF1’2(Z)dZ (4. 953.)
cai®
1 -z
-—21n CE Fi'z(Z)dZ, (4. 95b)

where (4. 95a) is the Mellin inversion formula and the
countour C in (4.95b) is shown in Fig. 33. The integral
along the straight line lying in the ReZ <0 plane is

o(l) ase—~0,

We now examine FAM(Z) at Z =+2ip and Z =0, We
first expand (4.94) about Z =0. For p>0

T(Z +2ip)T(Z)T (= 2ip)
Tw-p)Twv+ip+2Z) —

1 _LQRip)T(= 2ip)
T(v+ip)T{v - ip)

{1t +Z[w(2ip)

-y = v +ip)] +0ZH},

where ¥y=0.5772+++ in Euler’s constant. By definition

(4,96)

Fo2ip +Z,Z v +ip; 1 +2ip,v+ip+2Z;1)

E (2ip +2Z),(Z) (v +ip),
oo (1 +2ip) (v +ip +Z)m!”’

(4.97)
where (a),= I'(a +7)/T{a). Expanding {4.97) about Z =0
we have for p>0

oF2(2ip +Z,Z v +ip; 1 +2ip,v+ip+2Z;1)

=1 +ZE +0(2?)

(21>+ )

=1-+Z[pQ +2ip) +y] +0(Z?). (4.98)

Thus we have shown that for Z —~0

jo-u Ez-2[W1 /2=vy “,(E)]zd

_ ozt L= 20D @ip)
= T{w-ip)T{v+ip

3 {1 +Z[Reyp(2ip)

- Rep(v +ip) + Reyp(1 +2ip)] +0(Z22)}, (4.99)
and hence for Z—0
FZ)=foZ 2+ 27 +0(1), (4.100a)

where
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foy =1L (@ +ip)T{v - ip)p coshimp) sinh(wp)]™!
(4.100b)

and
fa=fol2Rep(2ip) ~ In2 - Red(v +ip)]. (4.100c)

To obtain the Laurent expansion of FA‘2(Z )} about Z =0,
one replaces v by v+1 in (4.100).

From (4.92), (4.94), and (4.97) we have for Z — z 2ip

Fz)=2

_1__2*21»1[1"(*2"1’)]2 1 +0(1). (4.101)

2ip T(vtip)|] Z+2ip

Using {4.100) and (4.101) in (4.95b) and recalling
(4. 88)—(4.90) we have for e—~ 0"

BiY(e) + B (e)

=0, ln(l) 0,1n2 +—[ ( >n
coshmp

x[2 Re(2ip) ~ & Rep(v +ip) - & Red(v +1 +ip)]

+lim—

.4 [ m nl 2ip
im 2 ), dP(coshﬂi)) smhﬂp{lm[2

i 2
x <_—r€${f€;)) exp(- 2ip lne)] v +ip) (v = ip)

- r@p) \?
+Im[2 Z”(I‘(V +1 +ip))

X exp(— 2ip lne)]F(u +1+ip)T(v+1- ip)}. (4.102)

In deriving (4.102) we made the identification [see (4.31)
and (4.36)]

(4.103)

4 [~ LAY
On=m o dp(coshwp) :

The only nonzerc contribution in the limit e~ 0 to the
last integral in (4.102) is in the region p~0. A compu-
tation shows this integral is — (1/n)7"

We now use {4,10), (4.41), (4.51), (4.84), and (4.102)
to obtain [note that the In(1/e) terms cancel]

B,=31n20, -——17 +—-/ (coshwp)

X[2 Rep(ip) - 3 Rey(v +ip) - 3 Redp(v +1 +ip)], (4.104)

where we used the functional equationtt

P(2YP) =3d(x) + $0(x +3) +1n2,

H. Blg, v)

To complete the proof of Theorem 3 we must compute
the sum {4.25) where we have shown that the coefficients
are given by (4,104), Rather than regard B as a function
of A and v, it will prove more natural to think of B as a
function of ¢ and v where ¢ =0(\) =27"! arcsin(m).
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Then for 0<1 (A <1/7) it follows from (4.104) that

~InB =27 Bypy A"

n=(

=30In2- 1n(1 + sinmo/ 2) +1 I+ 1y, (4.105a)

1- sinno/2

where

;=1 ﬁ " ap m(‘w—f—s?“—’”fi) Rey(ip),  (4.1050)

coshmp ~ sinmo/2

oz f" coshmp + simro/z) ,
I, = ~;£ dp In (coshﬂp e Rey(v +ip), (4.105¢c)

and

_ v [ cosh'rrp+sin1ra/2) 24 a2vat
13__“/0’ dpln(coshﬂp_simo]z (W +pY,  (4.105d)

From (4.105b)

coshmp

il S
=4 coswo/Z[ dp costinp — sintro)2 Red(ip)
© coshmp ,
=2 cosvro/Z/_L dp oSt — sintro/2 Rey(—ip),
(4.106)

where the second equality follows from the fact that
Rey(ip) is an even function of p with no singularities

on the real p axis. ImP{-14p) is an odd function of p with
a pole with residue -1 at p=0. Hence

, cashmp
2 coswo/ Z_A dp cosh®mp — sin’no/2

= 2mi cosma/2(1 - sin®ra/2),

Imy(- ip)

(4.107)

where the contour of the integration £ is the real p axis
from - = to ~¢, a semicircle lying in the upper half-
plane centered at the origin with radius ¢, and the real
axis from +¢ to + =, The limit ¢~ 0" is then understood.
Multiplying (4.107) by +¢ and adding the result to (4.106)
we have

coshmp

ndp Y= ip) Coshzﬂp - sintno/2

L 2£_ (l+sinﬂ0 2)

2 cosno/2

T oo do 1 ~sinno/2/° (4.108)

The integral

coshmp
cosh’mp — sin®na/2’

{4.109)

can be evaluated by applying Cauchy’s theorem to

2 cosmo/2 / dz P(— iz)
Cr

Jy=2 cosna/zf dp (= ip)
Q

coshnz
cosh?nz — sin’no/2’

(4.110)

where the contour Cg is shown in Fig. 34. Letting R
— % jn (4.110) resuits in

Jy = zp(l——'-g—g) + w(_l;_o_) - mcosno/2(1 - sin’n0/2).
4.111)
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Hence from (4.108), (4.109), and (4.111)

1+0 1-0\ 4, [1+sin’0, z)
_L__zp( ) z})(——z-—) +d?1 (W . {¢.112}

Since I, (t=0) =0 it follows from (4.112) that

1+0 1- o) 1 +simra/2)
I;=21n F( 5 ) 21n1"( 5 +1n(1—simr0/2 . (4.113)

The evaluation of I, is similar., We have for v>0

ol - . coshmp
it A -
0 = 00516/2]; dp Y - ip) cosh®mp — sin’no/2’

(4.114)
since Imy(v - ip) is an odd function of p with no singulari-
ties on the real axis. We again use the contour of Fig.

34 (the semicircles are no longer necessary) with the
result

,aa_ll — zzp(l to +v) -%zp(v+1———é—g)+% cosmo/2

% © dp coshmp
.o V+ip cosh’mp - sin‘mo/2"

The integral appearing in (4.115) is unchanged if we re-
place (v +ip)! by (v-ip)'. Hence

ol 1+0 1~
222 - z
e Zz;)( +V> zzp(v+ 5 )+2coszo

(4.115)

« 9 2xa1 coshﬂp
X.[- dp W* +p°) coshimp — sin‘ra/2" (4.116)
Integrating (4.116) [I,(c =0) =0] we have
IZ:—ln(lzo+v)+1nl"(1;°+v)-13. (4.117)

It follows from (4, 105a), (4.113), and (4. 117) that
B(o,v) is given by (1.12), The small-f behavior (1.17)
of the functions gy, {f; ¥) now follows from Theorem 3
and Eq. (3.5).

1. Small-t behavior of n{t/2; v,\) for A = r™!

As ¢—1 (A —7!) we have from (1.12)

B(o,v)=b_y(1-0)2+b_4(1 =0)" +b,+0(1 - 0)

(4.118a)
with
bo=3%v, (4. 118b)
by=3vIm2-3vplv+1)=yv+ 1, {4,118¢)
-R+i — R+i
4
-R R
FIG. 34, Contour Cp used in (4.110) and (4.114),
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and
by =+(In2)%v = 3v In2[P(v) + v + 1) + 4y]
+7rv {o) +pw + DR+’ +1) = p' )}
-2y + (v +1) +9%w, (4.118d)

We now use (4.118) in (4. 4) [also use (4.5)] and re-
call that there are no terms of the form "™ for » > 3.
The limit 0~ 1 exists with the result that for £—~ 0 (along
positive real axis)

n(t/2; v, 1)~ 53t {v In* = C(v) Int +1/(4)[C2(v) - 1]},
(4.119)
where
Cw)y=1+2/[3In2-2y= (v +1)].
We note that lim,_ ,(4v)"[C*(v) - 1] =3 In2- 7.

The correction terms to (4.119) are most easily de-
termined by using the differential equation (1.3). For
example, for the special case v =0 we find**

(4.120)

n(e;o,r‘)=_esz- (8523 892 +4Q <~ 1) + 0(8%9%),

128
(4.121)

where Q= In(6/4) + 7.

The case A>1/7 can be similarly examined. We write
for real positive p

A =(1/7) cosh(mp), (4.122)
so that [see (1.10)]
o=1+2ipn. (4.123)

We examine here the case v=0. Then using (4.123) in
{1.11) for v=0 we see that (4. 4) becomes for u >0, ¢
—~0*

n(t/2;0,2) ~le-t sinh(rp) ImiT(= ip) expl2ip n(t/8)]}.

(4.124)
iIf we write
T(iy) = |T(iy)| explio®)]
T 1/2
=[m] explip(y)], (4.125)
then (4.124) becomes (1 —~0, u>0)
n{t/2;0,2)~ - —-tsm[2u In(t/8) +2¢(w)]. (4.126)

Thus for A > 7! there are an infinite number of zeros of
the function n(t/ 2;0,)) lying on the positive ¢ axis with #
=0 being a limit point of these zeros. The asymptotic
spacing of these zeros follows from (4.126), The correc~
tion terms to (4.124) [or (4.126)] can be found from the
differential equation,

The case A <0 can also be studied. From (1.4) and
(1. 5) it follows that

(4.127)

t/2; v, - ).):Wzl;—v-,—i—) .
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Hence we see that for A <— 7=, 7(¢/2; v, ) has an in-
finite number of poles clustering to zero on the positive
t axis.

V. THEOREM 4

We commence the proof of Theorem 4 by using (1. 4a)
to rewrite the left-hand side of (1.14a) in terms of G as
© 2(4r 21814
I_GZ -1/2 ’ r[G (t)_G (t)]
1-c*®)] expft dt {t =

2v

+1—_—62'(—t'—) B (5.1)

where G’(t) = (d/dt) G(t). The first factor may be written
in the form

[1-GHe)] 2= exp(— 0

4 26067 )) (5.2)

A rparermy

and therefore Theorem 4 is established if we can
demonstrate

S o AIGHE) = Gt
_g)\zfz"(tv) f dt{ o

t1Z G’(t')} .

_G@G'E)

1-G*(t")
(5.3)
Furthermore, because fy,(f;») and G*(f) vanish exponen-

tially rapidly as £ =« (5. 3) will be demonstrated if we
can show

S aner (0.7 UGHE) = GA(1)]  G(HG'() 2v
ZE A inltiv) = T-cF ~“[-c6¢%n]  1-G)
(5. 4)
or, using the differential equation for G(¢) (2.7
(1= G2 E A () =GA(1 = G'1) - GG*(1 - G?).  (5.5)

Here, all factors of ¢ have been removed by use of the
differential equation.

To demonstrate (5. 5) we first define in analogy to
e (1.6D)

Fypey = (= I)M'/; dyl"'[

kel
AY 3pet I'I

exg(-— ‘
(’VJ -1)

1 v 2k 1 k!‘
Y=Y 1 —0m— T1 (9%, ,-1).
x(y,+1) s VitV gmt Phoe (5.6)
Then it is seen from the definition (1.13) that
fZ”nS?’—? Eatn-ne1 Pag-te (5.7
Thus, if we define
H(tv, ) = 231 A2, s (5.8)
na
(5. 5) reduces to
(1-GYH=6(1-G"?-G"(1-G) (5.9)

and therefore our theorem will be proven if we can
demonstrate that

- (G=G")=G¥" -GG +2G*H ~ G*H. (5.10)
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The coefficient of A2™! of the left-hand side of (5.10)
is

h2ml = (an-rl ‘gélml)

L 2nel -
=(_ l)mI[ dM"‘_[ dy2n+1 n 6(3xp( ty’

yj_l)

2n
7 A 1 l'I( 1)
x -
(y,+1) i=1 +¥im y2jl

:1

n 2nel
+H(y§,«—1)[ (2 y,«) ] . (5.11)
=t 21
Rewrite the term involving (Zy,)z, using
”n n
23 (¥25u1 +925) 27 (o0 +Y g0at)
#=1 B=f
1 2n+1 2 n
=3 {(Ey,) + 2793 = 25 v (5.12)
i= 1=1 1=1

to obtain for the term in brackets

n+l n %1 2
jfll(y%/-1—1)+f}1(y§,—1)[1-( y,) ]

=1

n+l n n
=11 (5ha- 1)+ 11 (53 1)[2 (53~ 1)

1 n n
- (31.4-1) = 2?2“’21-1 +y”)Z; (yan "“yzm)]-
= = &=

(5.13)
Then use the identity
n nel
Xy Xgeor Xopy + Xy X0 in[’z_f Xor~ tzz XZl-l]
n
== 2 gy = X3y) 22 Con=Xoaa)
IE) P}
XTI Xy I Xy, 1 H Xa; (5.14}
l=1 lz= Bl 23
with
X;=yi-1 (5.15)
to obtain

h2n¢1 - (an#l —gZI:uj,) = (_)n’l . dyl i dy?rui

2m+d VY 2
-ty,) (9,1 1
x I [—,——,-;rexp( ( 2 )] y
= lyi—1) y;+1 =1 Yi TV
n

LG n
X + + -2 2 _
§§ (2421 +2y) kaZj (922 + Yoret) { I (-1

= (Y251 = Y20V 2n = Y2un1)
=1 2 k=1 . n .
X I (yle-l) I (y212¢1_1) n (3’213-1) .
ll: lzsj lsakol (5- 16)

The first term in brackets in (5.16) gives the term
2G’H in (5.10) and we note that after we expand the
product

(9251 = Y2125 = Y 2041)

=Y251(Var=Varet) = VasVor + 925 V200t (5.17)
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that the first term on the right-hand side vanishes when
used in the double sum over j and % in (5. 16). Moreover
we may rewrite y,;¥,, using

2k 2
=]
=24
kel ]

=YY+ ?J; (Y2 +92101) +y2 XE“(yzz-x +¥a1)

+Z; (J’zx +yzx,¢1) Z; (3’212-1 +32,)
=iyl

n
+ 25 (yy, +9 n)é (92151 +y2,) (5.18)
=i 1 1 Iysi

and obtain
Ropey - (and _gZHrul) =(~ 1)”’1_[ dygee- Y gn41

« Tl expl=tyy) (21—_1> q 1
=11 € y;+1 =t Vi +¥im

yi=1)

n n n
xzz (92441 +y2,)2 (Yor +Vara1) {_ 2}:[1 (4-1)
J= k=F =

+ n (yzl -1) n (y2x+1*1) H (yzz -1)
11- 13-"20

Bal

28 2
Xl:"yuyuow(?%!yz) =Yy IZB (21 +¥2101) = Yar

1] n I3
XZ (J’zz-i +y21) - E (921, +y20001) ) Zx; 1(3’212-1'*'3’212)
2= 1'

(5.19)

We note that the terms mvolvmg 925 23 (F21 + Yaray) and
Yor 241 (Y211 +3;) are equal and we eliminate Y9y and
Y2re1 USINg

28 3

- zE Va1 +y2,1,1) E (J’zxz-t +y2,2)]}'

Yoy = EJ’z— 2 CZIRE LTI (5. 20a)
1=2§ i=j
and
2+l n
Yore = i V= 27 (y21 +92141)- (5. 20b)

1=2ke1 I=hel

Therefore, upon combining terms we find that

Manet = (G2ne1 = Gonet) =f dy* s AYone

mllexp(=tv,) (9,-1Y ]2 1
I —7———-{-'}2 4 I1
X J=l[(yl- 1) Y+l ] 19+ ,a

n n
x ;; (= 17200 +925) 22 (= 1™ (935 + Y g001)
= k=4

n F-1 =1
X{Z(-l)""" I (y},-1)+ 1 (53, 1) TI (33, ,,-1)
1=1 1g=1 1 1ya4 2

x ﬁt< 1) [(-1)~-f(2y,)

Igake 1=24

—1)*f 2 Yy

14=27

x Z; Vi, = E (= 119 (y9, +921,49)
1ys2kel 142 t !
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Variation method and nonlinear stability problems
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The direct variational method, developed for studying the asymptotic behavior of a wide class of nonlinear
oscillation and wave problems, is extended to the study of the nonlinear stability problems. For systems
which are unstable against small disturbances but stable against finite amplitude disturbances, the

variational method can yield significant results in regimes even far away from the critical region. The
procedure of the variational method is illustrated by applications to various physical problems: the Duffing
oscillation, a model wave equation for an unstable mechanical system, the two-stream instability in plasma,

and the nonlinear Kelvin-Helmholtz stability problem.

1. INTRODUCTION

An approximate, direct variational method has been
developed to deal with a class of nonlinear oscillation
and wave problems."3 The method starts with reformu-
lating the problems by equivalent variational problems,
then some judiciously chosen asymptotic trial solutions
with adjustable parameters are directly substituted in
the variational formulation to be varied. The basic idea
underlying the method is to make use of as much prior
information and expectation as possible and incorporate
them into the form of the trial solution. Thus it is ex-
pected that the system of equations governing the ad-
justable unknown parameters would be much simpler
than the original problem. In dealing with nonlinear os-
cillation and wave problems, we have been mainly
interested in the asymptotic oscillatory solution, There-
fore, approximate solutions for the amplitudes and
phases can be obtained by singling out the secular terms.
In other perturbation methods which deal with similar
problems, the lowest order solutions usually turn out
also to be oscillatory or sinusoidal.? It is thus not sur-
prising that results obtained from the variational meth-
od are essentially in agreement with those obtained
from other methods.

Now when the system is stable against small pertur-
bations, small disturbances will usually manifest them-
selves as oscillations or waves. As the amplitude in-
creases beyond the linear regime, nonlinear interac-
tions will enter to modify the solution. However, if the
nonlinearity is relatively weak, it is expected that the
basic oscillatory behavior would still persist, while the
amplitudes and phases of the basic oscillation may evolve
and become related to each other. But the process of
this evolution would be slow in comparison with the
basic oscillation. Thus the nonlinear solutions are es-
sentially a perturbation of the basic linear solution.

The situation is quite different if the system is unstable
against small perturbations. In that case, a basic linear
solution does not exist to begin with. Therefore, the
perturbation methods are usually limited to dealing with
the evolutionary process in the neighborhood of the cri-
tical region which is the border between linear stability
and instability.

In many physical problems, although the system is
unstable against some small perturbation, it may be
stable against finite perturbations. In other words, when
the small amplitude oscillations or waves grow due to
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instability to certain finite amplitude, the oscillations
or waves would settle down to some oscillations and
waves with relatively slowly varying finite amplitudes.
Thus an asymptotic oscillatory solution does exist even
though the linear problem is unstable, It is clear that
the variational method we have developed is also capable
of dealing with this class of nonlinear stability prob-
lems. As in previous studies, we shall again use
specific examples to illustrate the procedure of the
scheme. It is to be noted that the method is still being
developed, while the problem of nonlinear stability is
extremely intriguing. Therefore, the results we ob-
tained from the various studies may raise more ques-
tions than answers, It is hoped that more and more can
be learned from these practical applications to concrete
problems.

In the following, we shall first treat a Duffing type
oseillation problem, then a model wave equation for an
unstable mechanical system to illustrate in detail some
basic features of the nonlinear stability problems, Then
we shall apply the same method to two-stream stability
problems in plasma and the nonlinear Kelvin—Helmholtz
stability problem.

2. DUFFING STABILITY
Consider the Duffing equation

d*u

EF——au+m3=0, (2.1)

where a and 7 are real constants. When =0, the solu-
tions of the linear equation are given by expft Va #}.
Thus the linear system is stable if a< 0 and it is unsta-
ole if > 0. However, it may be readily seen that the
solution of the nonlinear equation is always bounded for
r>0.

Equation (2.1} can actually be solved exactly, Multi-
ply (2.1) by du/dt and then integrate; we obtain

2
(g—) =F(u), (2.2)
where
Fu)=C + aw® - (/2) u?, (2.3)

and C is an integration constant which is the value of
(du/dt)* when u=0.

Solutions are permitted only for F(x) > 0. Since F(u)

—~x%, as lul— for » £0, thus the system is stable,
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i.e., u is bounded if and only if »> 0. Therefore, even
if >0, i.e., the linear system is unstable, the non-
linear system is stable so long as »> 0.

Take the case that a> 0. F(u) can be schematically
vepresented by Fig. 1. Fig. 1(a) represents the case
€> 0, Fig. 1(b) and 1(d) the cases C <0, and Fig. 1(c)
the case C =0, Note that the maxima of F(u) are located

at u=+Va/r.

When C > 0, the solution is oscillatory. The maximum
amplitude #, is given by the zero of F(u). The system
pscillates between #; and (- #;). The period of the oscil-
Jation T is given by the relation

T du
T=2 ). Nk (2. 4)

Thus the amplitude and frequency of the oscillation are
in general related to each other, and the maximum
amplitude %, > Va/7, which cannot be made as small as
we please.

For C =0 [Fig. 1(c)], it represents the degenerate
case that the period of the oscillation becomes infinite.
Thus the oscillatory solution degenerates to a single
pulse.

When C < 0, then %(f) never changes sign. If IC/ is
very large [Fig. i(d)], then there is no solution. When
IC1 is small enough, two possible oscillatory states are
possible, either u(f) is always positive or always
negative,

The detailed motion of the system for this particular
problem can be expressed in terms of elliptic functions.

This problem is equivalent to the variational problem
that the functional

- LB
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a 2 Y 4
+oul-u ]dt, (2.5)

1084

is stationary. Now let us take a trial solution of the
form

u(t) =A(t) sinwt + B(t), (2.6)

where A(¢#) and B(f) are both slowly varying functions of
time, Let us substitute (2. 6) in (2.5), making use of the
slowly varying nature of A and B, then as we have done
in previous studies, and particularly in the previous
study of the Duffing problem. we obtain

t 2
— 1 dA _]; 2 2 _3_ 4 _3_ 2n?
J—fo[ ( )+4(w+(1)A—32'rA—4rAB

a\dt
1{dB\* a _, 7 _,
-+ E(a—) + 2 B¢~ Py B*|dt. (2. 7)

The Euler equations obtained from variations of A and
B are

d*A

e {(wt+a2)A +%TA3+3TBZA:0, (2.8)
and
2
%}g —-aB+vBY+3vA’B=0. 2.9)

Since A(f) and B(f) are slowly varying functions of
time, thus as a first approximation, the terms d*A/d#
and &°B/d#* can be neglected, and we have

Al37(A%/4 +BY) - (Wi +a)}=0
and
BrG A +BY -al=0. (2.11)

One solution is A =0, then B=0, or B*=a/r. These
are also the equilibrium solutions from the original
equation (2.1), The former corresponds to the degen-
erate case depicted in Fig. 1(c), while the latter corre-
sponds to another degenerate case when the maxima of
F(u) touch the u axis. From Eq. (2.9) or (2.1), we can
infer that the former is an unstable equilibrium while
the latter case is stable.

{2.10)

Now w has been implicitly assumed to be real. Other-
wise, the averaging scheme cannot be carried out. Thus

for A+#0, it is necessary that
37(A*/4+BY) = a. {2.12)

This is the criterion of nonlinear stability. Then the
nonlinear frequency relation is given by

w?=37(A%/4+ B*) - a. (2.13)
We can again distinguish two cases.
(i) B=90
Then (2. 12) and {2.13) become
A= 4a/37, (2.14)
and
w?=37A%/4 - a. (2.15)

The solution corresponds to the case depicted in Fig.
1(a). A is now identified with the maximum amplitude
uy, the stability criterion (2. 14) is consistent with our
previous estimate of the lower bound of %, while the
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frequency relation (2.15) is an approximate representa-
tion of (2.4).

(ii) B+0
Then (2. 11) yields
a=r@G A*+BY),
and (2. 13) becomes
B’z a/5r>2A? and w?=7(2B%-3A%),

This solution corresponds to the case depicted in Fig,

1(b).

3. HARMONICS AND SUBHARMONICS IN WAVES
Let us now take a trial solution of the form

u(f) =A(t) sin(wt) + B(¢) sin(pwt), (3.1)

where p#1 is some positive real number, It is hoped
that this trial solution could better represent the solution
as depicted in Fig. 1(a). A more realistic representation
would be

uli} = A(f) sin{wt + 8(2)) + B(t) sin(pwt + v(2)), (3.2)

as in a previous study.? A completely analogous develop-
ment can be followed for the present stability analysis,
In the previous study of the problem of forced oscilla-
tion, it is found that if the system is dissipative only the
subharmonics and harmonics of order three can persist.
Furthermore, 6 and v can be taken to be zero if the dis-
sipation is small. For the present problem, oscillation
cannnt persist indefinitely for this free system if any
digsipation is present. Therefore, it is not feasible to
consider the corresponding problem with dissipation,
However, it is also expected valid that the dominant
interactions are among the subharmonics and harmonics
of order three. Therefore, we shall only consider the
cases p=3% and p=3.

Take the case p=3. The Euler’s equations obtained
from variations of A and B are then?:

d*A

E—ty—(w2+a)A +3rAS+3rB'A=3rA"B, (3.3)

d*B 2 3, p3 ., 3. 42 1,43

??-—(Qw +a)B+37rB*+37A'B=7A° (3.4)
For the case p=3, we have

d*A 2 3 43,3 p? 1,.p3

E‘T_(w +a)A+37A°+iyB'A=17B’ (3.3")

d’B 2

ar " (%— +a)B%rB3 +3yA’B=3rAB?, (3.4%)

Thus if {4, B;w} characterizes the equations (3.3) and
(3.4), then the equations (3. 3’) and (3. 4’) are charac-
terized by {B, A;w/3}. Therefore, these two sets of
equations are completely equivalent, and it is sufficient
to treat equations (3. 3) and (3. 4) only. Since A(#) and
B(t) are again slowly varying functions of ¢, the terms
d*A/df* and d°B/df* are neglected, and we obtain

Al(w? +a) - § 7(A* + 2B - AB)] =0, (3.5)

(9w? +a) B ~ (»/4)(3B% +6A4%B — A%) =0, (3.6)

Let us now discuss the various possible solutions.
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(i) A=0

Then only the B mode exists. If we write v=3w, Eq.

(3. 6) becomes
(#+a)B-3rB*=0, (3.7)

which is exactly the same as the case (i) treated in
Sec. 2, The stability criterion is, as before, given by

B> 4q/37. (3.8)

The fact that A =0 is a permissible solution implies that
subharmonic generation is not necessarily required.

(ii) If B=0, then it is necessary that A =0. In other
words, if A#0, then B#0. Thus a harmonic of order
three will always accompany the fundamental mode.

(iii) A #0
Then we have
W?=37(A'+2B*-AB)-a
=(r/36)(3B% +6A* - A%/B) - a/9. (3.9)

Since w? has to be positive, it is necessary for stability

that
A+ 2B — AB > 4a/3r, (3.10)

and

B?+24% - A’/3B = 4a/37. (3.11)

We can take A > 0 without loss of generality, then it
may be seen that it is favorable to stability for B< 0.

Now Egs. (3.9) can be rewritten as

w? = (rB*/32) G(A/B), (3.12)
and

a=(rB%/32) F(A/B), (3.13)
where

Flx)=%°+21x% — 2Tx + 51, (3.14)
and

Glx) =~ (x® - 3x% - 3x + 3). (3.15)

Thus the stability criterion can be represented by
G(A/B)> 0, (3.16)

while the amplitudes A and B are to be determined by
the equation (3.13). Thus once any B is chosen, then
equation (3, 13) will determine A. The number of possi-
ble solutions are either one or three. Whether any of
these solutions are permissible is to be checked by rela-
tion (3. 16), and the frequency w is in turn determined
by Eq. (3.12). Figure 2 represents the curves F(x) and
G{x). Thus G(x)> 0 only if

0.66<x<3.6 or x<-1,26.
So the stability criterion requires that
0.66<A/B<3.6 or A/B<-1,26, (3.17)

In order that Eq. (3.13) be satisfied, we can see that
there is a solution only if

32a/rB%< 1809, (3.18)
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Then there is at least one solution. In fact it may be
seen that, there are two solutions if 273 <32a/7B?
<1809, or 42.6< 32a/rB*< 116, and three solutions if
116 < 32a/¥B* < 273, and one solution if 32a/7B?< 42, 6.

These results can be interpreted in the manner of
harmonic and subharmonic generation. When lA/B|>1,
we can interpret w as the fundamental frequency and
regard it as harmonic generation. On the other hand,
when |A/B|=0(1), we may interpret 3w as the funda-
mental frequency and regard it as subharmonic genera-
tion, while relation (3. 18) gives the threshold amplitude
of the fundamental mode for stability. However, viewed
with our knowledge about the exact solution of the prob-
lem, these interpretations are rather artifical. Indeed,
given a and 7 of the system, the solution is determined
completely by the initial conditions, or alternatively de-
termined by the maximum amplitude, or some other
parameter which characterizes the average amplitude,
e.g., average energy. The values of A, B, and w, given
by Egs. (3.12) and (3. 13), are then the best values if the
exact solution is to be approximated by the two term
representation (3.1). The case (i), for which A=0, is
the best result for the one term representation.

In general, the more terms we take in the represen-
tation, the better is the approximation. However, with
the exact solution as the guide, it becomes clear also
that when IA/B[>1, the two term representation will
differ little from the one term representation. There-
fore good approximation can already be achieved with
a one term approximation. It is only when |A/B|=0(1),
that the two term representation is significantly better
than the one term representation. Only then may it be
necessary to consider the representation with more
than two terms, This may indeed be the case in the
neighborhood of the critical region when w= 0, which
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corresponds to the case as depicted in Fig. 1{c). The
exact solution for that case is a periodic succession of
intermittant pulses.

One way to rule out some of the multiplicity of possi-
ble solutions is to go back to Eqs. (3.3) and (3.4), and
study the stability of these differentiai equations about
these possible solutions with constant amplitudes. Then
it can be found, the solution for case (i) is always
stable, i.e., the representation by a single mode is al-
ways good in some sense. On the other hand, for case
(iii), the constant amplitude solution is stable only for

1.8<A/B<3.61,
Therefore, only one solution is permissible when

76.2 < 32a/vB? < 2173.

4. AWAVE EQUATION

Let us consider a model wave equation in the follow-
ing form:

{(4.1)

where v, a, ¢, and 7 are all real constants. The iine.r
system with =0 has been discussed by Sturrock.® 1t

is evident that this equation is a generalization of the
Duffing problem of oscillation to wave propagation.
Some of the results we obtained in the previous two sec-
tions may thus be applied to this system with slight
modifications.

Ugp + 200y, + (0 = ) Uy = au + 11’ = 0,

Let us first consider the linear case when »=0. i{ we
assume a solution of the form expli(kx + wf)], theq the
dispersion relation is readily found to be

(w+Ev)?:=cik -a. 4, %)

Thus the system is stable for a<0. When a> 0, one of
the modes is unstable in the interval,

k] <Va/e,

where ¢ and Ya are taken to be positive,

(4.3)

It may also be seen that® the system exhibits absolute
instability when ¢ > lo!| and convective instability when
¢ < ivl, since the characteristic velocities of the sys-
tem are — v+ c¢. Thus they are in different directions
when ¢ > |7} and in the same direction when c <lvl, An
initial pulse of compact spatial support will spread and
grow in amplitude in both cases. However, for the case
¢ < |v| the amplitude at any fixed x will die out for large
¢, i.e., the instability is convective. For periodic wave
trains, the distinction between absolute and convective
instabilities is not as noteworthy.

When > 0, we expect that the instability of the linear
system would be stabilized by the nonlinear effect, and
waves with finite and slowly varying amplitude would
persist. We shall again apply the variational method to
this problem.

The functional corresponding to Eq. (4.1) is
J= j;t dt [7 el + 20up, + 07 - Pl + aut ~ (r/2)u)dx.
(4.4)

As in the Duffing problem, let us consider the trial
solution first in the form

Din-Yu Hsieh 1096



u(x, ) =Alx, t) sin{S(x, 1)) + B(x, 1), (4.5)

where A and B are slowly varying functions of x and ¢.

We shall also denote
w=S8, and k=S, (4.6)

and they are also slowly varying functions of x and ?.
Following the procedure we used before, we obtain

J=[*at [7 334} +30'A + B}
+v(A, A, + wkA? + 2B, B)) + (% - c)(3 AL + 3 F*A%A’ + BY)
+a(3 A+ B?) - (v/2)(3 A* + 3A’B? + BY)]dx. (4.7)
The Euler equations from variations of A and B are

Ay +20A,,+ (08 = ) A,y - [0? + 200k + (¥ ~ V) P +a] A

+37A%+37AB =0, (4.8)
and
B, +2vB,+(* = c*)B,, - aB+vB*+3 yA'B =0,
(4.9)
while the variation with respect to S leads to
(wA?2), + v[(wAD), + (RA2),] + (¢* = ¢?)(RA?), =0. (4.10)

Since A and B are slowly varying functions of (x, ), the
second derivatives of A and B will be neglected in (4. 8)
and (4.9), and we have

Al(w +Ev)* +a - B - 37(AY/4 + BY)] =0, (4.11)
and

Blr(3 A’ +B?) - a]=0. (4.12)

These equations are similar to Eqs. (2.10) and (2. 11).
As before, one permissible solution is A =0. Then we
have B=0, or B?=a/r, which represent constant states.

If A#0, then we have

(w+Ev) =c?k* +37r(A/4+ B%) —a, (4.13)
thus the system is stable for all & when
37(A%/4+BY) = a. (4.14)

The last relation implies that the system can be com-
pletely stabilized when the amplitude is large enough.
Now for any particular mode with finite k&, the stability
condition need not be so restrictive. It could be replaced
by

37(A%/4 + BY) = a® - ctRl. (4.15)

When the stability condition is satisfied, then Eq. (4.13)
gives the nonlinear dispersion relation for that mode
of the wave.

As before, we again have two cases to consider. Let
us first consider the case B=0. Then Eqs. (4.13) and
(4. 15) become

w=- ko [c?B? +3rA2 - a]'/?, (4.16)

and

SrAtza- Rt (4.17)

Thus for those # such that k<vVa/c, the amplitude
of the wave has to exceed certain values as given by
relation (4.17). From the dispersion relation (4. 16),
we can also obtain the group velocity
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It is of interest to note that, if we take w and 2 as con-
stants, Eq. (10) leads to

(w+Ev)A, +[wv+k(? - c)]A,=0

(4.18)

or

A,-c,A,=0, (4.19)

where

ooyt c’k
e=—v ckz-!-:;'rA!—a[l ’

after using Eq. (4.16). The last result is consistent
with (4.18), if we set dA/dk=0. For 7A’>a-c, A
can indeed be considered as independent of k. However,
at the critical amplitude 3 7A?=a - ¢*#?, the term dA/
dk has to be retained in order to avoid the singular be-
havior of the group velocity. At this critical amplitude
we have

(4.20)

w=-kyv andd—wz-v. (4.21)

dk

Let us also note that for the linear case, for k<Va/c,
the growth rate of the instability as given by Eq. (4.2)
is

w;=(a-c )2 (4.22)

and w; has a maximum at £=0. It is interesting to see

that, if we vary with respect to w and & the functional

given by Eq. (4.7), we obtain
w + kv =0 (4. 23)

and

(4.24)

In conjunction with (4.16), Eq. (4.23) will imply that

the amplitude be the critical amplitude, while Eq. (4.24)
then gives k=0, i.e., the mode that corresponds to
maximum growth from the linear instability.

wv+Ek(v? - c?) =0.

The physical picture which emerges from the above
analysis may be put in the following manner. For an
initial small pulse given initially by

ulx,0)= J,~ a,explikx)dk, (4.25)

with u,(x, 0) such that only one branch (say the + branch)
of the solutions as given by the dispersion relation is
present, we expect that for large ¢, the solution is ap-
proximately given by

ulx, )~ fow A(R) expli(ky + w(k) 1)] dk, (4.26)
where
~ 2,2 i
Ak)=a,, w(k)=-kv+[c¥?-a), for kB—E— ,  (4.27)

and

v
Ar)= -3-4; (a-c*%), w(k)=-kv, for k< —f— . (4.28)
On the other hand, if we attempt to represent the
asymptotic solution by a single mode, then the mode
with 2=0 would give the best representation,

The case with B#0 can again be analyzed in a similar
manner, Using (4.12), relation (4. 15) gives
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Als 1;5;; (2a + c*R?),

The value of B is more or less determined by the initial
condition, and hence can be considered as given. In
order that all 2 are included, it is necessary that

Bz a/57.

Then A is given by Eq. (4.12), and we can proceed as
in the previous case.

5. HARMONIC AND SUBHARMONICS IN WAVES

As in Sec. 3, let us now use the trial solution of the
form

u(x, £) =Alx, 1) sin(S(x, 1)) + B(x, £) sin{pS(x, 1)), (5.1)

We shall again take p=3 or p=4, and it is sufficient
as before to consider only the case p=3. Substituting
(5.1) in (4.4), and carrying out the usual procedure,

we obtain

J=[tat [T

$3(AY+ WA + B +90'B%) + 0(A,A, + wk A

+ B,B_+ 9wkB?) + 3(1? - c*)(A2 + kPA% + B? + 9k*B?)
+(a/2HA* + BY) — (r/2)3 A' + 3 A’B + § B - 1 A%B))dx.
(5.2)

The Euler’s equations from variation with respect to
A, B, and S are

Ay +20A,+ (P - A,, - [+ 200k

+(vz—cz)kz+a]A+i—T(A3+2ABz—AzB):O, (5.3)
B, +2uB, + (W =c))B,, -9 (w2 + 20wk

+ (=) R+ 9>B+—(3B3+6A2 -AY=0, (5.4)
and
[(A? +9B%)(w + k)], + [(A? +9B?)(wv + kt? - kc?)], =0.

(5.5)

If the second derivatives of A and B and the first deriva-
tives of w and k are neglected, then we obtain:

Afl(w + kv +a— '] - (3v/4) (At + 2B® - AB)} =0,
[(w + kv)? +a/9 - c*k*] B - (r/36)(3B* + 6A’B - A%) =0,
(5.7)

(5.6)

and

(w + ko) v - BC?

w + kv (5.8)

(A +9B%), + (A’ +98%),=0,

Like the case treated in Sec. 3, among the permissi-
ble solutions, if A =0, then it reduces to the case treat-
ed in Sec. 4; if B=0 then it is necessary that A =0 also.
The more interesting case is that in which both A and B
are not vanishing, and we have

(w + v} =(37/4) (A + 2B* ~AB) +c*k* - a
= (r/36B)(3B°%+ 6A2B — 4%) + ¢2k% - a/9, (5.9)

or
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(W +Ev) = + 2o G(A) ,

32 B (5. 10)

and
_ rB? A)
=53 F (B
where F{x) and G{(x) are the same function given in
Sec. 3.

(5.11)

Again, Eq. (5.8) can be written as
(A>+9B?), - c, A, =0,

where

1/2
Cg:g—-;):—viczk/[czk2+—3—2— G(A)] . {5. 12)

As in Sec. 3, the permissible values of A and B are
nonunique. Here we may interpret this intriguing fea-
ture in the following manner. We are trying to approxi-
mate the true solution by “best” representations in
terms of Fourier modes. More than one representation
can be “best” in comparison with its neighboring rep-
resentations in the sense of the variational method.

These harmonic and subharmonic generations may
serve as 2 mechanism to transfer energy from one part
of the spectrum to others. It is evident from the possi-
bility of these harmonic and subharmonic generations,
that the details of the asymptotic solution for an initial
pulse are indeed extremely complex. Conceivably, three
or more term representations of the solution will yield
even more complex results. However, in the spirit of
the approximate variational method, the results obtained
so far have enough information on the gross features of
the problem for us to pause and analyze the implications
in conjunction with observations in various physical
problems.

6. TWO-STREAM INSTABILITY

Let us consider a multicomponent plasma, consisting
of electrons and ions, coupled only through the self-
consistent fields. Then the basic equations are as
follows:

avy

1 1

- -~ X _
i +(v;°V)v, = ‘(E+Cv, B) o vy, (6.1)
%’,:1 +V < (n,v,) =0, (6.2)

47 1 3B

VXB=-"Jd+- =5, (6.3)

1 2B
VXE=-_ =, (6.4)
J:Z‘) e vy, (6.5)

where e, denotes the charge, m, the mass, v, the
macroscopic velocity, n; the density, p; the partial
pressure of the ith constituent, and E, B, and J are the
electric field, magnetic field, and electric current, re-
spectively. An equation of state to define p; will also be
needed, which we shall take as

oU
pi=myn} —

vl (6.6)
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where U;(n;, s;) is the internal energy of the ith species.
We shall consider the case that the heating of plasma
is negligible, and that the entropies s; are constants,

If we introduce the scalar and vector potentials ¢ and
A such that

1 9A

= - —_—— — = x .
E Vo T B=VXA, (6.7)
then Maxwell’s equations (6.3)—(6.5) become
1 %A 4r
A - == — .8
VA '(‘;7 ?tz' s J, (6 )
1 9
vig - =4 —a‘g =—4“? e ny, (6.9)
when the following gauge condition is used:
veA+o 2 aq> (6. 10)

It can be readily verified that an equivalent varia-
tional problem to what is formulated above is that the
functional

o [ [ el e

N emn
+‘{[, [——2‘ Lvi o mm U — e+ ——‘-:: v;*A

+ay (aat +Ve (n,v,))]}

is an extremum, subject to the subsidiary conditions

= (VXA
1T

1oAY
c ot

(6.11)

oy

37 +V'(n¢V¢)=0.

(6.2)
The variables to be varied are n;, v;, ¢, and A, and

o, are the Lagrange multipliers. Equations (6.8) and
(6.9) can also be obtained, if condition (6.10) is
imposed.

Let us now consider a plasma which consists of elec-
trons and an ion background which is uniform and
stationary. The electrons are, however, divided into
two beams in the primary state. Therefore, we can
consider the plasma as composed of three species, with
species 1 and 2 to designate the two electron beams and
the species 0, the ion background. Thus, we have

€g=€y=—¢€p=—¢,
Oty +my) =ng =Ny,

where m is the electronic mass, e the absolute value of
the electronic charge, N, the background ion density,
and the mass of the ion is taken to be infinitely large to
make the ion background stationary. The last equation,
in which () denotes the spatial average, is the condition
for the over-all neutrality of the plasma.

my=my =m,

vy=0, my=, (6.12)

We shall consider only the one-dimensional pattern.
Therefore, everything will depend on x and ¢ only. Then
the magnetic field does not play a role at all and we
can take A=0. Thus the functional I becomes

S T () e
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+E[ nvi— mn,U,+a,(a +v- (n,v,))]}dx.
(6.13)

The primary state which describes two electron
beams moving uniformly with velocities V| and V, rela~
tive to the ion background is given by the following
solution:

0=V, 5=V, n=N, m=N, N+N=N,
=0, a,:mV,x-%V‘%tan, azszzx-—%VétEazo.

(6.14)

1t may be pointed out that the Lagrangian multipliers
a4,2 play the role of the velocity potential as revealed
from the equation obtained from the variation of I with
respect to vy, ,.

The internal energy functions U; are of the form

vl
_ KT, ﬂ)
: m‘('y—l) N‘ 4

where K is the Boltzmann’s constant, T; is the equilibri-
um temperature of the fth species in the primary state,
and 7 is the ratio of the specific heats. For the electron
plasma under consideration, ¥ is taken to be 3.°

(6.15)

Now let us take the trial solutions:

vy =V + vyy(x, 1) sin(S(x, 1)), (6.16)

ny =Ny +nyy(x, 1) sin(S(x, 1)), (6.17)

¢ = ¢, (x, ) sin(S), (6.18)

Q; =0+ 0y cos(S). (6.19)
With ¥ =3, we can rewrite (6. 15) as

myn Uy = ;—( N, T, (1 + %‘L sm(s))3 X (6.20)

Substitute (6. 16)—(6.20) into (6. 13), and carrying out
the averaging procedure as before, we obtain

¢t 1
I=f = f dt f dx{——lﬁﬂ (¢}, + #1S%)
2

N

K 3 e
-3 N:T¢(1+ 3 n, )‘ 5”:14’1

2]
+ S gy, o+ Vigag, )

o
+ b (S, + N, VS, + vinus,)] . (6.21)
Now let us vary Eq. (6.21) with respect to ny, v,
¢4, and oy, and then neglect terms containing their
derivatives with respect to ¥ and ¢, We thus obtain the
following equations:

Oy —e¢,+a,1(w+kV‘)—3KT,(%u) =0, (6.22)
{

51)": mugy +a“k= 0, (6.23)
8py: Kby — Amelngy +ny) =0, (6.24)
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50(1: (w+kV4)n“+kN;?)“:0, (6.25)

where we have again written

S,=k and S;=w
Denote the plasma frequencies w,;, and the sound speeds
c; by

wi, =41N;et/m, (6.26)
and

¢} =3KT,/m. (6.27)

The elimination of ny, v;y, wy, and a;; then leads to the
dispersion relation

whs Wiy

CEAAR (w+kV2)2-c

(6.28)

The last dispersion is the same as the dispersion
relation for the linear problem. This is not surprising,
because when the trial solution took the form of (6. 10)—
(6.19), the resulting approximate functional turned out
to consist of only linearly interacting terms if ¥ is ex-
actly 3. This may indicate that the nonlinear effects
may only have marginal effect on the basic instability
of the two stream problem,

The detailed analysis of the dispersion relation (6. 28)
is well known. ' We may only mention that for small ¢y
and ¢,. The system is unstable at least for some range
of k. However, when

ci+e,> | V-V (6.29)
the instability is inhibited for all &,

It may be of interest if ¥#3, then (6.20) is replaced
by

K 4
mniUy == N, (1 + Xf? s1n(S)> . (6. 30)
Then to the order of (n;/N;)?, Eq. (6.22) is to be
replaced by
—epy+ay(w+kV,)-YKT; ( )
Ny
e \3
‘7(7-2)(7—3)KT,-(F”) =0. (6.31)
i

If we set consistently the sound speed c¢; by
el =vKT;/m,

then the dispersion relation is corrected to become

e vl S (]
R

(6.32)
Thus if ¥> 3, the instability is inhibited by the nonlin-
earity; while if ¥ <3, the instability of the system is en-
hanced by the nonlinearity.

If we vary Eq. (6.21) with respect w0 S, we obtain
2

i}
87r ox (k¢‘)+ ?1 (a_t (@qmyy)

+ E(N,a“v“ + Via“n“)> =0 (6. 33)
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When w and %2 are taken as constants, the last equation
can again be written as

8¢ o0

ik 6 SR o6 G

3t " 3y 0, (6.34)
where c,:dw/dk as given by the dispersion relation
(6.28).

When y =3, the nonlinear effect on instability can be
brought out explicitly if we include harmonics in the
trial function. To this end, let us take the following
trial solution:

v; = V; + vy4 sin(S) + v, cos(2S), (6.35)
n; =N, +ny4 510(S) +nyy cos(28), {6. 36)
¢ = ¢4 sin(S) + ¢, cos(28), (6.37)
o; = a,,+ oy cos(S) + oy sin(28). (6.38)

Then the approximate functional becomes

to
1
1=+ [ dtj d {W (@3, + 40352
v

2

N, 1
Z; [ (Vivi2ni2 + ?' vy - Znﬂv%i)

i=1

K 3 (n\*? ﬁnfjnn] e
= 2 N(Ti [2 (Ni) - 4 N{ - 2 ni2¢2

a . s N
+ 2'0 (39049, + Vi, ) — _‘4‘1 Se (4030 + vig0i0)
1
— 031398, + NyvyaS, + Vinyy S, - Ennvnsx)] } .

(6.39)

The variations with respect to n;q, vy, ¢, i1, R4,
Vi9, ¢, and oy, then lead to

gz =~ ey +aylw+EV,) - SKTl(%i>
i

__3 niq1y oy _
= - 3 KT{('_}V"?—Z) + 5 kvn

@ 1okt (6. 40)

o
v;4: Ni(mvii+aiik)_ Ry + ”gu’miz-aizknm
(6.41)
6¢1Z k2¢1-—47re(n“+n21)=0, (6.42)
k
boryy: (w+kvi)ni1+kNivi1:E(nilvi2+vi1ni2)a (6.43)
Byt e¢2-—201i2(w+kV{)—3kT,(—nNﬂ)
i
3 na\* m a
= ZKT,(N‘-:) + g vht ey, (6.44)
k
61}{2: N{(mv¢2—2kdm)— Ol“n”, (6. 45)
5¢2: kz(}bz - ﬂe(?’li2 +n22) = O, (6. 46)
k
5¢‘2: (w+kV,)n,2+kN¢vn=E(n“v“). (6.47)

In these expressions, the derivatives with respect to
x and ¢ of the varied quantities have again been
neglected.

It may be noted that in comparison with equations
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(6.22)— (6, 25) the terms on the right-hand side of the
equations (6.40)—(6.43) are those due to the harmonic
generations. Moreover, the structures of the Egs.
(6.44)—(6, 47) are quite similar to those of (6, 40)—
(6.43). The nature of the mutual interaction is also
reminiscent to what we have discussed in Sec. 5. Again
a permissible set of solutions is {u,,,}zo, where u
stands for any of the variables of concern. On the other
hand, {u, o} =0 will imply {#,,1}=0. Thus harmonics are
always generated from a fundamental mode, due to any
nonlinear interaction; whereas the subharmonics can
only be generated when a certain threshold amplitude is
reached for the fundamental mode, A more detailed
analysis of Eq. (6.40)— (6. 47) will be presented
elsewhere,

7. THE KELVIN-HELMHOLTZ STABILITY

Consider two incompressible, inviscid fluids sepa-
rated by an interface

F(r, t)=0. (7.1)

We shall use subscripts 1 and 2 to denote variables in
these two fluids. Let us assume that the flow of the
fluids is irrotational. Thus we have in the ith region
that

vi=Va,, (7.2)

v2¢‘ ___07 (7. 3)
and

b L swg )t + 2=, (7.4)

[N ot

where v, is the fluid velocity, ¢; the velocity potential,
p; the density, ; the external force potential, and f,(¢)
an integration constant. The interfacial conditions are

oF

o (7.5)

+(v*V)F=0 on F=0,
and

pi-pzzo(ﬁl;+1—{1;) on F=0, (7.8)
where ¢ is the surface tension coefficient, and R, and
R, are the principal radii of curvature at the point under
consideration on F=0. R, (R,) is to be positive if its
center of curvature lies on the side of region 1, and
negative otherwise.

The problem formulated above is equivalent to the
variational principle that the following functional J is
stationary®:

J= f::z at(J1+Ja+ 3, (7.7
where
Ji=n f dir (aai;‘ + %(V¢>{)2+SZ‘) , i=1,2 (7.8)
£
and
ga:Odea’ (7.9)

where the integral in (7.9) is the total surface area of
the interface F =0. The variations with respect to ¢,
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lead to Egs. (7.3) and (7.5), while the variation with
respect to the interface leads to Eq. (7.6).

Let us consider two-dimensional flow problems and

let the gravity be the only external force field which
applies in the direction of (- y). Thus

Q;=gy. (7.10)
Now take the trial solution of the interface relation
(7.1) of the form

y=n(x, ) =Alx, t) sin(S(x, 1)), (7.11)
and let y > 7 be region 1, y<7n be region 2.
Thus
o g [ 201 L(20)"
(Ql—pif d"/ [ at +2(ax
- n
1 (294\" 7
+2(8y> +gy |dy, (7.12)
- "[a0, 1[{3¢,\?
— 99  2(°92
ﬂ"p?f d"f [81! +2(ax)
1(26;)"
+§(ay> +8y|dy, (7.13)
and
Al 2y 1/2
an
ﬂa=0f dx[1+(a—x)] . (7.14)

For the problem of the Kelvin—Helmoholtz stability,
the primary flow state is as follows: The upper fluid
(1) and the lower fluid (2) are divided by a horizontal
interface (y = 0). Both fluids are moving uniformly along
the x direction with different velocities (U, and U,).
Thus we shall take the trial solution for ¢, and ¢, as

$1=Usx +Clx, t) cos(S) exp(~ ky), (7.15)

¢y =U,x + B(x, t) cos(S) exp(ky), (7.16)
where 2=23S/3x> 0. The forms of the trial solutions
are suggested by the linear theory.’®

In a more complete theory, indeed, the spatial and
temporal variations of A, B, C, and S should be taken
into account in order to study the modulation of the non-
linear waves., We shall here however only present the
results that A, B, C, k, and w=208S/9¢ are constants.
Then after carrying out some straightforward calcula-
tions, we find up to the order of 0(4%)

S=py [ dax{i(w+RUy) CA[1 +5(RA)]

+ 2 e+ (ray)- £ a7, (1.17)
F=p, [ dx{- 3w+ RU,) BA[1 +5(RA)]

+ If BY[1+ (rAV]+ £ 47}, (1.18)
G=0 [T dx[1+4(RA) - E(RA)]. (7.19)

The variations with respect to A, B, and C thus lead to
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3
0A: py (%(w + kU C[1+3(RA)] + 52— Ac? —‘%A)

3
+py (_ 3w + kU B[1+3(RA)] + % AB*+ §A>

2
+ 5 AlL-$(ea)] =0, (7.20)
0B: - 3(w+kU,) A[1+5(RAN]+ -g B[1+(rA)]=0,
(7.21)
6C: Hw+rUD Al +5(RAV]+ ECli+ Ra¥]=0.  (1.22)
Denote
G=(1+3 FAY/(1+FAY),

then we have
B (w +kkUz) GA, (7.23)
c=_ WtrU) o\ (7. 24)

k
Substituting them in (7.20), we have
[(o1 + py)w? +2(p,Uy + pyUs) bew + (0, U + p, UR) R
X G[1+ (3 - G) B A?] - [ gk(p, — py) + 0k3(1 - § 2AY)] =0.
Thus

1
W= m {_ (91[]1 +p2U2) k;{-_\/-W(k, [U1 - Uz],A)}$

(7. 25)
where

_ {py +py)l gklo; - py) + 0K (1 - § K2A%)]
Gl1+ @G - G FAT]
- P10y B (U, = Uy, (7.26)
The system is stable when w is real or when W= 0.

As A —0, we recover the result of the linear theory,®
and the system is stable for all & if

W(k’ [Ul - Uz],A)

- v < 20 B [og o _ppri= iz (r2n)
P10,
For (U; - Up)* > U%, there exists a certain range of k&,
for which the system is linearly unstable. However, as
can be seen from the expression of W, the system can
be stabilized by the nonlinear effects. The expression
of Win (7.26) is valid only up to O(A?), thus the extent
of stabilization that can be inferred from this formula
is still somewhat limited. This restriction can be re-
laxed and a more detailed analysis can be carried out
but we shall not pursue it further here.

It is of interest that if we also vary Eqs. (7.17)—
(7.19) with respect to w and k&, then we obtain after using
(7.21) and (7.22)

U, +p,U)
bw: w=~ LU1F0 Uk 7.28
@ (oy+p) 7 (7.28)
which by (7. 25) implies

w=0. (7.29)

Making use of (7.28) and (7. 29), we obtain
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1 pyp,(Uy - U, G 3

ok: = —l—Z—L—f— 2(1+ % 22A%) - G(1 + 3k%A%
3 (o1 70 [2(1+3 ) - G( )]
~0k(1-3 KA =0, (7.30)

It is of interest to note that as A —0, Eq. (7.30) is
exactly the same as

dW/dk =0, (7.31)

Analogous to the discussions at the end of the Sec.
4, we can infer that for those Fourier components which
are linearly unstable, the asymptotic amplitude will
reach that given by W=0, and the dispersion relation
of propagation is given by (7.28). If we attempt to rep-
resent the asymptotic solution by a single mode, the
mode, i.e., the wavenumber k, determined by Eq.
(7.30), which corresponds to maximum growth from
the linear instability, would give the best representation.

The previous analysis can be extended to include har-
monics and subharmonics. We shall limit our study to
include second harmonics only, Thus the trial solutions
adopted will be

1{x, t) = A sin(S) + A, cos(2S), (7.32)

¢4 =Usx + C cos(S) exp(- ky) + C, sin(25) exp(- 2ky),

{7.33)
and
¢, = U, x + B cos(S) exp(ky) + B, sin(2S) exp(2ky).

(7.34)
Then after somewhat lengthy yet straightforward com-
putations, we obtain, up to O(A* + A}),

94/p1=%(w+ kU {CAlL + & kA, + (£2/8)(A% + 24D)]

- 2C,[A; + £ RA? + R2A, (A + 3 AD]}
+ (B/4)CH1 + B (A + AD)] + (R/2)C3[1 + 4K (A* + AD)]
~ kCCy[RA + 3 BPAA, + JEPA(AY + 24))] - (g/4)(A* + A)).

(7.35)
Let us denote
% :'I’(w; k, py, Ul:g,A’AZ; c, CZ)’
then
ﬂ2=‘1’(w’k:p2, UZy—gy—A,_A?.’ B,BZ)y (736)
and
Gy =o0l1 + 3(R*A* + 4R*A})
- (At + 1614 A%AL + 16K°A43)]. (7.37)

It is clear that when we vary the above equations with
respect to A, B, and C, they will be the set of equa-
tions (7, 20)— (7. 22) with additional terms involving A,,
B,, and C,. A similar set of equations with the roles of
{A, B, C} and {A,, B,, C,} reversed will be obtained when
we vary with the above with respect to A,, B,, and C,.
The situation is analogous to what we have discussed in
Sec. 5. We shall not go into the detailed study of this
nonlinear interaction. Let us limit ourselves to the
case that (kA)? is small, and get all the correction
terms up to O(A?). Then we can take A,, By, C, =0(4?).
Thus the Euler equations become
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8A: py{4(w+RU)C[1 +3(RA) + $(kA,)] - (w + kU RAC,
+ (£3/2) AC? ~ B*CC, - (g/2) A} + py {- 3(w + RUy)
x B[1+ $(RA)? - §(kA;)] - (w + kU,) RAB, + (K°/2) AB?
+EBB, + (g/2) A} + (02 /2) Al1 - $(rA)*] =0,

(1.38)
0B: —i(w+EU)A[1+3(RA)? - §RA,]
+(&/2) Bl1 + (rA)!] + *B, A =0, 7.39)
6C: 3w+ kU A1 +5(RA) + 3 RA,]
+(k/2)C[1 + (RA)] - B*C, A=0, (7.40)

84,1 pyl(w +RUNE RCA = C,) - (g/2) A,]
+p,[(w + kU,)(3 kBA + B,) + (g/2) A, + 20*A, =0,

(7.41)
6B,: (w +RU,)[A, - 5 RA*] + kB, + B*BA=0, (7.42)
8C,: — (w+RUDIA, +3 RAY +£C, - CA =0, (7.43)

Using Egs. (7.23) and (7.24), we thus obtain

A? 2 2
= + kU - w+ kU
4 2[20%° —glp, - pl)] [pz(w kU2)* = oy kUy) J,

(7. 44)
B,=- (w+kU2)(%1 + —;—Az) , (7.45)
and
A4 _ 14
sz(w +kU,) A - 'i A o (7. 46)
From (7. 39) and (7.40), we have
B= (YR A1 +3(ra) +2 24, 7.47
= A s( ) +3z kAz ’ ( . )
w + RU. 1 2 3
C=- ——1k Al1+5(RA - 3 kA, L (7.48)
Substituting (7. 44)— (7. 48) into (7. 38), we obtain
(pg + pg) W +2(p Us + pyUy) kw + (o UL + p,UR) 2
- gklpy - py) - ok3 ~ 0 (RA)* = 0, (7.49)

where

[py(w + U, = py(w + U]
2k[ glp, ~ py) - 20%7%] )

a =3gk(p, - py) +308° +

(7.50)
Thus

1
= ——— 1= (pyU; +p,U,) k
@ {0y +0,) { (01U +0:02)

 (Wlk, (Uy - U,), 0] + alpy + p,) (kA /2. (1.51)

In expression (7.50), the values of w are taken to be
those given by the linear relation, i.e., expression
(7.51) with A =0. Therefore, the nonlinearity will
inhibit the linear instability if @ > 0, and enhance the
instability if @ < 0. When the linear instability is ar-
rested by the nonlinearity, the asymptotic amplitudes
will be given by

Wik, (U; - Uy), 01+ alp, + 0,)(k AP =0
or
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(o + Pz)[gk(Pz - 91) +0k°)
— p4P Y (U; = Up) + a(p, + p,MRA)Y =0.

Then w is again given by Eq. (28), and we have

(7.52)

k(p, — p1)* g0, ~ py) + OB
2(p + Pz)zlg(l)z -~ 91) - 207

a=3gk(p, - py) + 50K +

(7.53)
or
1 pp
_ 34534 = PPy 2y 2
a=-30kR+ 2 5yt o, B{U; - Uy)
1 (p, = py)lpypp P (U, - Uy
+ 2 7.54)
2 [gk(aoz—t)i)—2<f1e3i(t>1+pz)I (

If we denote

I'=-p,gka,
then this is the same I' as that given by Nayfih and
Saric.!? Thus when a perturbation expansion approach is
adopted, the results of our analysis agree with those ob-
tained by other established methods.

It may be remarked that when a perturbation expan-
sion approach is adopted, and if instead of treating the
amplitudes as constants, the amplitudes are considered
as slowly varying functions of space and time, then a
nonlinear Schrodinger equation can also be derived. For
the problem of nonlinear water wave, i.e., when the
upper fluid is absent, one version of derivation of the
nonlinear Schrodinger equation using the variational
method was given by Yen and Lake, n

8. DISCUSSION

We have presented a diverse set of problems to il-
lustrate how the variational method developed earlier
for nonlinear oscillation and wave problems can be
extended to the study of nonlinear stability problems.
If the conventional perturbation expansion approach is
used, the variational method can lead to the same re-
sults as obtained by other more established methods.
However, the variational method apparently can yield
valuable information far away from the critical region,
which the ordinary perturbation methods may not be able
to deal with, The first example of Duffing stability is
particularly illuminating on this point, It is also clear
from the preceding study that we are far from fully
understanding the whole story about the variational
method as applied to the nonlinear stability problems.
Some immediate questions raised from the previous
study are, among others, the apparent nonuniqueness
of permissible solutions when harmonics are included;
the problem of successive harmonic generations; and
the modulation of waves far away from the critical re-
gion., The nonlinear stability problems are difficult and
challenging. The variational method presented above at
least offered a new and hopeful perspective on this class
of intriguing problems.
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Rederivation of the Jin-Martin lower bound

Seichi Naito

Department of Physics, Osaka City University, Sumiyoshiku, Osaka, Japan

(Received 28 June 1976)

With the help of the Phragmén—Lindelof theorem, we can rederive the full Jin—-Martin’s results on the

total cross section lower bound.

Jin and Martin, ! using fairly involved Herglotz-func-
tion arguments, have obtained the lower bound on total
cross sections. Their bound in a slightly weakened form
has been rederived simply? by using the Phragmén—
Lindeldf theorem.? In view of the importance of the low-
er bound, it will be interesting to show how we can de-
rive full results of Jin and Martin. This problem is in-
vestigated by using the technique which is more com-
plicated than Simon’s technique.

For simplicity, we consider the spinless elastic scat-
tering A + B—A + B (s channel) coupled by crossing to
A +B—A+B (u channel), and the scattering amplitude
is denoted by F(s, ). Then it is easily shown that the
full results! by Jin and Martin can be obtained from the
fact that there never occurs the case when both

lim s®?Re[F(s,t)]=0 (1)

=+

and

lim s*Im[F(s,t)]=0 [for 0<¢ <min(4M4, 4M%)] (2)

Se+m

hold simultaneously. Therefore, we shall hereafter
prove the above fact.

The analyticity in s and the polynomial upper bounded-
ness of F(s,?) make it possible to write the dispersion
relation with two subtractions®:

F(s,t)=A(t) + B(t)w

w? Im[Fi(w’ +0 -3¢, 1)]
* (_Luz w0 Hw' - w)

7 amligeirec i)
where the unitarity of the S matrix gives
Im[Fw +0 -3¢, )]0 4)
and

Im{Fy{w’+0-3¢,1)]20 [for 0 <t <min(4M%, 4M%)].
{5)
In (3), we have used the following notations:
w=s-0+3t,
o=M% +M%,
and
p=2MMpg.
With the help of (2), Eq. (3) can be rewritten as
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F(s,)=[B@) +d,Jw +[A{) +d,]
+ dy/w +dy/w? +ds(w) +d; (), (6)

where

d‘E—lf dwl
T Jost/2

2 o
d(w)=2- dw’
5
T Jost/2

1 1[“'
“—’zﬂmlz

In the following discussion, it is essential that de{w} de-
fined by (7) has the upper bound

w3 Im[F (w’ +0 - 32,1)]
(i=1’ ...,4),

Im{F (' +0 =3¢, )]
W w +w)

) (D

and

dw , w? Im[F, (w +0 -3t t)]
w -w ’

dglw) =

lim |w?dg(w)| <B (B is some constant). (8)

W= o

Inequality (8) can be derived from (1), (2), and the
polynomial upper boundedness
[Fis,t)] < [s|" as [s]—=, ®)

by using the same technique as in the Appendix of our
previous paper.’® Then (1), (2), (6), and (8) lead to

lim w{(B +d)w + (A +d) +dy/w +dg(w)} =0. (10)

W sw

With the help of (10), we find that
8= (1/7) fp""mah.:'w"2 ImlF (@' +o~3¢,8)]  (11)

should be finite; if §; =+« , we obtain

lim @ ld;(w) =+ =,

PPEXY

which contradicts (10). QED Then we find

Im[F(w’ +0 -3¢, 1)]
w'(w +w)

d5&0)==610)— L dw’
T Jost/2

and

§y==B-d; [from (10}]. {12)

By carrying out the above procedure successively, (6)
is finally reduced to

F(s,t) =dy/w? +ds(w) +dg(w), (13)
with
11 e ' Im{F (w +0-3t, t)]

As in the case of §;, the assumption §; =- ©, where
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ss=-1 [ do’ o Im{Fyle’ +0-4t,0)], (15)

T/ pat /2
is easily shown to lead to the contradiction with (1), (2),
(8), and (13), so that §; should be finite. Then the inte-
gral for w?d;(w) is uniformly convergent® on account of
(5), so that
lim w? d;(w) = 55. (16)
w4
Atter all, (1), (2), (13), and (16) give
lim wz dg((l)) == d4 = Bs. (17)
W e
On the other hand, the integral (7) for w®dg(w) gives

Iim 2 =
lmwl. ours2” d5(w) =0, (18)

with
w=|w| exp(i6).

In {18), we have used the fact that the integral is uni-
formly convergent® on account of (2) and (4). Since

w?dg(w) is analytic and polynomially upper bounded in
the region R={w! lwl =1, 0< §<7/2} [as easily seen
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from (9) and (13)], we can apply the Phragmén— Lindeldf
theorem?® to w?dg(w), and consequently we obtain from
(17) and (18)

dy + 85 =0. (19)

However, (4), (5), (T), (15), and (19) lead to the
physically unrealizable condition

Im{F(w’ +0~3t,1)]=Im[F{(w’ +0-3¢t,8)]=0.  (20)

Thus we have proved that it never occurs that (1) and
(2) hold simulaneously.
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Dilations and interaction
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As a consequence of the geometrical features of dilations massless particles do not interact in a local,
dilationally invariant quantum theory. This result also holds in models in which dilations are only a

symmetry of the S matrix.

1. INTRODUCTION AND MAIN RESULTS

The conventional argument showing that massless
particles do not interact in a local, dilationally invari-
ant quantum theory is in the simplest case the following
one (see, e.g., Ref. 1): suppose ¢ is a scalar Wight-
man field transforming under dilations according to

DS x)D(N) =2 - p(x). (1)

If ¢ has a nonvanishing matrix element between the
vacuum and a massless one-particle state, d can only
be one. Then ¢ has canonical dimension and this im-
plies that it is a free field. This reasoning is quite cor-
rect. However, since the argument depends upon the
existence of a field ¢ with the special properties men-
tioned above, the conclusion appears to us to be rather
premature. First, there is no physical reason to rule
out ab initio all models in which the basic fields do not
transform like a finite-dimensional representation un-
der dilations. And secondly, even if the fields trans-
form in this way, it could happen that they do not inter-
polate between the vacuum and the massless one-par-
ticle states. In general one should only expect that
suitable polynomials in the fields have this property.

It is the aim of the present note to close these apparent
loopholes. Using only the geometrical features of dila-
tions and the basic properties of local field theory, we
give a fairly general argument confirming the above
no-go theorem.

The setting used for the analysis may be sketched as
follows: We deal with an irreducibie field algebra § of
bounded operators acting on a Hilbert space /. ¥ is
generated by a net 0 -§ (0) of local algebras attached to
the regions () of Minkowski space. We may forego here
a formal specification of the usual structural assump-
tions on the theory like locality, covariance, spectrum
condition and uniqueness of the vacuum. (For a detailed
discussion see, for example, Ref. 2). In addition to
these familiar properties we require that there be a
continuous, unitary representation A—D()) of the multi-
plicative group of the positive reals in#. The opera-
tors D(X), the dilations, satisfy

D U(x) = U(x)D{A) and DQ)U(A)=UMD(N,  (2a)

where x = (x,, X) - U(x) are the translations and A - U(A)
the Lorentz transformations. Moreover, the dilations
D(N) induce automorphisms of the field algebra § with
appropriate geometric properties:

DVNFO)DNV) =F(x-0). (2b)
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These rather general assumptions suffice to prove the
following statement:

If there exist massless pavticles in the model, (i.e.,
a family of subspaces H{> CH on which the unitarvies
Ulx), U(A) act like an ivveducible vepresentation of the
Poincaré group with mass zevo and helicity s,), then
the S matrix for these particles is trivial,

Our interest in this problem arose in discussions with
Haag on supersymmetric field theories. In a recent ar-
ticle Haag, Lopuszanski, and Sohnius have analyzed the
structure of all possible supersymmetries of the S
matrix.® They found out that in a pure S-matrix formal-
ism there is essentially only one way of a complete
fusion between internal and geometrical symmetries,
including dilations. Since such a structure looks very
promising from the point of view of physics, one may
ask whether it can be embedded into a conventional field
theoretical setting. As a consequence of our analysis
the answer to this question is negative: If the theory is
to describe collisions of massless particles and if dila-
tions are to be a proper, unbroken symmetry, one has
to abandon some of the usual field theoretical assump-
tions. At present it is unclear how the assumptions have
to be modified and we refrain from speculations. How-
ever, we want to emphasize that even in a modified
scheme the local observables (the currents, etc.) should
have a structure similar to that of § given above. What
may then be learned from our analysis is that massless
particles in the vacuum sector of the observable algebra
do not interact. It is therefore unlikely that particles
like the photon and the #’- meson (both of which carry
the charge quantum numbers of the vacuum) can be in-
corporated into such a scheme. This apparently re-
stricts the possible range of application of these models
to weak interaction physics.

2. THE PROOF

The central idea of the proof is very simple: we de-
rive an asymptotic expansion for the function 2
- DQJAD() at x =0, where A is a suitable local
operator taken from §. It turns out that

D(MAD(N? =(R,AQ) -1+ x- ¢ +0(N), (3)

where this expansion is understood in the sense of oper-
ator valued distributions; € denotes the vector repre-
senting the vacuum and ¢ is some local field. Now the
crucial point is that if ¢ is not zero, it creates a mass-
less particle from the vacuum. I then follows from
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Huyghens’ principle (i.e., the timelike commutation
relations between local and asymptotic fields given in
Ref. 4) that the S matrix of this particle can only be
trivial,

Unfortunately, there are models in which, for kine-
matical reasons, all local operators A give rise to a
vanishing ¢. However, this defect can be cured by a
slight modification of the above expansion: dilating and
boosting the operator A simultaneously, one arrives at
an expression similar to (3), but with a nontrivial ¢. To
abbreviate the argument, we confine our attention to
models involving only one type of massless particles
with helicity s =0. But we shall give a brief outline of
how to proceed in more complicated situations.

Now let A be any operator from § which is localized
in a bounded region ( C R*, We regularize A according
to

A, = [ dto(t) UDAUD?, (4)

where t — U(t) are the time transglations. ¢(¢) is a test
function with compact support which has a Fourier
transform @(w) with a twofold zero at w=0. The smooth-
ed operator A, is still local and we get the following
bound on its two-point function:

Lemma 1: Let A~ E(A) be the spectral prajections of
the mass operator M = (P?!/% where AC R’ is any Borel
set of mass values. Then

(4,9, E(Q)UXAQ [<c-(1+]x]97
JIE(a)AQIE + | E(a)a* Qi3

where the constant ¢ depends neither on X nor on 4.

Proof: Using the methods of the Jost—~ Lehmann—
Dyson representation, one can show that the function

ha(x) =(AQ, E(A)U(x)AQ) — (A*Q, E(8)U(- x)A*Q)

vanishes in the spacelike complement of some bounded
region (J; which depends only on the localization
region O of A (see, e.g., Ref. 5, Lemma 6.2}). Now,
if one puts ¥(t) = [ ds F{s)@ls +1), one gets, owing to the
spectrum condition,

(4,9, E(A)UXA,Q)
= [ dt v()(AR, E(a)U(t, MAR)
= [ty ()(AQ, E(a)U(t, ) AQ)
= [ dty(e{(AQ, E(a)U(, x)IAQ)
- (A*Q, E(A)U(- ¢, - X)A*Q)}

= [ dt g Onalt, x),
where
() = (22 fowdwi(w) exp(- iwt)

= fomdw\g;(w)tzexp(—éwt).

Since | @(w)|? is a test function with a fourfold zero at
w=20, it is easy to verify that 9*(¢) is continuous and
ly* (B 1< c-(1+1£1%", Taking the support properties of
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ha(x) into account, one arrives at

(4,9, E(8)U(x)A,9) |

< dt| g ()] - [na(t, )|

“rel=lzl-R

<c-f a1+ | ¢|9 I E(a)AQI? + I E(a)A*al13,

It >Ix)-R
where R is some length which depends only on A. From
this inequality the statement of the lemma follows at

once. =

We take now the operator 4, and carry out the follow-
ing manipulations: First we dilate it, then we boost it
in a fixed direction, and finally we smear it in the two
remaining spatial directions. For the boosts we take
those in the x; direction:

B 3=

=) S+ x) b
1

K, = x> 0. (5)

Then if X = (0, x,, ¥;) denotes the projection of X onto the
(x5, x,)-plane and if dx* = dx,dx,, we set

By=x"- [ @' fx ) UK UKID(NA,

x Dok U, (6)

where f(x") is any test function with compact support.

To begin with, we examine the localization properties

of B,: Since A, is localized in some bounded region 0,

it follows from (6) that B, is localized in {A - K,( + suppft.
Now limy .ot - K, =P, where P is the projection onto the
ray (g, -, 0,0), ac R. Therefore, the operators B,

are, for sufficiently small A, localized in a fixed bound-
ed region 0,. The next step is to show that the sequence
B, converges to a (possibly zero) one-particle state

in the limit of small A:

Pyoposition 2: Let B, be the operator defined in rela-
tion (6}. Then the weak limit w-1im,.;B,® exists and is
an element of /.

Pyoof: The proof of this asserti9n is based on Lemma
1. Since U(X,) commutes with U{(x’) and E(4), we may
write

NE(&)BQNZ =12 [ d" [ d*'f () Ay")
X(A R, EQA) Uy - x'DA,9),

where we have made use of relation (2a). If we set
gx") = [d¥'F(y)fx" +y"), we get, using Lemma 1,

IE(a) B I
Z 2. [ drt e (A, 2, EQA) U(CX)A Q)
< Supyi1g(yl)| . Cf daxi(l + IXL‘ 4)-1
{IB(AIAQI2 + IEMAIA*QIF,

Putting A=R", it follows that the sequence B, is uni-
formly bounded in \. Putting &, =[a, b], where 0<a
<b <= it follows that lim, . E(4,) B\ =0 because the
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continuity properties of the spectral resolution imply
lim, .l E{Aa,)®1 = 0 for every vector & =/. Thus the
sequence B, converges weakly to zero on the ortho-
gonal complement of the one-particle space 4. It re-
mains to establish its convergence on #;. Since we are
dealing with only one type of massless particles with
helicity s =0, we may identify the one-particle states
¥ ¢ A1 with their momentum space wavefunctions ¥(p)
in LR®, d®/21pl). The dilations and Poincaré trans-
formations act on these functions as follows:

(D()T)(p) = 1+ ¥(Ap), (7a)
(U(t, X)) (p) = expli(t| p| ~ xp) ¥ (p),

and
(UR)¥)(p) = T(A o), (7b)

where A™ op denotes the spatial components of the 4-
vector A™(Ipl, p). What is crucial now is that the wave-
function (4,9)(p) of the one-particle state E{0PA,Q is
continuous in p if A, is the operator defined in relation
(4). To verify this, we fix a set £ of Lorentz trans-
formations A which are close to the identity I, e.g.,

L ={A:iA~Ii<3%}. Since A is local it is obvious that
all operators (U(A)MAU(A) -~ A), Ac/, are localized in
a bounded region { of configuration space. Therefore,
we get the estimate, using relation.(7) and Lemma 1,

(n/1pD @([pD)]2. |(aQ)(A o p) - (AQ) ()2
=(1/2|p]) - (UA)FAU(A) - A) Q) (p) |2
=(2m . [ &®x explixp) - (UM)FAU(A) - 4),Q,
EQohUE(U(A)PAU(A) - A),9)
< c o) - nEopAQIZ + II(UK) - 1) ECohA*QIF,

and this inequality holds for all Ae/ and pe R?. Since
we may take for @ a test function which has a zero only
at the origin, it is evident that lim, _,(AQ)(A <p)

= (AQ)(p) for p#0. But this shows that (AQ)(p) and there-
fore also (4,9)(p) = (2m/2¢(1p|)(AQ)(p) are continuous
at p+0 because for every sequence p, converging to p
we can specify a sequence of Lorentz transformations

A, such that, for sufficiently large n, A,-p=p, and
lim,A,=I. In order to establish the continuity of
(4,9)(p) at p=0, we estimate

(1/2lp) A, 2@ 2

=(2m) [ d®x explixp) - (4,2, E(OH UXA,Q) < c.

This bound holds uniformly for all pc R® and implies
lim, . (A ,2)(p) =0. Now we are almost finished: Using
relation (7), we get for the wavefunction (B,$2)(p) of the
one-particle state E({0})B,Q

(Bx(p) =277 (p") - (4,2 (1- K5 o p),
where
7@ = @0 [ & expl(- ix'p )X with p* = (0, py, p3).

An easy calculation shows that lim, . Akt e p=3(Ipl
+p1)ey, where ¢ =(1,0,0). Taking into account the con-
tinuity of p—~ (A,9)(p), we get

lim,.,(B,2)(p) =27 - 7(p") - (A, G| p| +p,ler).  (8)
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It then follows from the bounded convergence theorem
that the limit lim,.q [(@®p/21p})¥(p)(B,R)(p) exists for
all test functions ¥(p) with compact support. These
functions are dense in L3(R?, d®/2pl) and since the
vectors B,? are uniformly bounded in A we conclude
that the weak limit w-liml.oE({O})B,‘ﬂ' exists. This fin-
ishes the proof of the statement. .

Remark: Using the above proposition and the locali-
zation properties of the operators B,, one can show that
lim,.,B, also exists on a dense set of vectors in#4.

The wavefunction of the one-particle state w-1lim,.,
B\Q is given by the right hand side of equation (8). It
is therefore easy to specify a local operator A for which
this vector is nontrivial: Pick, for example, a one-
particle state ¢ /i which is invariant under spatial
rotations R~ U(R). Since § is irreducible, there exists
a local operator 4; ¢§ such that the matrix element
(@, A,9) is not zero. The operator 4 = [du(R)U(R)

XA U(R)™, where du(R) is the Haar measure on the
group of rotations, then has the desired property. If
one takes A; Hermitian and the functions ¢, f real, one
can even arrange for the approximating operators B,
to be Hermitian.

In the remainder of this section we shall show that
the existence of an operator sequence B, with properties
mentioned above implies that the massless particles do
not scatter. The argument is based on results recently
derived in Ref 4 in the context of collision theory for
massless particles. We recapitulate the main facts
briefly: As in the massive case, there are collision
states

in in out out
& X+ X &, and &; X - X &,

in# corresponding to incoming and outgoing configura-
tions ®,, ..., ®,cH, of massless particles. These vec-
tors have the familiar Fock structure known from a

free theory. They can be generated from the vacuum 2
with the aid of asymptotic fields A'® and A°**. The bound-
ed functions of the fields which are localized in a re-
gion U constitute the local asymptotic field algebras
§'2(0) and F°*(0) respectively. They have commutation
relations with the basic fields which may be interpreted
as the field theoretical version of Huyghens’ principle:
If 0 is any bounded region and if (J,, (J_ are two regions
which have a positive and negative timelike distance
from (), then

[F, F?"]=0 and [F, F°"]=0 (9)

for arbitrary Fe§ (D), Firc §*(0,), and Fo't c Fo(() )
This relation is the key to the proof of the following
statement.

Proposition 3: If there exists a bounded region () CIR*
and a sequence of Hermitian operators B, c () which
converges weakly on the vacuum to some nonzero vec-
tor in /4y, then the collision states

in in out out
q;lx...x <I>,,and Ql Koo on X Qn

coincide for arbitrary configurations &,, .
Consequently, the S matrix is trivial.

..,q’HGHl-
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Proof: We define B = U(L)B,U(L)™, where L= (A, x)
is an arbitrary Poincaré transformation and U(L)
= U(x)U(A) is the corresponding unitary in//. Since B,
converges weakly on the vacuum to some nontrivial one-
particle state ® €/, we get w-lim,.(BfQ=U(L)®=&,.
These vectors form a total set in /, because the
Poincaré transformations are irreducibly represented
in/#/y. Now the operators B are localized in the region
L{. Using relation (9), we get therefore

(Fi*®,, FoUtQ) = lim (FI"BL Q, Fo*tQ)
A=0

=lim (F{"Q, F"' B Q) = (F1"Q, F*'9,), (10)
A=0

provided Fi®c §*(L0,)and F* e " (L(.). Since the
operators A'" and A®** are free fields, it is straight-
forward to verify that the bounded operators F and
F°" in this relation may be replaced by products of
smeared field operators A{®, ..., A and A%, ..., A%
which are localized in L, and L{)_respectively. Thus
we arrive at

(Al AlRD,, AT - ATMQ) = (AR - AL, AT -+ A2,).

m+l mel

(11)

Now we can prove the proposition by induction. For a
one-particle state there is nothing to show, so let us
assume that

in in out out
Py XX 4’m=<1>1 Xeoeo X @

for arbitrary configurations ®;, ..., ®,<#,. This im-
plies in particular that A}*.. . APQ=Ap" ... A%tQ and,
using relation (11), we get

(Alin .. _A’innéL’Auut .. -A:MQ)

mel

=(Alr.. Al Aout .. .Ag"tq,L)

mel
— (Af“t .. _A:)"utn, A?nu+t1 .. _At’)'utéL)
— (Ai:ut .. .A;utd)L,Aout .. 'Ag"tﬂ),

m+l

where the last equality sign follows from an explicit
calculation of the scalar products. If we set &,
=APQ, ..., ®,=A%"Q, we can reexpress this equation
in terms of the collision states,

in in in out out
(@lx--'XqZ'mX@L’deX"'X ‘bn)
out out out out out

:(le coe X émx (PL;q)de s X d:n)’

provided A", ..., A% are operators with the special
localization properties mentioned above. However,
keeping in mind that the vectors ¢, form a total set in
#,, one can extend this equation by continuity to arbi-
trary configurations &,, ..., &, ®; c/;* and it is then
obvious that

in in out out
<I>1>< treX ¢m#lzél Xoeee X (tnnl'

Combining the two propositions it follows that the
massless particles in #/; do not interact if the dilations
are a true symmetry. We have established this result
only for one type of massless particles with helicity
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s=0. In the presence of a family of one-particle spaces
H{PCH on which the unitaries Ulx), U(A) act like an
irreducible representation of the Poincaré group with
mass zero and helicity s;, the main modifications are
in the second part of the proof of Proposition 2: For
vectors ¥ e //{* relation (7b) changes according to

(U(A)¥),(p) = explis,a (4, p)] (D), (Ao p),

where the index % refers to the space /#/%’. The func-
tions a(A, p) are the Wigner phases.® They are not com-
pletely fixed by the structural relations imposed by the
Lorentz group. As a matter of fact we may choose a
convention such that the fuactions a(A, p) are simul-
taneously continuous in A and p except at p=0;, more-
over, we may require that a(K,,p) =0, where K, are
the boosts in the x, direction introduced in relation (5).
It is then easy to verify that the functions (B,Q),(p) are
continuous and that the analog of relation (8) holds. The
proof of Proposition 3 carries over almost literally, and
we may therefore omit the details.

Finally we want to point out a further generalization
of our main result. In an asymptotically complete the-
ory of massless particles there always exist two repre-
sentations D'™(A) and D°*()) of the group of dilations
which act on the asymptotic fields A™ and A°, respec-
tively, as in a free field theory. Their commutation
relations with the translations U(x) and Lorentz trans-
formations U(A) are again given by (2a). However, they
do not, in general, act on the basic fields according to
relation (2b). In order that the dilations are an asymp-
totically visible symmetry, it would be sufficient to re-
quire

DB()) = Dt()) = D()) (12)

and relation (2b) could be dropped. But this assumption
still implies that the S matrix is triviall To verify this,
one has only to realize that Propositions 2 and 3 still
hold in this case with obvious modifications. The proof
of Proposition 2 depends on the clustering properties of
the vacuum and relation (2a) and therefore applies. Of
course, the operators B, are in general not local. How-
ever, relation (10) which was crucial for the proof of
Proposition 3 can still be established. This follows sim-
ply from the fact that the asymptotic nets () —§ 2((0)
and (J —§° () transform under the dilations D(})
=D'(\)=D°"*(») according to relation (2b). Hence, if, for
example, A € §(0), where () is any bounded region
which contains the origin and if Fite §i2(),), where (),
has a positive timelike separation from (), one gets for
A<1

[D(NAD(N?, Fi»]
=DW[A, DX FID()ID(N =0

by Huyghens’ principle. A similar relation holds for

Fout = §ou(0 ). 1t is then easy to verify that the opera-
tors B, commute for small A with the operators in
§(0.) and §°4(0_) where the regions (,, (. depend only
on the localization properties of f and A,. The rest of
the argument can then be carried over.
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The complex-energy distorted plane waves for scattering via a general class of two-body Coulomb-like
potentials are shown to satisfy off-energy-shell Lippmann-Schwinger equations in the case of two particle
scattering and appropriately iterated Weinberg-Van Winter and Faddeev equations in the case of three
particle scattering. A renormalized off-energy-shell formalism is defined for scattering involving more than
one charged fragment in either the incoming or outgoing channel. The existence of the limit to real

energies of the renormalized off-energy-shell formalism is verified.

1. INTRODUCTION

A knowledge of the various possible off-energy-shell
two-body T matrices allows one to construct the kernel
of the Faddeev equations.! An important case for which
integral representations of the off-shell two-body T
matrix are known is that of the pure Coulomb poten-
tial.?"* These integral representations have been ap-
plied to elastic and rearrangement scattering of a
charged particle by an uncharged fragment (see Ref. 5
for references to previous resultg). Unfortunately,
when there is more than one charged fragment in either
the incoming or outgoing channel, the solutions to the
off-shell equations will not have physical on-energy-
shell limits. In this paper we apply the recently de-
veloped stationary Hilbert space scattering formalism®”?
together with various results concerning the existence
and integrability of the Green's functions® to define a
renormalized off-energy-shei! scaitering formalism
for general Coulomb-like scat:ering.

In order to define a renormalized off-shell formalism,
the usual off-shell scattering theory must be related to
the operators W!® defined as follows:

WS = () [ duexp( u)Q® (w/e),

4 (¢) = exp(iHt) exp(— iH HP ', (1.1)

where the self-adjoint operators H axd H , denote the
full Hamiltonian and ¢ -channel Hairittonian respectively
and P‘® denotes the projector onto the ~hannel subspace
H¢®, The operators W%’ provide the it beiween the
time-dependent and stationary short-range scattering
theory®=!! and can be shown!®!! to have the following
strong Riemann—Stieltjes integral representations:

we= [ g aste, t.2)
where E”= denotes the spectral function of H,. U the
Green’s functions corresponding to (H —x +ie)™! gatisfy
various conditions [see Theorem (4.1)] the complex-
energy distorted plane waves can be defined in terms of
the Fourier transform of the Green’s functions and the
operators Wff" can be expanded in terms of these com-
plex-energy distorted plane waves. Thus there exists a
mathematically rigorous relation between the time-
dependent theory based on the operators Q¢*)(t) appear-
ing in (1.1) and the time-independent formalism based
on the complex-energy distorted plane waves defined in
terms of the Fourier transform of the full Green’s
functions.
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In the case of N-body Coulomb-like scattering
Doliard*?>~! has shown that one can formulate a time-
dependent scattering theory via the a ~channel modified
or renormalized wave operators, Q! defined as
follows:

QL0 = s lim@ (1), B () =2 (1) expl- iG],
e (1.3)
where the time-dependent renormalization term G{*(¢)
is given by

. ~ eeum, 2101 L B, — myp 12
G0 = £ 5 1 T [___.Lz_...x_i._
) ()‘i‘(',lm, = P, o8 mm,(m, +m,)

t>0,

1,
6(“)‘{—1, t<0,

where e;, my, and p, denote respectively the total
charge, mass, and momentum of the jth fragment. The
existence of the renormalized wave operators (1. 3) has
been shown'®!? for N-body scattering via a general
class of two-body Coulomb-like potentials [in particu-
lar for two-body potentials which satisfy condition (53)
of Sec. IIB]J.

1.4)

It is clear that the time-dependent renormalization of
the operators £2!%)(¢) needed to obtain a satisfactory
time-dependent Coulomb scattering theory will induce
a modification of the off-energy-sheil formalism based
on the complex-energy distorted plane waves. This
modification was derived in a Hilbert space context’ and
will be briefly reviewed in Sec. II together with various
technical results which will be required later.

In Sec. IV sufficient conditions are given in order
that the operators W can be expanded in terms of
complex-energy distorted plane waves. The complex-
energy distorted plane waves are shown to satisfy off-
energy-shell Lippmann—Schwinger equations in Sec. V
and appropriately iterated Weinberg—Van Winter and
Faddeev equations in Sec. VI. A renormalized off-
energy-shell formalism for two- and three-particle
Coulomb scattering is defined in Secs. V and VII re-
spectively. The results of Ref. 7 are used to show the
existence of the limit to real energies of the renor-
malized complex-energy distorted plane waves and
renormalized off-energy-shell T matrices for two- and
three-particle scattering via a general class of two-
body Coulomb-like potentials.

it. PRELIMINARIES
A.Coordinates and notation
Corresponding to the channel a the N particles

Copyright © 1877 American Institute of Physics 1112



making up the scattering system will be grouped into
n, fragments. By a suitable transformation the co-
ordinates corresponding to the particles making up a
fragment j can be transformed to a center-of-mass
coordinate Z, together with a set of “internal” co-
ordinates (if j is composite) denoted collectively by x?.
Since only two-body forces are considered in this paper
it is convenient to separate the total center-of-mass
coordinate. Thus the n, center-of-mass coordinates
(Z,,...,2,,) are transformed into a total center-of-
mass coordinate X together with #, - 1 “relative”
center-of-mass coordinates (x,, ... ,x,,a_l). Such a
choice of coordinates induces a decomposition of the
Hilbert space #/ =/ *(R*™) as follows: /{ = . ®H a¢
=/ 2(R%*)® [ 3(R*¥-V)), Furthermore, the wave and
scattering operators factor as R/ =I1® 2*’ and S,,
=M® S,q, where Il denotes the identity on#_, and the
operators acting in //,,, have been denoted by the same
symbols as the operators acting in //. All results con-
tained in Ref, 7 can now be expressed as results in

H (a¢ Without reference to /. .

In the following the coordinates after removing the
total center-of-mass will be collectively denoted by x,
where x =(x, _,¥")=(x,,..., X, 15X ..., x"). The
conjugate momentum corresponding to x, _, will be col-
lectively denoted by p, _,, where p, ,=(p,,...,D, ).
Furthermore, the coordinates x, ., will be chosen so
that the total energy E‘® associated with H,, takes the
following form:

ua-l
Et® = £p§+E§§", 2.1)
where E{% denotes the bound state energy of the com-
posite fragments making up the channel 4.

In order to derive the existence of an off-shell for-
malism, various Hilbert space relations will be ex-
panded in terms of free plane waves,

d"’na-x(x” u'l) — (21r)“3‘"°‘ 172 exp(ip,,“ “ 'xn‘, _1)’

where
71
pnu-l Xng-1= :Z:l Py Xy

via the Fourier transform. The Fourier transform is a
unitary map from the position representation / 2(R¥"a"1?)
to the momentum representation / (R¥®a"1, Py o1
which is defined as follows:
f(Pna-x) =Li.m. jR3("a-1) dxnm-l¢l’nc‘_1(xna-l)f(xna-l)’
(2.2)

where fc [ 2(R*™a") and 1.i.m, means the / *-limit
D~ R3¥"a") | where D is a sequence of bounded sets.
Furthermore,

f(xua-z) =1.i.m, fns(na-n dp"d“(’b’na-x(x"a-l)f<i’na-1)
(2.3)
for each fe [ 2(R3na"1),

B. The Hamiltonian

In this paper we will assume that the scattering sys-
tem consists of N distinguishable spinless particles
interacting via two-body Coulomb-like potentials and
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described by the self-adjoint Hamiltonian H acting in
[ 3(R*¥-1") having the form
N=-1
H=H,+2 V., Hy==2 V% (2.4)
i< J=1
where H, is the unique self-adjoint extension of the
formal sum of Laplace operators vZ [Ref. 15, Chap. V,

Sec. (5.2)]. In particular, it will be convenient to re-
quire that each V,, satisfies the following condition:

BYV=V,+V,, V,cl[*RN[}R®),
V.(x)=Z|x|"}, where Z is a constant.

If each V,, satisfies (3), then'® V,, is a Kato poten-
tial, i.e., 0 (V,,) D) (H,) and for any a> O there exists
a b> 0 such that

(2.5)

IVl <allapll +olel, vep @), 2.6)

and thus®® H and the ¢ -channel Hamiltonian H, are
self-adjoint with /) (H) =/) (H,) =0 (H,).

C. Stationary Coulomb scattering

The existence of stationary renormalization terms
denoted by F{®* for N-particle Coulomb scattering was
shown in Refs. 6 and 7, In particular for G'®{¢) given
by (1.4) the F{®* can be computed and are given by

Fif"*(p,,a.,) = {(:t) f” duexplFu +iG(a)(u/€)]}-l

n -
:r(m-z‘i %)‘

xr  1Pgl

n  +m,
Xexp[ii Zﬂimzmge!eE tog em,m (mI m )],

Fr A TN 2lp;,
2.7

where p;, =51y C},p, =m P, - m,P, with the constants
Cj,z depending on the particular choice of relative cen-
ter-of-mass coordinates. The expressions (2.7) are
well-defined for each ¢ >0 on /™ the set of functions
dense in //‘*’ having the form ¢ =¢, [1%qx,, where x,,
i=1,...,n, denote the bound states making up the
channel ¢ and ¢le[2(R3"'a‘”;dp,,u_1) satisfies

n -1
o1s: 2 mmen) s @naniap, ). (2.0
i3

It bas been shown’ that if the renormalized wave
operators £{* for Coulomb-like scattering exist then
they are related to W!® as follows:

Qo =s-lim WEOFLD"y

&40

2.9)

for ye )™, Furthermore, the S operator Sq,= (214"
XQA* QL™ has the following stationary representations:

(P ]S g) =1im (- 7)"?

*
X (Fi‘? ¢

-0 [+ 4

(2.10)
for ¢ )™, yeH'® with V® =H - H, and
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<¢ lsaﬂd']): lim lim (— 17)-1

& ~+0 GZ'OO

*
(P

o
f EHBV(B)W(G)ngz)*

©

X Sl > 2.11
(Ha - k)Z +61 d) ( )
for c)N®, yeH'® with ){® defined as follows

. {zpe[)‘“’

(uzjz{: ﬂ:,_'"j_:‘i) z/)e[)(Ha)}.

(2.12)
1. SCREENED OFF-SHELL 7-OPERATOR

In the case of two particle scattering via short-range
potentials the on-energy-shell T matrix takes the form

®IT)e® 4yt g0,

=C J;s dxp B V(X)P3d%) | £ )5 0,

where ¢5(x) denote the distorted plane waves and C is a
constant. It is clear from the form of ¢,(x) for large
ix1 that the above integral will not exist in the Lebesgue
sense unless | V(x)I=0(I1x|3"), >0, as |xl=«, Thus
for potentials which decrease slower than [xi-%", n>0,
for large Ix| a convergence factor must be introduced
within the T matrix and the physical T matrix under-
stood as an appropriate limit as the convergence factor
is removed. In this section we will introduce the con-
vergence factor within the stationary Hilbert space
formalism and relate the resulting screened off-shell
T operator to the S operator for Coulomb scattering.

(3.1

It will be convenient to consider cutoff functions

gl ’(M -1) which satisfy the following general require-
ments ‘Qenoted collectively by (C): g“"’(x,, 4 isa
real measureable function of (%, ..., Xn, _1) which satis-
fies for some constant D

| g8 (x,, 1)< D, forall R>0,

hmg“" ’(x,. a4 =1, (3.2

R~

and is such that the corresponding cutoff Hamiltonian
Hp=H, +V§?), V& '=gvi® (3.3

is self-adjoint with domain /) (H;) for each R >0, where

Vi e [ YRMa )N [ B(R¥ M D)) for O< R <o,

If the two-body potentials making up H are Kato poten-
tials, then V{* is a Kato potential for R> 0 and thus
Hjy having the form (3. 3) is self-adjoint with domain

[ (H,) for each R>0.

The following theorem provides cutoff dependent gen-
eralizations of the stationary representations (2.10) and
(2.11) of the S operator.

Theorem 3.1: Suppose that H=H,+7,,V,,, where
each V,, is symmetric on /) (V,)>/)) (H,). In addition
assume that the renormalized wave operators for
Coulomb-like scattering exist and the cutoff function
2 satisfies (C). Then the following stationary
representations of the S operator S_; are valid:
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(¢ Isagip) =lim lim(- #)**

€240 Re o

- > ¢
><<F£‘:’ ¢>’ f _GEPVRU ¢>

(3.4)
for ¢cD®, yeHHINH® and
(¢ |Segpy=lim lim lim (- 7)*
€240 65240 R~ ew
o
x(raro| [ astvewsre
Q. 3 S 3.5
(Hy— 2P +ei v 3.5)

for ¢/ ® and yc)) @,
Proof: We will only give the proof of (3.5) since (3.4)
can be shown in an analogous manner.

The relation (3.5) will follow from (2.11) if the follow-
ing equality is valid:

- Hg o (8 gyt ptan™® €1
fw d,\EABS llmV WOF md}

- Rew B
*> "
=s-lim BEBVEWOFLY
Rww 2 (H
-0

for each¢, >0, ¢,>0, and yc/) .

€1

+2zp (3.6)

Due to Lemma 1 of Ref. 10 there exists constants
a and b such that

Ivewieel <alawiey| +oly| (3.7)

for y/) (H,). A similar argument as given in the proof
of Theorem 1, Ref. 17, applied to the first term on the
right side of (3.7) yields the existence of constants A
and B such that

Ivipweeyl| <allHap] +B4]

for y €/ (H,). Thus the following Bochner integrals
exist (Theorem 3.7.4, Ref. 18):

S atexplse,t +iHgt IV W expl- iH, t]F“"’ ¥ (3.8)

for y <)) and ¢, >0, ¢,>0, Furthermore, Theorem

3’ of Ref. 10 is applicable and allows the interchange of
the spectral integral and Bochner integrals which leads
to the following equality:

-
-1 Hg 17(8) grr(a) (a)*
§ f GEPVEW o

:(—Zn)“J’ dtexple t+zHBt)V‘°‘W(°"exp( H t)F“"’*4)
0

+ @2mr)! I dtexp(—et +iH) VP W
[¢]

X exp(- iH ) F'Q™y (3.9)

fore,; >0, ¢,>0, and y /) ¥, By the Lebesgue dominat-
ed convergence theorem for Bochner integrals'® the
strong limit R — +« of (3.9) can be taken explicitly,

and it yields the Bochner integrals in (3.9) with V¥
replaced by V%', Applying Theorem 3’ of Ref. 10 allows
us to conclude that these Bochner integrals are equal to
the first term in (3.6), which concludes the proof of
(3.5).
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IV. COMPLEX-ENERGY DISTORTED PLANE WAVES

In order to define renormalized complex-energy dis-
torted plane waves corresponding to the left side of
(2.9), we require the relationship between the operators
W and the complex-energy distorted plane waves
defined by (4.3). The derivation of this relationship is
given in this section.

The following theorem provides sufficient conditions
for the expansion of the operators W& via complex-
energy distorted plane waves.

Theorem 4.1: Suppose that the resolvent (H - £)™?,
Im¢ #0, has the form of an integral operator in the
position representation, i.e.,

[ =010 = [aw-r) dx’ Glx, x5 £ (x") #.1)

for almost all x € R*¥-1? and y </ 2(R*¥-D), In addition,
assume that the kernel Glx,x'; ¢) satisfies for |Reg|
<M<

Jrstesy &% frovray &' | 6()GLx, 275 £) | < C(¢, M, Imp)
4.2)

for each ¢ e/ *(R¥¥W-MN [ 2(R3W-D) where the finite
constant C(¢, M,Im¢) depends on ¢, M, and Img.
Furthermore, assume that for a given channel « the
bound states y,(x?) making up the channel ¢ are square
integrable and / * functions of x? for j=1,...,n,. Then
the complex-energy distorted plane waves ¢;°"f:(x) de-
fined by ne

‘“’f‘(x) = (Fie) [pav-n &' Glx,x'; E® £ ie)

X j{llxj(x")% (7 1) (4.3)

na-l

exist for almost all xc R*¥-1) and each ¢ > 0. Further-

more, for each yc#'® of the form ¢ =y, 11 x, with

zpi( p,,a ,) a bounded function with compact support the

operators W{%’ can be expanded via (b;:"f:(x) as follows:
a

(W(a)(p)(x) fR3(n&-1) dpna—1¢£::f;(x)g"l(pna-l) (4'4)
for almost all x ¢ R3¥-1) and each ¢ > 0.
Proof: The requirement that x, €/, j=1,...,n,4

and (4.2) show that G(x, x’; E‘“’ize)ﬂjatlx,(x")
X @, (%, .,) is integrable in x” for almost all xe R¥*~V
and thus ¢‘°"“(x) defined by (4. 3) exists.

In order to derive (4.4), we introduce the function
XA(xn&_l) as follows:

1, x = A,
Xal¥, .)=¢" “rat
A al {0, n-1¢A

where A is a compact subset of R*"eV, In analogy with
the derivation of (1.2) from (1. 1) the following strong
Riemann—Stietljes integral representations can be
verified:

L .
T tie

W(a)_ lim e
8- H-Xte

A-R3(ng-1)

xadEY ap@), 4.5)

From the definition of the strong Riemann—Stietjes
integral!® (4.5) yields the following equality:
(¢ |Wi&y)= lim lim lim
A-R3(ng-1) Naw jyy|~0
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tie
< <¢| o )\’ize XAEu‘ l.x,ld’> (4.6)
for each e >0, ¢eﬁm, y=9,Max,eH'*, where - N
=X <N < <Xy =N, M E A, ), Tryl =8upgen
X (A, ~x,_,). Applying (4.1), (4.2), and the assumption
that x,€/ ", j=1,...,n,, allows us to rewrite (4.6)
as follows:
N
(p|Wepy= lm  lim lim 25

A-R3ng=1) Neo leyl=0 1=l
n (@)
fR3(na-l) Py 11 (Pn g1 X a oy r ) (B)

x R3IWN-1 dx (b(x)(i 16) _[R:,(N_l) dx’

XG{x,x"; A} F ie)XA(xnya-l)

fa
X1 x ")y, (%0 n0) 4.7)

for ¢ e [ YRIW-VYN [ 3RIW-1), lPE/‘/(“)r 1'/;161 L(R3a1)
mlz(RS(na-l)) and

1, A, <E®s)
(a)y ) i~1 1
X(x,_l.x,l(E )—{0, E(a)¢ (hl-lill]‘

In order to perform the sums and limits in (4.7) A}
must be replaced by E‘®’. The first resolvent identity
together with

=yl < [tme |y,
yield the following inequality:

(4.8)

fRB(na-l) dpna-ld)x(Pnu-l)x(hl_L,ll](E(a))

kas(n-n dx B(x) {l(H ~Ajxie)?

na
(- B 4 i)l
(H-E“xie)'x, }1 X,-%na_l}(x)

s \ﬂnle""“@l“x“ﬂlz 4.9)

o
Xa 11 x;
i=1 2

Since the limit l7y! — 0 of (4.8} is zero the relations
(4.7) may be replaced by the following equality:

N
(¢|Weyd)= lim lim lim 2 Sosnge1y @1

a-R3g=1) Now lryl=0 i=1
XDy i X g g B foaenany dx ¢l de)

foa(N_l) dx' Gx,x'; E‘V 5 ie)xA(x,’,a_l)

"o

le;llx,-(x")%

oot T gt 4.10)
By requiring that JH(P..,,-;) be a bounded function of
compact support there exists an M such that
LE)(p, )| <M for all Pp,-: contained in the support

of §,. Thus the following inequality is valid:
Z\bl(pna-l)

xXQ,_l,h,](E(“’)tb(x;G(x,x’; E'® 5 4¢)

1
fRS(ﬂa-l)dpna-l RS(N-l)dx RS(N-l)dx

o
XXA(x,I.a-x) }21Xj(le)¢p"a_l< na-l)

ny .
<cO,M0 T Il lxa, il @.11)
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The above inequality justifies taking the limits and sum
in (4.10) which then reduces to

(¢ ' W:Zl/)):/Ra(N hdx WJRS(WU APy 1
NI (4.12)

The relations (4. 4) follow immediately from (4.12)
which concludes the proof of the theorem.

The requirements (4.1) and (4. 2) can be verified for
a general class of Coulomb-like potentials. This is the
main content of Ref. 8 where the Green’s function
Glx,x'; t) is shown to exist and satisfy (4.1) and (4.2)
for two- and three-particle scattering via two-body
Coulomb-like potentials which satisfy (53).

The following proposition shows the inadequacy of
the complex-energy distorted plane waves defined by
(4. 3) when Coulomb forces are present.

Proposition 4.2: Suppose that the g-channel re-
normalized wave operators £2{* for Coulomb scatter-
ing exist and ®, R{*'H ., ®H , =/ .. Where R/, . denote
the ranges of @{® and //, denotes the subspace of 4, ,,
spanned by the eigenvectors of H. Then

w-lim exp(iHt) exp(~ iH ,£)P'* =0 (4.13)
t~ g0
and
w-limw!® =0, 4. 14)
E~+0

If in addition W{2’ has the expansion (4.4) then

lin'(‘) g3-1) % ¢ (%) fRa(na—x) dpna-l‘P;:;f:(x)@l(pna-x) =0
E=d

(4.15)
for ¢ < Lz n L1 and 1,D=ZP1H;:1 X;s X;€ LN L2’
j=1,...,n,, where @1 is a bounded function with com-
pact support.

Proof: If ¢ is an eigenvector of H then Hp = E¢ where
E is a constant and
|{¢ | exp(iHt) exp(— iH t)P®y)| = (¢ | exp(= iH £ )P *y)|

which vanishes in the limit ¢ — + = since exp(- iH ¢)P{®
converges weakly to zero, Thus in order to show {4.13)
we must verify the following equality:

lim <L % |exp(iHt) exp( —int)¢>=0

T

(4.16)

for ¥ =R® ¢ and yc 4‘®. It is straightforward to
obtain the following inequality

<§0 ¢ |exp(iHt) exp(~ iHat)z/;> ‘

 [{exolic® (¢) + iyt exp(~ iHD) - 28 1o @ || 4 |

?MQ

[-3
2 Q8 98 |expliG® (¢) + iHgt — iH oty |
8=0

ol 4.17)

Z (8)
B=o+l ¢*

By choosing « large enough the last term in (4.17) can
be made as small as we like. Furthermore, for each
fixed o the time-dependent terms on the right side of
(4. 17) vanish in the limit { — + o, Thus (4.186) follows
from the inequality (4.17).
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The relations (4. 14) follow from
B Wepy= () [ duexpEu)o |2 w/c)y)  (4.18)

together with (4.13) and the Lebesgue dominated con-
vergence theorem.

The equality (4.15) is an immediate consequence of
4.14).

The inadequacy of the short-range form of the wave
operators (4.13) was first shown by Dollard®® for two-
particle Coulomb scattering.

If Widy, y=y, g x,€) ™, has the expansion (4.4)
then the right side of (2.9) with ¢ > 0 takes the following
form:

(WDFL2™9) (x)

= Jastngets Prgur S5 LD (b i Wi(pr ) (4.19)
for almost all x € R*¥*-1), Since (4.19) converges
strongly to the renormalized wave operators it is ap-
propriate to replace the short-range off-energy-shell
formalism based on the complex-energy distorted plane
waves qb“” $(x) by an off-energy-shell formalism for
Coulomb sacattermg based on the “renormalized” com-
plex-energy distorted plane waves ¢§&%5(x)F{" (p, _,).
Thus the usual prescription for relatmg the Green’s
functions to the physical distorted plane waves must

be modified by the stationary renormalization terms
FLO™(py )

V. TWO-PARTICLE OFF-SHELL COULOMB
SCATTERING

The Hilbert space theory derived in Ref. 7 and out-
lined in Sec. IIC will be applied in this section to de-
fine a renormalized off-shell formalism and to relate
this formalism to the physical on-shell distorted plane
waves and S-matrix for two-particle scattering via a
general class of Coulomb-like potentials,

In order to derive the relationship between the re-
normalized off-shell formalism and the physical on-
shell formalism we require that the physical distorted
plane waves exist. That is in the case of general N-
body scattering for each y € 4/ (® of the form y
=y, IT}% x; there exists physical a-channel distorted
plane waves denoted by qb“’"* (x) such that the following
expansion is valid:

(Qia)w)(x) :l' i' m. fg:i(na-l) dpna-l(p;:;:(x)zzl(pna-l)’

(5.1)
where §,(p,.,) is defined by (2.2). In addition it will
be convenient to require that the ~-channel distorted
plane waves satisfy

f)gli(na-l)dpna-l‘(p(a)* ()i (P, -1)| <C@y),

where C(J,) is a constant depending on J,

€ Cy(R*"e\{0}) the C* functions with compact support
contained in R¥"a"V\{0}. The expansion (5. 1) has been
verified!®?° for two-particle scattering via a general
class of Coulomb-like potentials. The inequality (5.2)
can be shown for two-particle pure Coulomb scattering.

(5.2)

The following theorem verifies the off-energy-shell
Lippmann—Schwinger equations and provides the rela-
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tionship between the renormalized complex-energy
distorted plane waves ¢i*(X)F¥(p) and the physical dis-
torted plane waves ¢i(x).

Theorem 5.1: Suppose that H=H,+V, where V
satisfies {#). Then the complex-energy distorted plane
waves ¢3°(x) satisfy the off-energy-shell Lippmann~
Schwinger equations, i.e.,

P (%) = 0, (%) = [ s X’ Go(%, X'; E 2 ie) V(X)p}* (x")
(5.3)

for almost all p,x < R® and each ¢ >0 where G,(x,x';¢)
is the kernel corresponding to (H,—£)!, Im¢ >0,
Furthermore, if the expansion (5.1) is valid then the
physical distorted plane waves ¢%(x) are related to the
renormalized complex-energy distorted plane waves
as follows

tim [o:dx 0@ [o3 dpd@Iex) - o3 X)F%(p)] =0,
(5.4)

for all ¢ /2N /! and Pe H'® with § a bounded func-
tion with compact support.

Proof: The Green’s functions G(X,X’; ¢) correspond-
ing to (H - ¢)* have been shown® to satisfy the following
equation:

G(X,X"; ) =Gy(X, x5 ¢)
= Joady GolX,¥; ) V(Y)G(y, X'5 ) (5.5)

for almost all x,x’ ¢ R®, Multiplying (5.5) with ¢ = E®
£ i€ by (¥ i¢) and taking the Fourier transform of the
result yields (5. 3) after interchanging the X’ and y
integrations which is justified by the integrability of
G(y,x'; ¢) with respect to X’ for all y (Theorem 2.2,
Ref. 8).

Due to the existence and integrability of G(x,x’; ¢)
(see Sec, II, Ref. 8) the expansion (4.4) is valid. Thus
the equality (5. 4) follows immediately from (2.9),
(5.1), and (4.4).

The following theorem is stated without proof since
the proof is analogous to the corresponding results for
three-particle scattering given in Sec. VII.

Theorem 5.2: Suppose that H=H,+ V where V satis-
fies (8). Furthermore, assume that the cutoff function
g5 satisfies (C). Then the S operator has the following
expansion:

(¢ |Sg)=1lim lim lim(- ) / dp j ap’ 3(p)
R3 3

640 65 +0 R»

XPOVFE, (P | VaW., [0)F2 ()

-6g

(5.6)

X €1
(E®(p)-EP(pP +¢3

for $</ 1RHNH and J;eﬁ © where {[; is a continuous
function having compact support and the off-energy-
shell “T matrix” (pl VRW-52|I") is given by

| VaW.o, [0)= [ dx 3,V (x)03 (X), O<R<w,

(5.7
where Vpo=g.V.

If, in addition, the expansion (5.1) is valid with the
distorted plane waves satisfying (5. 2) then the S opera-
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tor has the following expansion:

(6| Sp)y= lim 1im(-n)"f3dp/ dp'W@(p’)F’f,,(p)
R R3

E(+¥0 R=w

’ €
X (pl Vel IP )(E(o)(p)_Ero)(p/))z e’ (5.8)
for $c /[ HRHNH® and § e C2(R\{0}) where the half-
off-shell “T matrix” (pl Vz&.1p’) is given by
®[VeR.[p) = [, dx 6,V (X)$3(x),

for 0<R <,

(5.9)

Theorem (5.2) shows that it is necessary to replace
the off-energy-shell “7T matrices” (p! VgQ_1p’) and
(p! VRW,ezlp’) by the following respective renormalized
off-energy-shell T matrices:

FY, (p)|vea_lp) (5.10)

and

FY, (p)p| VaW._ [p)F% (p). (6.11)

-€5 ~6gy

The renormalized off-energy-shell 7' matrix (5.10) can
be shown to yield the physical S matrix for the pure
Coulomb potential (see the Appendix of Ref, 21).

The existence of the physical S matrix for two-parti-
cle scattering has been verified for the pure Coulomb
potential®*2%2! and for a general class of Coulomb-like
potentials under the technical assumption (5.2).% Thus
the existence of the on-energy-shell Coulomb S matrix
together with Theorem (5.2) show that the renormalized
T matrices (5.10) and (5.11) lead to the physical S
matrix.

VI. THREE PARTICLE OFF-ENERGY-SHELL
EQUATIONS

The complex-energy distorted plane waves corre-
sponding to three-particle scattering via two-body
potentials which satisfy (8) are shown to satisfy the
iterated Weinberg—Van Winter equations and twice
iterated Faddeev equations.

The following theorem provides the existence of solu-
tions to the iterated off-energy-shell Weinberg—vVvan
Winter equations.

Theorem 6.1: Suppose that H=H +73,, V;, where
each V,, satisfies (). Furthermore, agsume that the
o -channel bound state  *’(x) satisfies x ‘¥ e/ “(R?).
Then the o -channel complex-energy distorted plane
waves ¢§#(x) satisfy the iterated Weinberg—Van

. "“-1 .
Winter equations,

BN = B+ s Gl 3 B 10 ()
+ J o, 06 @ 42 G (%, 3 E(® 3 j¢)
XGo(y,2; B £ ie)pp®%(2),

o

(6.1)

for almost all x< R®, p, _, € R*"a" and each ¢ >0,
where

;:::(X) =(Fie) fRG dy H(x, y; Et®, ie)d’p,.a_l(y)x(“’(y),
6.2)
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H(x,y; B tie) = 25 G,,(x,y; E' & ie)
i<j

- 2G,(x,y; E'™ 1 fe), (6.3)
and
G, (x,y; E‘® £ {¢)
=25 [Golx, v; E*® 2 d€) — G, (x, y; E*® + ie)]
oy
X[Vil9) + V(9] (6.4)

with G,,{x,y;¢) and G,(x,y; £) the Green’s functions
corresponding to (H,, ~ )™, H;;=H,+V,,;, and (Hy~¢)™!
respectively,

iy

Proof: The Green’s functions satisfy (Theorem 5.2,
Ref. 8) the iterated Weinberg—Van Winter equations

Glx, y; E'® & ie)
=H(x,y; E‘ tie) + [ o dz G,y (x, 2; B & ie)

XH(z,y; B sie) + [ Lo o dzdwG,,lx,2; ' £ ie)

X G, (2, w; E'® £ie)G(w, y; E'® 1 {e), 6.5)

Multiplying (6.5) by (¥ie)¢, -t ()x‘®(y) and integrat-
ing the result with respect {5 y yields {6.1) if the ap-
propriate integrals can be interchanged. The inter-
change of the y and z integrals corresponding to the
second term on the right side of (6.5) can be justified
by Proposition 3.2 of Ref. 8. The interchange of the
y and z, w integrals corresponding to the last term in
(6.5) can be justified by Theorem 5.6 of Ref. 8 since

fRG dy| G, (x,y; E' % ie)G,(y, - ; E'® Fie) |

e [MRN[*R®), (6.6)

which can be verified via Proposition 3.2 and Theorem
5.2 of Ref. 8.

It has been shown (Theorem 5.3, Ref. 8) for two-
body Coulomb-like potentials which satisfy (3) that
there exist functions H,,(x,y;¢) and K, ,{x, y; ), i <j,
i,j=1,2,3, ¢ >0, which are related to the full Green’s
functions G(x, y; ¢) as follows:

G(x: ¥s §)=Go(x,y§§)— Z( Hu(x,)’;§)
L)

== 2 Kylx, 9;¢) 6.7
i<

for almost all x,y € R® and { € S=0(H)U,,0(H,,) where

o(K) denotes the spectrum of K, In addition the kernels

H,,(x,y;¢) and K (x, y; ¢) satisfy the following twice

iterated Faddeev equations written in matrix form:

Hi,(x,y;8)
Hi x,y:8)
Hyo(x, 95 £)

Gol 9 8)=G(-,9;8)
=[H—A +A2—A3] Go('x)’,t) 13( s Y3 t)
G(-,y,l;) zs( s Vs t)

[

Hm( 0
+A* H(+,9;8) (6.8)
st( )
and
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K, (x,y;¢)
Kialx,v30)
K,ylx,y;2)
0 Km(',y;L')
=[n-4 +42- A% 0 +AY K(,9; 0],
= Gas(*, ¥ £) Ky, 0)
(6.9)

where II is the 3X 3 identity matrix and A is a matrix
integral operator which acts on column vectors as
follows:

¥ (*) 6 05 G (0, x5 )V, (0 )iy (x7) + y5(x"))

Al 9a(2) = Joe @ Gl 273 V5 My () + 95 (6]

dsl+) 6 0% Gogx, X5 D)V (1) + 9, (x")]
(6.10)

We now define the following functions:
S (x) = (¥ ie) fxﬁ dy H,(x,y; E £ ie)p,(y),

i<j, 4,j=1,2,3, (6.11)

and for the channel ¢ involving a composite particle

“"’*‘ (x)—(¥ze)j dyK“(x,y;E“"’iie)
(a)
by _1(y)x
i<j, i,j=1,2,3., 6.12)

The functions ¢S°"*1 ;;(x) exist under the assumption
x*' e/ * since H”(x y, £) and K, {(x,y; t) are integrable
(Theorem 5.7, Ref. 8). Multiplying H,,(x, y; E‘® x i¢)
by Fie)p,(y )and K (x,y; E' 1 de) by (Fie)d,, _1( )
Xx{®(y) in (6.8) and (6.9) respectively and 1ntegrat1ng
the result with respect to y it is straightforward to show
via Proposition 3.2 and Theorem 5.7 of Ref. 8 that the
various integrals can be interchanged and thus (6.8)

and (6.9) lead to equations for the functions (6.11) and
(6.12), respectively.

The above results are summarized in the following
theorem.

Theorem 6.2: Suppose that H=H,+} ., V,, where
each V,, satisfies (4). Then:

(a) There exists functions ¢{°)*(x), i>j, i,j=1,2,3,
defined by (6. 11) which are related to the complex-
energy distorted plane waves ¢{”*¢(x) as follows

S0 (x) = () - ¢;?5e(x) (6.13)

for almost all xe Rs, p< R® and each e >0 and which
satisfy the twice iterated Faddeev equations,

¢£:))u(x)
Fee(x) J=[n -4 +42 - A%]
oot (x)
fxsdnyz(',y;E(O)iie)V1z(y)¢p(3’) ¢1§0;2( )
Jes @ Gus(+,3; E@ 246)V,o(9)8,(3) |+A% $425(7)
jgsdy Gza(',y;E“”iiF)Vza(y)(b,(y) 51(:?%3()
(6.14)
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for almost all xc R®, p< RS, and each¢>0,

(b) If in addition x ‘® = / ~ then there exists functions
) :‘;f:. ), i<j, i,j=1,2,3, defined by (6.12) which
are related to the complex-energy distorted plane waves
Sprrer(x) as follows:

P =— T B (x)

T4 P44

~

(6.15)

for almost all xc R®, p, ., € R*"a"D and each ¢ >0 and
which satisfy the twice iterated Faddeev equations,

"g:::'m(x) o
~$::f:'13(x) =[Il ~A+A3 _A_q] 0
$t‘::;f:,zg(x) - ¢’"a'1( g a(L)
Pireral )
ALY St (6.16)
i)

for almost all xe R®, p, _, € R*"a"" and each ¢> 0.

Remark: To obtain an explicit expression for the
kernel of the three-particle equations given in Theorems
6.1 and 6. 2 requires a knowledge of the separable
Green’s functions G,,(x,y;¢). In the case of the pure
Coulomb potential integral representations of the
separable Green’s functions can be derived. The exis-
tence of such integral representations follows from
Hostler’s representation®® of the two-particle Green’s
functions corresponding to the pure Coulomb potential
together with the definition (see Sec. 1.5.2, Ref. 25 and
Sec. 3, Ref. 8) of the separable Green’s function,

VIl. THREE PARTICLE OFF-SHELL COULOMB
SCATTERING

The existence of the limit to real energies of the
renormalized complex-energy distorted plane waves
and renormalized off-energy-shell T matrices for
three-particle scattering via a general class of two-
body Coulomb-like potentials is verified.

The following theorem relates the o -channel re-
normalized complex-energy distorted plane waves
G52 (X)FLP* (P, ,.,) to the renormalized wave operators.

noel

Theorem 1.1: Suppose that H=H, +3,, V,, where each
V,, satisfies (8). Then the renormalized complex-ener-
gy distorted plane waves ¢$:;f:(x)Fff’*( b, ,-1) are relat-
ed to the renormalized wave operators Q{® as follows:

S @ SEVQL) )
=}i.n; fne dx an“"a‘” @y o1
X OO FLE (B o) (B yer): (@.1)

where ¢pc /2N [Vand p =X P, X< [=(R%), and
¥y is a bounded function of compact support,

Proof: The expansion (4.4) is valid since each V,,
satisfies (). Thus (7.1) follows from (2. 9).

The following theorem relates the “renormalized
half-off-shell T matrix” for three-particle scattering
to the S operator.
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Theorem 71.2: Suppose that H=H,+73,.,V,,, where
each V,, satisfies (8). Furthermore, assume that
the renormalized wave operators have the expansion
(5.1) with the physical distorted plane wave q>$:‘;:,(x)
satisfying (5.2). In addition agsume gl satisfies (C)
and x® €/ ®, Then the S operator S,, has the following
expansion:

(6 |Sapt) = lim lim (= q)

40 Reso

dp ng~1
R3{ng=1)xR8(ng-1)

XA} s TPy Vs (Pl ) FE™ ()

. (] 8 . )
X (pnﬂ-l’ El(n)t| V& )Q-(d) lp),lm-19 El(:t )

€
X (E‘“’(P;a-x)—W(P;))z . (7.2)

for p=¢x®c)®, FO*c ({R¥ D), >0, ¢
=y eD(H I NH®, o, € Cy(R*"a\{0}) where the
“half-of-shell T matrix” (p, ,; E| VR0 p; ;s B
is given by
(ugers ES VR4 |pr s EGD)

= fgs dx ¢ »,,B-x(")xm VE (x)p ;:;’:1 (x),

for each 0 <R <,

(7.3)

Proof: The representation (3.4) together with (5.1)
yields after an appropriate interchange of integrals

(0|5 gty =1im lim (- 7)™ f d, f
€=40 Revxo - RS(nB-I) dpnB-l

dpy 2 $1(Prge )1 (P et)

R3(n g-1)

XFo* (Dngt) (Prg-3 Bl | VL2 by 13 BRY)

xx(_m.“ (E(B))

[
*EE 7.4)

for ¢ and y specified in the theorem. It is straight-
forward to verify that the expression
£
(ETG)(p;a_‘) _ )\)2 +€2

in (7.4) can be replaced by

€
E ) - B p, W e

and the spectral integral can be performed to obtain
(7.2).

The following theorem relates the “renormalized
off-energy-shell T matrix” for three-particle scatter-
ing to the S operator.

Theorem 1.3: Suppose that H=Hy+3 ., V, where
each V,, satisfies (8). Furthermore, assume g{? satis-
fies (C) and x® e [ Y(R®) N L3(R?), x'® e [=(R®) N [3(R3).
Then the S operator S, has the following expansion:
(¢]Sas9)=lim lim lim (= 7)! f Appg-1

IR3{ng=1), g3 (ng-1)

t1 -0 6,40 Reew

X Py s B1(Page1) 91 (010 )FE) (Prgs)

X (Dugers B VIOWED |7 13 EEOFS™ (0] )

L int 7 -ey

€3
L - B, R @5
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for p=0x® cP®, Ff’:;*dgl*ekl‘(}t“"r“), for each
e,>0, p=gx‘* D0, FiO™y e [ HR¥*naD), for each
€,> 0, and y, a continuous function of compact support
where the “off-energy-shell T matrix” (p B-ﬁEfﬁ:

n
XIVEWRp, 15 Ef) is given by

i ] Byya) | o7 ey
(pna-l’Eln” VR W—tz lpna-l’El:t)

= fnﬂ dx ¢,n8_l(x& m(x)Vg) (x) ¢;:;::2 (x)

for <R <,

(7.86)

Proof: In analogy with the proof of Theorem 7.2 the
expansion (7.5) follows from the representation (3.5)
together with (4. 4) if the following equality is valid:

/dx f dpn5~1X(-n.x](E(B))
RS g3(ng-1)

X ¢P"B-‘l(x)x (x)Foil (pnﬂ-l)(i’] (Pn5-1)

XV (x)

a5 O P (5] )

R3(ng-1)

X (E(”(i?,',a.% Y2 +Ef ;1;1(94,3-1)
= f dP,.B-l dp:xa-l ¢1(Pn5-1)$1(1’;a-1)
R3(ng=1), p3lng-1)

LT Y *
XFE (B DFE™ (9K ooy (E®)

X 3!
(E' (py 1) = 2P +ei

X (Dugers EQU VWIS |11 ot ERD)

n ~6go

7.7

for ¢ and  of the form specified in the theorem and
€,>0, ¢,>0, 0 <R <. The interchange of integrals
required to verify (7.7) can be justified via the follow-
ing inequality (see Theorem 5.6 of Ref. 8):

fxs dx \xw’(x)Vg‘(x)Qﬁ:"";::z {x)| < D(R, suppdy, &), (1.8)
where D(R, suppz]),,ez) is a constant depending on R,
support of y, and ¢,.

VI[i. CONCLUDING REMARKS

In recent years several stationary Coulomb scatter-
ing theories have been derived®s~? each involving a dif-
ferent off-energy-shell formalism. These formalisms
lead to modified Lippmann--Schwinger equations in
which the pure Coulomb potential has been replaced by
momentum dependent potentials which decrease faster
for large particle separation than the Coulomb poten-
tial. Since the “effective potentials” appearing in these
modified Lippmann—Schwinger equations do not have
the symmetries of the pure Coulomb potential it does
not seem possible to obtain closed form solutions as in
the case of the two-particle off-energy-shell Lippmann--
Schwinger equations. In contrast the renormalized off-
energy-shell formalism derived in this paper is based
on the solutions of the off-energy-shell equations of
short-range scattering theory. Thus, as discussed at
the end of Sec. VI, explicit expressions for the kernels
of the Weinberg—Van Winter and Faddeev equations for
three-particle scattering via pure two-body Coulomb
potentials can be derived.

The results of this paper suggest that the solutions of
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the Lippmann—Schwinger, Weinberg—Van Winter and
Faddeev equations must possess, in the limit to real
energies, an oscillatory behavior which cancels the
stationary renormalization terms appearing in the
definition of the renormalized off-energy-shell
formalism. Thus any approximation procedure which
is based on the off-energy-shell Lippmann-—Schwinger
and Faddeev equations must take into account the exis-
tence of such divergent phase factors. For example,
the usual perturbation series based on the off-energy-
shell equations must be replaced® by “renormalized”
perturbation series which take into account the station-
ary renormalization terms.
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Schrédinger equation with Yukawa potential, a differential

equation with two singular points
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The Schrodinger radial equation with Yukawa potential is treated analytically by means of a double
contour integral representation for the solution. Standard solutions are defined relative to each of the
singular points of the differential equation. Convergent expressions are obtained for the connection
coefficients which occur in the linear relations persisting between any three of the standard solutions. These
expressions are double series the terms of which are hypergeometric functions multiplied by factors which
can be calculated recursively. As an application, the expression for the S matrix, which is simply related to
the connection coefficients, is considered with regard to its convergence properties.

1. INTRODUCTION

An old mathematical problem of applied quantum
mechanics is the Schrddinger radial equation with
Yukawa potential, as has been recently pointed out again
by Danos® on the occasion of an invited SIAM conference
talk. While of the two singular points of this linear
differential equation the regular singular point at the
origin is unproblematic, it is the singular point at in-
finity which causes the difficulty. In this context a re-~
cent paper by Shere? on multiple asymptotic series is
very important, for it gives new insight into the behav-
ior near infinity of the solutions of our differential
equation. This information stimulates us to find a ker-
nel which is suitable for a double integral representa-
tion of the solution. By means of the integral represen-
tation we are able to solve the connection problem,
i.e., to determine the coefficients in the linear rela-
tions persisting between the solutions defined relative
to the different singular points of the differential equa-
tion. The method is in principle similar to but much
more complicated than the classical method of finding
the relation between Bessel and Hankel functions by
means of a Laplace-type contour integral representation
for the solution of Bessel’s differential equation.

The present paper is divided into eleven main sec-
tions. By a simple transformation in Sec. 2, a modified
differential equation is introduced which contains only
three parameters rather than four. For this equation,
standard solutions relative to the origin are defined in
Sec. 3 in analogy with Bessel functions (of the first
kind). The general integral representation for the solu-
tion is derived in Sec. 4. By means of the integral
representation we are able, in Sec, 5, to define stan-
dard solutions relative to the singular point at infinity
in analogy with Hankel functions. The asymptotic expan-
sions? of these solutions are verified. The connection
probiem is solved in Sec. 6. The desired connection
coefficients are obtained in the form of convergent
double series, the terms of which are hypergeometric
functions multiplied by factors which can be calculated
recursively. Wronskian and circuit relations for the
solutions are considered in Sec. 7, and Neumann-type
solutions are introduced in Sec. 8. Section 9 is devoted
to the exceptional case where one parameter of the dif-
ferential equation, the angular momentum quantum
number, is equal to an integer or to half an odd integer.
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Another exceptional case occurring when one of the
other parameters of the differential equation, the ex-
ponent of the Yukawa term, happens to have any value of
a particular discrete set is treated in Sec, 10. As an
application, the significance of our results for the
potential scattering problem is shortly explained in Sec.
11, in particular the convergence properties of the ex-
pression for the § matrix are considered. Also, the
first Born approximation value of the § matrix is
verified.

2. REDUCTION OF THE NUMBER OF PARAMETERS
OF THE DIFFERENTIAL EQUATION

The Schrodinger radial equation with Yukawa potential
may he written

A" +2rf" + [ =11 +1) - grexp(- ur)] fir)=0.
2.1)
This differential equation, which depends on the four
parameters k, I, g, 4, may be reduced to an equation

with only three independent parameters /, G, B. For by
intreducing a new independent variable

z2=Fkr, (2.2a)
one obtains, with

fry=y(2), (2.2p)

&/k=G, (2.2¢)

k=8, (2.24d)

the differential equation
2*y” +2zy’ +[2 ~1(1 +1) - Gz exp(- Bz)] ¥(2) =0.
(2.3)
It is this z equation which we will treat in the following
sections,

3. SOLUTIONS RELATIVE TO THE ORIGIN: BESSEL-
TYPE SOLUTIONS OR SOLUTIONS OF THE FIRST
KIND

Relative to the regular singular point at the origin we
may immediately define, in analogy with Bessel func-
tions (of the first kind), one type of standard solutions
iy(L; 2) by

CLYy(L; 2)=[TR)/TG +L)R 22" T w(L)2",  (3.1)
where e
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L=1 (3.2a)
or
L=~1-1 (3.2b)
and [with w_(L)=0]
wo(L)=1, (3.3a)
0,(L) = [=16, (L) + G 24 (1/m1)(= B0, L))/
[n(n +2L +1)]. (3.3b)

The normalization has been so chosen that the right-
hand side of Eq. (3.1) reduces to the appropriate
spherical Bessel function when G — 0, The constant C(L)
is another normalization factor, depending on G, but
such that C{L)—~ 1 when G~ 0. It will be completely
defined later by Eq. (7.1) in Sec. 7. Apart from the
normalization factors, solutions of this type have been
used earlier.?

If / is neither an integer nor half an odd integer, the
solutions jy(l; z) and jy(~1 ~1; 2) are well defined and
linearly independent. The case when 2/ is an integer
requires special attention and will be considered later
in Sec. 9.

4. INTEGRAL REPRESENTATION OF THE SOLUTION

A. Type of integral representation

Standard solutions relative to the singular point at
infinity may be defined by their asymptotic expansions
in a suitable sectorial neighborhood of infinity, but in
order to find the connection between these solutions
with known asymptotic behavior and the solutions (3.1)
we need a convergent representation, i.e., an appro-~
priate integral representation. From the work of Shere®
we know that the asymptotic expansion is an expansion
with respect to the sequence

z"exp(-mpBz), n=0,1,2,--+, m=0,1,2, .-,

From this fact we get an idea as to the integral kernel
needed and are led to consider the double integral
representation

y(z):z'*-l(zm)'zfc fc K(z;s,t)v(s,t)dsdt (4.1)
with the kernel '
K(z;s,t)=exp[zt +exp(~ Bz)s]. {4.2)

The contours C_ and C, in the s and ¢ plane, respec-
tively, are not to depend on z. The factor z* has been
extracted in order that we may gain some freedom. The
still arbitrary parameter A will be specified later
according to our convenience.

Proceeding in a similar way as Ince* we substitute the
double integral (4.1) into the differential equation (2. 3),
interchange the z differentiation with the s and ¢ inte-
grations, and obtain the condition

fc J i i\ Up,lS, ) exp(—mpBz) 2"

t” Cg m0m=0
XK(z;s,t)v(s,t)dsdt =0
with
Uge(s, ) =A(A +1) ~1( +1),

(4.3)

(4. 4a)
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g (s,8)==2¢, (4. 4b)
Uga(S,8) =12 +1, {4.4c)
uy,(s,8)=218s ~ G, (4.4d)
u,(s,1) = B3 - 28st, (4.4e)
ty,(S, 1) = B2, (4. 4f)
1,008, £) = tgqls, £) =1y, (s, 1) =0, (4. 4¢)

Now integration of K(z;s,t) with respect to s yields
exp(Bz) K(z;s,t), and integration of K(z;s,?) with re-
spect to ¢ yields (1/z)K(z;s,t). It is, therefore, possi-
ble to decrease the exponents m or #n of the terms in
Eq. (4.3) by partial integrations with respect to s or ¢
according to

ffexp(—mﬂz)z"K(z;s,t)um(s,t)v(s,t)dsdt
= f(exp[—(m - 1)z} 2"K(z; s, ) u,,(s, ) vis, N dt
- [ [ exp[-(m -1)Bz] 2"K(z; 5, 1)
X3t (S, s, )] /08 ds dl
= [(exp(-mBz) 2" K(2; 5,8) (s, 1) v{s, 1)), ds
- [ [ exp(-mBz) 2" K(z; s, )
X 8[sals, t)0(s, )/t ds dt. (4.5)

Here the parentheses with subscript s or { denote the
difference between the final and initial value after the
contour has been described. The single integrals con-
taining these parentheses are referred to as the semi~
integrated terms. Repeated application of this reduction,
to each term in Eq, {(4.3) m times with respect to s,
and » times with respect to #, causes all the powers of
exp(- Bz) and of z to disappear in the remaining double
integral. The condition (4.3) then finally appears in the
form

fc fc K(z;s,t)i}oé am™u, (s, (s, )/

(as™At)ds dt +[R] =0, (4.6)

where [R] is an aggregate of semi-integrated terms.
While the semi-integrated terms may look different,
dependent on the order in which the integrations with
respect to s and ¢ have been performed, each of them
contains the factors K(z;s,t) and v(s,?) or a partial
derivative of v(s,t) and may contain powers of z,
exp(- Bz), s, and ¢,

In order that the double integral representation (4.1)
may be a solution of the differential equation (2. 3) it
is, therefore, necessary that the weight function v(s,t)
satisfy the partial differential equation

2 2
> Z% " u, (s, (s, )]/ (3s™3t") =0 (4.7)
n=( M=
or, explicitly,
5%y, +(38+20)Bs vy, +[2(0 +2)85 -Gl
+{(t +BP +1]v,, +2(\ +2)(t + B} v,
+(A+2+DA+1 =Dovl(s,)=0, (4.8)
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and that the contours C, and C, in the s and ¢ plane be so
chosen that the semi-integrated terms [R] vanish
identically in z.

An appropriate solution of the s¢ equation (4. 8) is

v(s,t)=2_ G"m!b,({)s™*™, (4.9)
m=0

where the coefficients b,({) obey, with 5_,(£)=0, the

recursive system of ordinary differential equations

[t —mpBP +1ps +2(0 +2)(¢ —mB)b,,

+(0 2+ 1 =Db Y= —b] ). (4.10)

The factors G™ and m! in Eq. (4.9) have been ex-
tracted in view of later convenience,

Since v(s, ) according to Eq. (4.9) is single-valued
with respect to s, a suitable contour for the s integra-
tion in Eq. {4.1) is a closed circle around the origin
traversed once in the positive sense, Of the semi-
integrated terms [R] then only the single integrals over
s survive while all the single integrals over ¢ disappear
because of vanishing integrands. Inserting the expansion
{4.9) into the integral representation (4, 1) and assum-
ing that (if the radius of the circle in the s plane is
chosen sufficiently large) the series may be integrated
term by term with respect to s, we obtain

y(z) =212 m)! f exp(zz)
XZ G™b (L‘)exp(— mBz)dt,

where the result of the s integration has just produced
the factor exp{—mfBz) and has cancelled the factorial
function and one factor 27i. Assuming furthermore,
that now the ¢ integration of the series may be per-
formed term by term, we are finally led to consider
solutions in the form

(4.11)

y(z)= z"‘“mi:t’) G™exp(—-mpBz)(2mi)t fc exp(zf) b,(¢)dt,
(4.12)

where the contour (we now write simply C rather than
C,) has to be so chosen that the remaining semi-inte-
grated terms vanish identically, while the functions

b,(t) satisfy the ordinary differential equations (4. 10),

B. General solution of the ¢ equations

In order to obtain a simple solution of the ¢ equations
(4.10) we now dispose of the parameter A by choosing

r=L. (4.13)

This means, since L is given by Eqs, (3.2), that we
consider only the two possibilities A=/ or A==/ =1,
We then have to solve the equations

[(t - mBy +1]b) +2(L +2)(¢t = mB) b, +2(L +1)b,,(t)
==b,_{2), (4.14)

the solution of which is found by standard techniques to
be

bu()=[t —=mpP +11 1 4, + [* [B,
X[(T -mpB? +1]7d7T).

Since we want to have a solution b,,(¢) which (in case

- bm-l(T)]
4.15)
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of real parameters Sand L) is real when ¢ is, the con-
stants of integration 4, and B, have to be real. This
is a convenient but not necessary agreement,

We now want to investigate in detail the behavior of
the solution (4.15) in the vicinity of its singular points.
Part of this task can be done conveniently by means of
the differential equations of which the 5,(¢) are the
solution. It is, therefore, important to note that the
b,(t) also satisfy a linear system of first order differ-
ential equations,

[(t=mBP +1]1b.(t) +2(L +1)¢ =mp) b, (t)=B,, ~b,..(1),
(4.16)

which may be used in place of the second order equa-
tions {4.14).

This fact is not so surprising as it might seem at
first sight. For if we had restricted the parameter A to
the values of / or -/ -1 from the beginning, it would
have been possible to find a third-order equation for
v(s,?) in place of the fourth-order equation (4.8) and,
as a consequence, a system of first-order equations
for b,(#), namely Eq. (4.16) with B,,=0. For some
parts of the present investigation, however, the solution
with all the B,, =0 turns out to be too much restricted.
The situation is quite similar here as in the case of the
(spherical) Bessel functions, where some interesting
information is lost by the usual treatment implying B,
=0 from the beginning.®

C. Power series expansions for the solution of the
t equations

The system of differential equations (4,14) has regu-
lar singular points at { =MpB+{ where M =0,1,2,
and at =, Relative to the points { =M B+ the charac-
teristic exponents are 0 and — L —1. Provided that
neither L is an integer nor (m — M)B=+2{, we have

b (t) =22 exp[—in(L + 1)/2]230 ap¥(L)

X(t = MB i)y 4 5 en™ (L)t = MB~i)"

n=0
for

|t -MB—i| <min(]|8],2), (4.17a)

b, {t)=2"""explin(L +1)/2]i}oa H*L)

x(t-M,3+i)‘L‘l'"+i‘ MMM LYt - MB 1)
for
[t =MB+i| <min(]g],2). (4.17b)

Relative to the point { =« the characteristic exponents
are 1 and 2L +2. Provided that 2L is not an integer
greater than -2, we have the expansion

b ()= io ATH(L)(E — MB) L2 4 i; ML)t - MBI

(4.18)
for

[t =MB| > ([(m ~M)Re(B)]? +[1 + | (m — M) Im(8)] J?)'/2,
or if M<m/2,
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[t ~MB| > ((MRe(A)]? +[1 + |MIm(g)| F)'/2
it M=m/2.

Convenient normalization factors have been introduced
in Eqs. (4.17). The coefficients af**(L) and ¢™¥*(L)
are conjugate complex to aJ¥(L) and c7¥(L), respec-
tively, if Band L are real. Otherwise the conjugate
complex has to be taken except for 8 and L which have
to be retained unchanged. It can be seen immediately
from the differential equations (4, 14) or (4.16) or from
the solution (4, 15) that, for n=0,1,2,...,

a™(L)=0 if M >m or M <0, (4.19a)

As soon as the initial coefficients with » =0, which
depend on the constants of integration A, and B,,, have
been specified, the other coefficients can be calculated
by means of recurrence relations, which can con-
veniently be obtained if the expansions (4.17) or (4.18),
respectively, are inserted into the differential equations
(4.16). The recurrence relations are

ar™(L)=1i@n)™ (n+L)al7(L), (4.19b)

a™(L) = ((m— M)B([m=M)B-2i)n - L =1))
X@2([m~M]B=i)n - 1) aT¥(L)
~(n+L-1)a"(L) ~a™ ¥(L)), if M <m,
(4.19¢)
em(L) = ((m - M)B([m~ Mg~ 2i)n) "
2([m - M|B=i)n+L)c(L)
—(n +2L) (L) ~cm}¥(L) +B,0,), if M*m

(4.20a)
cr™(L)=i2(n +L + 1) {(n +2L +1) e™Mi(L)
+ep'™L) - B,5,], (4.20b)

d™(L)=n"2(L +n)(m - M)Bd™(L)
~ QL +n){[m ~MPB* +1)d™(L) +d7} (L)),

(4.21)
em™(L)=(n-2L -1)"@2(n-L -1)(m =M)Be™(L)

~m=1)([m -MPB*+1)e™(L) +em 1 *(L)).

(4.22)
All the recurrence relations have been written down
under the convention that the coefficients are zero when-
ever one of their indexes (M excepted) becomes nega-
tive. The symbol §,, is equal to 1 or 0 according as »
is equal to or different from 4.

As to the initial coefficients, we have

am(L)=0 if m#*M, (4.23)
cr™(L)=i(2L +2)™ (c2*™(L) - B,), (4.24)
er(L)=(2L +1)'B,,. (4.25)

The other initial coefficients can be presented in con-
venient form only if the values of L are so restricted
that the required integrals exist. We then have

(L) =4, + [0 (B, = by (TIN(T = mp) +1)-dT
(4.237)
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if Re(L) > -1,
BHL) = (M = m}B +20) (0 - m)B)
x{4,, +fm:8"[3m b, (DT -mB +1]2dT)
(4.24")

for M <m if Re(L) <0 or for M >m with L unrestricted,

dr¥(L)=A, + fm“‘; (B,, = b, (TNT =mp)? +1)*dT

(4.26)
ifRe(L) <—~3% (or with L unrestricted if B,, =0 for
m=0,1,2,...).

The restrictions imposed here with respect to L will
not be prohibitive. For, by starting from the integrals,
we will later obtain expressions which do not need such
restrictions and therefore are, by analytic continuation,
valid for other values of L too. In order to demonstrate
this fact in more detail let us consider a7™(L), for in-
stance: The integral in Eq. (4.15) is equal to the sum of
two terms, one being constant and the other singular of
the type (t - mB—-4)**! times a function which is regular
at t=mpB +i. By definition of af™(L) it is the constant
term which is needed. Now if Re(L) > -1 the singular
part vanishes at £ =m8+{ and the integral in Eq. (4.23")
is equal to the constant term. The analytic continuation
of this integral with respect to L is therefore equal to
the analytic continuation of the constant term, just as
required.

If Eq. (4.19c¢) is rewritten with m =M + N where
N=1,2,3,..., the resulting equation has coefficients
independent of M. Therefore, and because of Eq. (4.19a)
the a*¥ #(L) are proportional to a##(L) but otherwise
independent of M, It then follows that

al ¥ M(L)=al(L}a¥*(L}/ad’(L).

Consequently the recurrence relation (4.19c) is needed
only with M=0.

(4.27)

As to the coefficients d™¥(L) and e (L), the situation
is more complicated since here the initial coefficients
d™¥(L) and e?¥(L) generally do not vanish when M# m.
It is therefore necessary to indicate the dependence on
the set of initial coefficients by using a more detailed
notation. Let us introduce another index P such that
d™P(L) denotes the special coefficients generated from
the set (™ P(L)=d™(L)=0 for m+ P, dY"P(L)=d{"(L)
#0). Similarly, let e/¥P(L) denote the special coeffi-
cients generated from the initial coefficients (e7¥F(L)
=eM(L)=0 for m+ P, ef¥P(L)=eP¥(L)#0). The special
coefficients obey the same recurrence relations (4.21)—
(4.22) as the general coefficients, but, for each P, all
the coefficients with m <P vanish. Then for m > P the
same set of coefficients is generated as for P=0 apart
from a shift of the indexes m and M by P and a normal-
ization factor independent of m and M. For since the
recurrence relations (4.21)—(4.22) depend on m and
M via m =M only, the shift in m can be compensated
by an equal shift in M. Consequently we have, writing
shortly d™? in place of di*#(L), etc.,

drf,m P+M P :d"muodgp/dgo’ (4. 283)
e'}lum P+M P _ eano egp/ego. (4_ ng)
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The general coefficients for » >0 then may be expressed
in terms of the special coefficients by

m m
A=) deP =D dnP M- POdER /g, (4.29a)
e:l” :;-0 e:lflP :}go e:r-P M-PO e:P/ego. (4. 29b)

Later in Sec. 6, we will need the sums ), ;_,G"d}™ and
T m.oG™e™™. Inserting Eqs. (4.29), interchanging the
summations, and introducing a new index of summation
v=m -~ P in place of m, which finally is called m again,
we obtain

w n L3

;Z'; G™dmm :<,,,Zz: G™ d,’,"""’) ( PZ% G”dg") /a3, (4.30a)

- " -

MZ:O G erm :(mﬂ‘) G™ e,’:""o) (P:c Gpe(fp)/eg". (4. 30b)
Here, use has been made of the fact that

dm0 = ™m0 =0 for m >n. (4.31)

Equation (4. 31) follows immediately from the recur-
rence relations (4.21)—{4.22) since, by definition of the
case P=0, the initial coefficients with n=0 are differ-
ent from zero for m =0 only.

This is what had to be said about the coefficients d™¥
and ¢7¥ . Even more complicated in the situation for the
coefficients ¢, but for our purpose a detailed discus-
sion of this matter is not required.

D. A special solution of the t equations

The functions b,(¢) in general, as presented in the
preceding subsections, still depend on the various con-
stants of integration A, and B,,. We will now specify
these constants in a manner suitable for several
purposes,

B,=0for m=0,1,2,..., (4.32a)

A,=28"1T(L +1), (4.32p)

A= [ bual VT - mB? +1) 4T for
m=1,2,3,.... (4.32¢)

The corresponding set of functions 4,(¢) will be referred
to as set I and denoted by b7 (¢).

5. SOLUTIONS RELATIVE TO THE SINGULAR POINT
AT INFINITY: HANKEL-TYPE SOLUTIONS OR
SOLUTIONS OF THE THIRD KIND

A. Integral representation

We are now prepared to define standard solutions of

(2) (b)
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the original differential equation (2. 3) relative to the
singular point at infinity by using the integral repre-
sentation (4.12) with the set J of functions b_(¢) and one
or the other of the contours C; and C,; which, starting
from and returning to infinity, enclose one cingular
point t =¢ or ¢ =~1{, respectively, as shown in Fig. la.
Provided that larg(8)! < 7/2, |8l >0, PB+2i for all the
integers P+ 0, and L is not a negative integer, our
standard solutions, defined in analogy with (spherical)
Hankel functions, are

hy(U(L; z): Z-L-lmz.i% G" exp(- mﬁZ) (zm)-l

X féa exp(zt) bi(t)dt, (5.1a)
2y L 2) = z"’"f} G"exp(-mBz}{2m)!
m=0
X jco_ exp(zt) bl(t)dt, (5.1b)
where
bI(t)y =25 (L +1) (£2 + 1)L, (5.2a)

Blit)=((t -mpP +1)F | :b,{,_l(T) (T = mBy +1)*dT

(5.2b)
for m=1,2,3,... .

Here, we may agree, the powers appearing in bi(¢)
are defined according to arg(f —=i)= -~ 7/2 and arg(¢ +7)
=7/2 at that point of each contour where ¢ is on the
imaginary axis while |/ <1, If the contours start from
and return to infinity in the direction parallel to the
negative real axis, as shown in Fig. la, the integral
representations (5,1) are valid for |arg(z)l <n/2. More
generally, if each of the contours is rotated around the
corresponding singular point by an angle @, the inte-
grals exists for | @ +arg(z)| <n/2. The possible angles
of rotation are restricted by the presence of the other
singular points, so that - 7 +arg(8) <a <u/2 in case of
hy'(L; z) and - 7/2 <a <7 +arg(B) in case of Ay*)(L; 2).
Consequently, by rotation of the contour, ky"**L;z) may
be continued analytically and defined in the larger sec-
tor — 7 <arg(z) <37/2 —arg(8) and £y*®’(L; 2) in the
sector —37/2 -arg(f)<arg(z) <,

B. Asymptotic expansion

For each of the integrals in Egs. (5,1) we may now
obtain an asymptotic expansion for z-. « on the basis
of Watson’s lemma. ® Inserting the power series for
b1(2) around the relevant singular point according to
Eg. (4.17a) with M =0 and integrating the series term
by term, we have, in case of hy'*)(L; 2),

FIG. 1. Contours in the ¢

® plane suitable for the integral
representation, All the con-
tours shown start somewhere
at infinity, enclose at least
one of the gingular points of
the integrand, and return to
infinity. The figures have
been drawn for the case when
B is real and positive. The
contour Cg, shown in Fig. la
corresponds to Q=2, the
contours in Fig. 1b to M=2.
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A A1 3
2 f o S (D)

~ 27 expliz) exp[-in(L +1)/2]§ P, (5.3a)

z—o, —7<arg(z)<37/2 -—arg(B).
Here we have used the fact that, according to Egs.
(4.17a) and (5. 2a),

ad®(L)=2L"T(L +1),
and we have introduced the coefficients

b, =[T(L +1)/T(L +1 =n)]a™(L)/a%(L). (5.5)
Inserting this result into Eq. (5, 1a) and treating Eq.
(5.1b) in a similar way we obtain, in accordance with

Shere,? the asymptotic expansions of the Hankel-type
solutions,

By (L; 2) ~2 " expliz) exp[—in(L +1)/2]

(5.4)

xé‘{; G" exp(—mﬁz)é Ponz™,
z—o, —7<arg(z)<3m/2-arg(B), |arg(p)|<n/2,
(5.6a)
hy®NL;2) ~z " exp(~iz)exp(in(L +1)/2]

X35 GMexp{-mBz) 2, pr 2z,
m=0 n=0

z—w, -37/2-arg(p) <arg(z) <m, |arg(B)| <7/2.

{5.6b)

Here the coefficients p,, and pX , which do not de-
pend on L, may be computed from the recurrence
relations

Pun :(mﬁ(mB—Zi))—l [“2(" "1)(mB"‘7:)pmn-1

_(n—l +l)(n—2—l)pmn-2 +pm—ln-l]’ (5.73)
Prn=(mBmB+2N" [=2(n -1)(mpB+4) p% .,
—n=1+Dm=2=0) pk ,+px . ..], {5.7b)
for m=1,2,3,..., and
Pon=—-i2n)" " +1)n -1 -1) Py, (5.1c)
D3 =(~1)"Pon, (5.7d)
with
Poo=0p% =1 (5.7¢)

and the coefficients equal to zero whenever n <m.

These recurrence relations may be obtained either from
the definition (5.5) of the b,,, in terms of the ¢™%L) and
the recurrence relations satisfied by the al°(L} or
directly by substituting the asymptotic expansions (5. 6)
into the original differsatial equation (2. 3).

Since L=! or L= -1 -1 according to Egs. (3.2), we
have two sets of solutions, which however differ merely
by constant factors,

hy(~1~1; 2y =explin(2l +1)/2] Ry U; 2), (5.8a)

Ry ®N~1 ~1;z)=exp[-in(2] +1)/2]hy?'(; 2), (5.8b)

in analogy to the behavior of Hankel functions. Equations
(5.8) may be used to complete the definition of hy"*)(L; z)
and Ay'?X(L; z) for L equal to a negative integer. Further
comments on the case when L is an integer will be given
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in Sec. 9. The exceptional case when the parameter 8
has a value such that PB=2{ for some integer P+ 0 will
be treated in Sec. 10.

If Egs. (5. 6) are to be interpreted as multiple
asymptotic expansions, with respect to the sequence
z7 exp(~—mpBz) for z— oo, in the sense of Shere, ? it is
necessary to impose in addition the restriction that
larg(Bz)| <w/2. Consequently both the asymptotic ex-
pansions (5. 6) then are valid in the same, smaller
sector — /2 —arg(p) <arg(z) <n/2 —arg(B). In fact, that
the integral representations (4.1) or (4. 12) may be
solutions of the differential equation (2.3) is evident
from Sec. 4. A provided that z is restricted either to
any finite domain or to any domain which is infinite but
such that larg{Bz)] <7/2 when z— «, For otherwise the
kernel K(z;s,) and the powers of exp(~ 8z) in the semi~
integrated terms cause trouble when z— «, and there-
fore the limit z— « of the solutions may be considered
without special care only if larg(8z)| <u7/2, Neverthe-
less, the Eqs. (5.6) seem to be meaningful in the ex-
tended sectors: The expressions (5.1) for the Hankel-
type solutions are without doubt solutions of the differ-
ential equation (2.3) as long as z is finite, and the sums
over m are therefore expected to converge irrespective
of the phase of 8z, In going from Eqs. (5.1) to Egs.
(5. 6) we have replaced the coefficients of the series in
powers of Gexp(- Bz) by their asymptotic expansions.
The Eqgs. {5.6) are therefore suitable to represent the
solutions when |z! is sufficiently large but finite, even
if the real part of Sz is not positive, just because of the
convergence with respect to m. That finally, when
z— e, all the terms of the sum over m become infinite
if Re(Bz) <0 does not matter, for it reflects the highly
singular nature of the solutions at infinity, which cannot
simply be accounted for by one multiplicative singular
factor times an ordinary asymptotic expansion,

C. Modified integral representation

More generally, let us consider, in view of later
application, the solution

yilg)=2"t1 5_}; G™ exp(~ m Bz)

x(2m)™ fc;; exp(zt) b,,(t)dt, (5.9)

where Cj denotes a contour which, starting from and
returning to infinity, encloses one singular point £
=MpB+i as shown in Fig. 1b. Again we may agree that
the powers appearing in the integrands are defined
according to arg{f ~MB— i)=—n/2 and arglf - M5 +i)
=7/2 at that point of the contour where { — M8 is imagi-
nary while |# - MB| <1, The b,(¢) are still the general
ones with the constants of integration not yet specified.
For m <M they are analytic at f=MB -+ and do not
contribute to the integrals. It then remains to consider
the integrals with &, ,(¢) for N=0,1,2 ... . The rele-
vant, at £=MpB+i, singular part of by, y(¢) is propor-
tional to

2 aﬂM»N M(L)(t —Mﬁ— ,L‘)-L~1m,
n=0
which, because of Eq. (4.27), is equal to

(@4¥(L)/afP{L) Ty al(L) (T = i) 5.
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This is, apart from the constant factor in front of the
sum, essentially the singular part at 7 =i of by(7),
where T={ -~ MB. For the contour integral we therefore
obtain

exp(—MBz) fc;, explzf) by, x(t)dt

=(a¥"(L)/a(L)) [ caexp(zT) b (T)dT. (5.10)
It then follows that
yil2) = G¥(af“(L)/a’(L)) yi(2). (5.11)

On the other hand we have, by comparison of Eqgs.
(5.1a) and (5.9),

(2) =al%L) @'T(L +1) " Ry V' (L; 2), (5.12)

for the general functions b,(f) and the special functions
bI(t) can differ merely by additive terms which are
analytic at / ={ and, if A; and B, are not the same in
both cases, by the normalization aJ’(L) of the terms
which are singular at =4, From Eqgs. (5.11)—(5.12) we
obtain

yil2)=G¥ ™MLY L D(L +1)V Ry (L; 2).  (5.13a)

Similarly, if we consider the contour Cj which,
starting from and returning to infinity, encloses one
singular point {=Mpg —~i as shown in Fig. 1b, and if
vy(2) is the solution of the type (5.9) but with the con-
tour Cj, rather than C;, we have

yul2) = GH¥a (L) 21 T(L +1)hy®(L; 2). (5.13Db)

The integral representation (5.9) with the contours Cj
or C;,, respectively, yields therefore, apart from
normalization factors, again the Hankel-type solutions
even when M=+ 0.

6. THE CONNECTION PROBLEM

A. General linear relation between the solutions of
different kind

Let us consider the integral representation

Yoolz) =zt 20 G™ exp(~m B2)

x(2)™* [ exp(zt) b,(t)at (6.1)
Qo

with a contour C,q which, starting from and returning
to infinity in a suitable direction as shown in Fig. 1a,
encloses all the singular points f=mg@+i and t=mpB ~i
from m =0 up to m = Q. And let us choose a special set
of functions b,,(f) such that all the b,(¢), in particular
for m > @, become analytic at all the singular points,
t=(Q +R)B+iand t=(Q +R)B—-i with R=1,2,3,... ,
to the right of the contour. This means that for m > @
we need to have a™(L)=al"*(L)}=0. According to

Eq. (4.23’) this condition can be satisfied if the con-
stants of integration, in case of —1 <Re(L), are chosen
to be

An=3L""" b, (D) (T =mBP +1)2dT

ma
mB-i 2 L
+ 7 b (T) (T = m B +1)4aT], (6.2a)
mBei
B,=E f,,.,,.. b (T) (T —=mBP +1)*4T, (6.2b)
with
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E?= [M(T - mpP +1)EdT (6.2¢)
or
E=-iD(L +3)/(TG)T(L +1)).

To specify the constants of integration for m < @ is
not necessary at this stage. Using the expansion in
powers of (¢ ~mpB)™* according to Eq. (4.18) for the
b,(t), we then have to consider

Vool2) = z"’“mi;o G" exp(—mBz) (2m)™!

Xfc exp(Zt)(i dnmm(L) (f = mp)-2L-z=n
Q0

(6.2d)

n=0

+§ em™(L) (¢ —mB)""’)dt, (6.3)
where arg(t ~mp8) =0 when { —m§ is real and positive.

With our choice (8, 2) of the constants of integration,
all the b,(¢), even those with m >@, are analytic at the
singular points of the differential equation situated to
the right of the contour Cgq. For each finite m, in
particular m > @, the contour may therefore be de-
formed so as to lie wholly in the region where the
series in powers of (f —mp)™ converge uniformly. Then
it is legitimate to integrate the series term by term,
and we obtain

Yood) =253 6" 55 (CRL +2 +m) d3n(L) &

=0
+z'L'1Z_% G" ZO (n1)yle™(L) 2", (6.4)

Interchanging the summations over m and » and ex-~
pressing, by means of Eqs. (4.30), the general coeffi-
cients d7™(L) and e"™(L) in terms of the special coeffi-
cients d™°(L) and e?™%(L), we obtain

yool2)=(T(2L +2))"(§i7 GPd(f”(L))zL"Z-:% w,(L) 2"

+(Pi;o Gpefp(L))z'L" i; w(-L~1)z", (6.5)

=0
where

w(L)=[TQ2L +2)/T2L +2 +n)]

X3 Gm gL /L), (6. 62)
wl=L=D=(1) 5 6m e (L)/eAL). (6.6b)

That the right-hand sides of Eqs. (6.6) are equal to
the coefficients w, (L) and w,(- L 1) of Sec. 3 can be
verified by explicit computation of the first few coeffi-
cients in both cases, but it seems difficult to show
generally for arbitrary n. Comparing Eq. (6.5) with the
Bessel -type solutions (3.1) we have

Yoole) = [2°T(L +1)]* (2 cPd§P<L>)
XC(L)jy(L;2) +27X(C(z - L)/T(3))

x(;:;’ G"eg’P(L))c(-L -1)jy(~L ~-1;2).
(6.7
This result could have been obtained from Eq. (6. 4)
even without the detailed discussion of the properties of
the coefficients: For we know that yoo(z) is a solution

of the differential equation (2.3) and therefore should be
some linear combination of the solutions jy(L; z) and
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j¥{=L ~1;2). In fact, Eq. (6.4) shows the expected
analytical structure, and therefore it suffices to con-
sider only the terms with »=0, which yield the normal-
ization factors. By comparison with the normalization
factors of jy{L; z) and jy(—L -1;z), Eq. (6.7) then
follows immediately. More generally, the corresponding
coefficients for any » should agree, and this fact pro-
vides an indirect proof of Eqs. (6.6).

We have succeeded in expressing the solution ygo(2)
as a linear combination of the Bessel-type solutions.
It remains to express yqo.(2) as a linear combination of
the Hankel-type solutions. To do so we again start from
the integral representation (6.1) and observe that the
contour C,, is, after suitable deformation and apart
from some paris at infinity which do not contribute to
the integral, equal to the sum of all the contours Cj,
and C;, where ¥=0,1,2,..., @ -1,Q. We therefore
have

yool2) = 274" i}o G™exp(—mpBz) (2m)™!
x5 [f,. exp(zt) (1)t
M=0 I’}

+ fc;’exp(zt) b,(t)dt] (6.8)

or, by means of Eqs. (5.9) and (5.13),
Q
Yool2) = E) GYa(L)[2%70(L + 1)) hy "™ (L; 2)

+2 GﬂagH*(L)][2L¢IF(L +1)]-—1 hy(z)(L; Z).
(6.9)

By equating the two different expressions (6.7) and (6.9)
for yQQ(z) we have the general linear relation between
the solutions of different kind, valid for arbitrary values
of the integer =0,1,2, - .., The constants of integra-
tion A, and B,,, on which all the initial coefficients
a?™(L), a?*(L), d¥™(L), and e™™(L) depend, have not
yet been specified for m < @. It is by choosing @ and the
A, and B, for m < @ in a suitable way, that we will ob-
tain the desired special relations between our standard
solutions.

B. Special relation between the solutions of the first and
third kind
1. The connection coefficients

Our first choice of the constants of integration is such
that we have, for m=0,1,2,...,Q,

b, (t) =bi(t). (6.10a)
Consequently

d®(L)=251(L +1), (6.10b)

dr™(L)=0 for m=1,2,3,..., @, (6.10¢)

eM(L)=0 for m=0,1,2,..., @, (6.104)

ad®(L)=2211(L +1), (6.10e)

and, if Re(L) > -1, a™(L) may simply be written as an
integral

ag™(L)= [~

5o Ot (D (T = m P +1]%dT

(6.101)
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for m=1,2,3,...,Q. Equation (6. 7) then reduces to
yoa(z)=(2 +2I0(L +1)] 5 d;}"’(L))
P=Qe)

XC(LYjy(L;2) +275(T(3 -~ L)/ T()

X fg eg’P(L))c(-L -1)jyl-L =1;2),
(6.11)

and this expression must be equal to the right-hand side
of Eq. (6.9). Provided that the sums over the initial
coefficients in Eq. (6.9) will converge, we may now
take the limit @ — < and obtain

2C(LYjy(L; 2) =D(L) hy'* (L 2)

+D*(LYny'¥(L; 2), {6.12)

where we have introduced the connection coefficients
D(L)=1+ g_) GYa¥™(L)/aS(L) (6.13)
=1

and D*(L) which is the corresponding conjugate complex
function of the parameters G, 8, L.

2. Convergence of the expressions for the connectic:
coefficients

Since the left-hand side of Eq. (6.12) is well-defined,
at least if 2L+ -2, -3, -4, ..., the expressions (6.13)
for the connection coefficients on the right-hand side
are expected to converge. Nevertheless a proof of this
fact seems to be desirable. For this purpose we ob-
serve that, since the integrand in Eqs. (5. 2b) and
(6.10f) vanishes when T— at least as fast as T7%, the
upper limit « of the integrals may be replaced by
€e+mpB+i+wexp[iarg(f)]. It then suffices to know tha
behavior of each of the b,(f) on the straight line definert
by

Hr)=e+mB+i+rexpliarg(p)], 0<sr<e, (6.14a)

where €=0, More generally let us consider the functions
b,(t) on a straight line parallel to the original one,
corresponding to some real € with 0<e¢ <min(2, [8(). In
case of m =1 we then have, using the parameter 7,
which is real and positive, as a new variable of
integration,

K(L)bl(£) (£ = B +1) 2!

- :(H(r))’“ (F(r)* Edr (6. 14b)
with

K(L)= 2T +1)]7, (6.14c)
R=({-¢=B=~i)/E, (6.144)
E =expliarg(p)], (6. 14e)
H(r)={(vE +€)/[(r + | B1)E +e]H{(7E +¢ +2i)/

[(» +181)E +e+2{]}, (6.14f)
F(r)=[{r +1BNE +€][(r +| B )E +¢ +2¢]. (6.14g)

By a suitable choice of ¢, to be discussed below, H(7)
in case of Re(L)> 0 or 1/H(7) in case of Re(L) <0 ecan
be made to be bounded. A positive constant /;(L) then
exists such that | (H(»))%| <I,(L). Also, with the same
choice of €, there is a positive constant I, >0 such that
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|F(r)| > L(r +| 8] 2. (6.14h)

For example, if 8 is real and Re(L)> 0 we may simply
take 7;{L)=1 and I, =1, and this is true even with ¢=0,
Since the integral over the r-dependent factors of the
estimate is

Jor+]a)2ar=(r+{g|)",
it follows, with L,(L)/I,=KL) >0, that
|K(L) b1(t) (¢ = B2 +1)"1| <IHLNU(t - € ~i)/E).

(6.14i)

(6.145)
Assuming, on the basis of this result, that
|K(L) 6L [t - mBY +1]5]
<ULW"[(t € ={m =1} B=3)/E]™/m! (6.14k)

we obtain, using again the positive real parameter » of
Eq. {6.14a) with m replaced by m +1 as a new variable
of integration,

| K(L) by a O [ - {m+118)* + 175
<y [ | HONE (RO

(t-e-(mer)B-4)>

x(r + | g Y™ Edr|/m! (6.141)
or
|K(LYBL, () [(£ = {m +1}8)* +1]%

<UI(LN™(t —e=mB~i)/E|™/(m +1)1. (6.14m)

This is the same equation as Eq, (6.14k) apart from the
replacement of m by m +1, And therefore, since Eq.
(6.14k) is valid for m =1 according to Eq. (6.14j), it
holds for any m=1,2,3,+--. As to the choice of ¢, we
prefer €¢=0 if the reqguired bounds exist for e=0. Since
a7™(L} then is just the value at ¢ =mpf +i of the integral
estimated by Eq. (6.14k), it follows immediately that

|K(L)ag™(L)| <[KL)/|8]]/m!. (6.14n)

The conditions implying that e=0 is a possible choice,
which may depend on whether we consider aj™(L) or
a™*(L) and will be stated so as to apply to both simul-
taneously, are that Re(L)> 0 and the interval [-2{, 2{]
of the imaginary axis is excluded for 8. We now want
to show that the estimate (6.14n) remains valid even if
these conditions are violated, We then have to choose
an € # 0 such that the required bounds exist. As a con-
sequence the estimate (6.14k), with a different constant
I(L), is valid on a path which no longer contains the
point of interest f =mpB +i, but starts some distance ¢
from it apart. On the other hand, the integral is known
to be the sum of two terms, one singular and the other
regular at f=mp +i. While the regular term tends to a
constant when ¢t~ mB+i, the singular one either di-
verges or vanishes according as Re(L)< ~1 or Re(L)
> -1, respectively. If ¢ is sufficiently small, then
these terms cannot cancel because of their different
order of magnitude, and the estimate (6.14Kk) is also
approximately valid for the regular part alone. But the
regular part does not change significantly when e— 0,
and therefore the estimate (6. 14k) essentially remains
true at t=mpB +17 for the regular part, in particular as
far as the factor 1/m! is concerned. Since the value at
t=mp +i of the regular part is just a7™(L), it follows
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that Eq. (6.14n), may be with a different constant I(L),
applies even when an €# 0 is needed.

We therefore have shown that the expression (6.13)
for the connection coefficients, defined for larg{s}!
< /2, converges provided that 8+ 0, for arbitrary
values of G. This means that we have solved the con-
nection problem for arbitrary values of G and g while
larg(p) | < /2, except for =0 while G#0, a case which
although our method breaks down is much simpler and
can be reduced to Kummer’s differential equation. It is
another question, to be considered in the next subsec-
tion, whether or not we are able to obtain in all cases
a sufficiently simple explicit expression for the a?™(L).

3. Explicit expressions for the connection coefficients

In order to evaluate ¢?™(L) as given by Eq. (6, 10f)
we insert the expansion of b!_,(¢) around infinity,

b,{,,l(t)=§ dr-too(pygal-am, (6.15)
n

It may be seen from the domain of convergence for
Eq. (4.18) that this expansion converges uniformly on
the path of integration, provided that | gl

>2) sin(arg(B))), a condition which has been stated so
as to apply simultaneously to both the ¢J™"(L} and
a?™*(L). Assuming that the parameter 8 obeys the re-
striction just mentioned we may integrate the series
term by term. We then have to evaluate the integrals

zLdr‘(L -{-],)Il(ll’ﬂ)zj.":;‘i T'ZL'Z'H((T_mB)Z +1)LdT,
(6.16)

which may be expressed in terms of hypergeometric
functions [using, for example, Ref. 7, Eq. (3.197,2)],

HL,n)=2"1" DL +2 +2)) ' n! (mB+iy™?
X, Fi(=L,n+1;L +2 +n; (mB—-i)/(mp +1)).
(6.17a)

By means of the transformation formulas of the
hypergeometric function this can be written

H(L,n)=2"""[D(L +2 +n)]" n! @mp)™"
X,F {5 +n/2, 1 +n/2; L +2 +n;

(1 +m®B%)/(m?B?)) (6.17)
or
H(L,n)=2"2"'[0(L +2 +n)] ' n! (25)™"
X,F (5 +n/2, L+1+n/2; L +2 +n;
1 +m?g?), (6.17¢)

and finally

H(L,n)=n! 2" %" exp[-in(n +1)/2] (1 +m?2p2)""+1/2
X[PGHTQ +n/2) DL + 3 +n/2))?
X, Fia +n/2, =L 5 -n/2; §; m*8%/(1 +m?g?))
+D(-3)(CG +n/2) T +1 +n/2)!
xexp(—im/2) (m*p%/(1 +m®p?)}/*
X, Fo(l +1/2, L -n/2; 35 m*B%/(1 +m?p?)]

(6.17d)
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(L not a negative integer)
or
H(L,n)=mn! 2758 ;282 +1)" /2
x{T(L +3)(T(L +1 +n/2)T(L +3 +n/2))*
X, F, G +n/2, =L -3 =n/2; =L +3; 1/(m*& +1))
+T(=L =3)(PG +n/2)T(1 +n/2)™
xexp[im(L +3)] (m*g% +1)"L-1/2
X, F (L +1+n/2, —n/2; L +3; 1/(m?8% +1))}

(6.17e)
(L not half an odd integer).

The application of the transformation formulas of the
hypergeometric function requires some care in order
that the appropriate branches may be taken. The frac-
tional powers in Eqs. (6.17d)—(6, 17e) have been de-
fined so as to become real and positive if 8is (and L is
real}. We have chosen for presentation the expressions
(6.17d)—(6.17e) with the important case in mind that 8
is real. Equations (6.17d) or (6.17e) then are pref-
erable according as m?g%<1 or m?*g%= 1, respectively.
Other expressions for H(L,n), which may be more
suitable when 8 is complex, can be obtained from
Eq. (6.17a) by means of the transformation formulas
of the hypergeometric function.

For the connection coefficients we now have, from
Eqs. (6.10f), (6.13), (6.15), and (6.186),

©

DL)=1+ Z1 GnZ, dy' L) H(L,n), (6.18a)
D*(L)=1 +""Z,; G"‘Zﬁ dmtO%LYH*(L,n), (6.18b)

where the coefficients 7' °°(L) can be calculated re-
cursively from Eq. (4.21) with M =0 and the initial
coefficients (6.10b)—(6.10c). The H*(L,n) are the
corresponding conjugate complex functions of the pa-
rameters Band L. The sums over » have different do-
mains of convergence with respect to g8 if | 8l <2 while
Im(B)# 0. The condition for convergence is

I 8] > -2sin[arg(p)] in case of D{L) and

| 8] >2sin[arg(B)] in case of D*(L). The sums over m,
we may recall, converge under less stringent conditions
on g for arbitrary (not necessarily real) values of G,
From a computational point of view, Eqs. (6.18) are
useful only for a more restricted range of the parame-
ters, since otherwise the rate of convergence may be-
come prohibitively slow. We should keep in mind that
the Hankel-type solutions and the connection coefficients
have been defined in the preceding sections for |arg(g)|
< /2 (and B8+ 0) only. The analytic continuation with
respect to B will not be considered in the present paper.

7. RELATIONS BETWEEN DIFFERENT SOLUTIONS

A. Normalization of the solutions of the first kind

We now dispose of the normalization factor C(L) of
the Bessel -type solutions by choosing

C(L)=4{D(L)D*(L)}*'?, (7.1)

where C(L) >0 for real values of L, G, B. With &(L)
defined mod(27) by
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explid(L)}=D(L)/C(L)
we then have
2jy(L; 2) = expli6(L)] hy' (L ; 2)
+exp[—i6(L)|hy'?(L; 2)

{7.2)

(7.3a)
or
2jy(L; o) =cos[8(L)] [hy' V(L; 2) +hy'PU(L; 2)]
+i8in[6(L)] [hy“ (L; z) = hy?X(L; 2)].
(7.3b)

B. Wronskian relations
Let us consider the Wronskian

W(z) = Wy, (2}, 9:(2))

=9,(2) v5(2) = v{(2) y,(2) (7.4)

of two solutions y,(2) and y,(z)., By standard techniques
it can easily be seen from the differential equation (2.3)
that z?W{(z) is identically constant. Evaluating 22W(z)

at infinity or at the origin, respectively, we obtain

ZWhy "V (L; 2), hy®(L; 2)) = - 24, (1.5)
2[W(iy(L; 2), jy(-L =15 2))]
= ~sin[m(L +$)}/[C(L)C(- L -1)]. (7.6)

The last Wronskian, when evaluated by means of Eqs.
{7.3a) and {7.5), gives

Z2W(jylL; 2), jy(~-L - 1; 2))

= =sin[6{~ L ~1} = 8(L) + a(L +3}]. (7.7
By comparison with Eq. (7.6) we then have
C{LYC(-L =1)sin[6(-L = 1) = 6(L) + n(L +3)]

=sin[7(L +%)]. (7.8)

C. Circuit relations

By inspection of Eq. (3.1), which is valid for arbi-
trary values of arg(z), we find immediately, for any
integer M, the circuit relations of the Bessel-type

solutions
v(L; z exp(2Mmi)} = exp(2ML m) jy(L; 2). (7.9)

The circuit relations of the Hankel-type solutions,
which then can be found by means of the connection
formula (7.3a) in the usual way, are

Ry L; z exp(2Mi))
={cos[6(—L ~1) -8(L) - (2M - 1)L 7]
xhy N L; 2) —exp[-i(6(~L —1) +8(L) +(L +1/2)m)]
xsin(2ML ) hy*(L; 2)}/cos[6(- L ~1) - 6(L) + L],
(7.10a)

hy®{L; z exp(2M i)
={exp[i(6(-L 1) +6(L) +(L +3)m]
xsin(2MLa)hy*(L; 2) +cos[8(- L —1) - 6(L)
+(2M +1)L 7] hy'?(L; 2)}/cos[6(- L —=1) = 6(L) +L].
(7.10b)
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These equations can be used to extend the definition of
the Hankel-type solutions and to obtain their asymptotic
expansions for values of arg{z) other then those con-
sidered in Sec. 5.

8. NEUMANN-TYPE SOLUTIONS OR SOLUTIONS OF
THE SECOND KIND

Solutions of the second kind may be defined by the
requirement that they are to be “orthogonal” near
infinity to the corresponding Bessel-type solutions,
i.e.,

2iny(L; z) = exp[i6(L) | hy' V(L; 2)

—exp[-i6(L) | ny®(L; 2) (8.1a)

2ny(L; 2) = —icos[6(L)] (hy(L; 2) = hy'P(L; 2))
+sin[6(L}] {hy' (L 2) +hy'2(L; 2)). (8.1b)
We then have

hy'V(L; 2) = exp[-i6(L)] (y(L; z) +iny(L;2)), (8.2a)

hy®(L; 2) = exp[i6(L)]) (iy(L; 2) ~iny(L; 2)),  (8.2b)

and
ny(L; 2) = {cos[6(~ L = 1) = 8(L) + n(L +1)]jy(L; 2)
-jy(=L =1; 2)}/sin[6(~ L 1)

- 8(L) + (L +3)) (8.3a)

or, because of Eq. (7.8),
ny(L; z) ={cos[6(-=L =1) = 8(L) + (L +$)1i¥(L; 2)
—j¥(=L =1;2)}C(L) C(- L =1)/sin[a(L +3)].
(8.3b)

Equations (8,3) show the behavior near the origin of
the Neumann-type solutions, provided that L is neither
an integer nor half an odd integer.

The Neumann-type solutions have been defined so as
to be always linearly independent of the corresponding
Bessel-type solutions. In fact, from Eqs. (7.6) and
(8. 3b) follows the Wronskian relation

22W(jy(L; 2), ny(L;2)) =1. (8.4)
9. THE CASE WHEN 2/1S AN INTEGER
A. Hankel-type solutions for L equal to an integer

While the definition of the Hankel-type solutions by
the contour integrals (5.1) includes the case when
L=0,1,2, ..., their asymptotic expansions (5.6)~(5,7)
have been derived in Sec. 5.B under the tacit assump-
tion that L be not equal to an integer, for otherwise the
expansions (4.17) of the integrands break down and have
to be replaced by more complicated expressions con-
taining logarithmic terms. Inserting these expressions
into the integrals and integrating the series term by
term we find, nevertheless, the same asymptotic ex-
pansions (5.6)—(5.7). This is not an unexpected result,
for the asymptotic expansions are well-defined even
when L becomes equal to an integer and therefore
should remain valid, by analytic continuation with re-
spect to L.
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B. General properties of the Bessel- and Neumann-type
solutions

If L =-% +Nis half an odd integer, we may conclude
from Eq. (7.8) that

6(-3 = N)=06(-3 +N). 9.1)
It then follows from Egs. (5.8), (7.3), and (8.1) that
jy(=% =N; 2) =(=1)"jy(=% +N; 2), (9.2)

ny(=% =N; 2)=(=1)" ny(-% +N; z), 9.3)

It therefore suffices to investigate jy(-3 +N; 2),
ny(-3% +N; z), and, as will be explained in Sec. 9.D,
jy(N; z) and ny(N; z) for N=0,1,2, ---, As to
jy(~% +N; z) and jy(N; z), the connection problem has
already been solved in Sec. 6, apart from the fact that
in case of jy(~3 +N; 2) the expression (6. 17e) for
H(L,n) has to be replaced. The appropriate expression
can be obtained either from Eq. (6.17e) by a limiting
process or more simply from Eq. (6.17¢) with L
= -3 +N by means of that continuation formula of the
hypergeometric function which applies in this excep-
tional case [Ref. 8, Eq. (15.3.13) or (15,3.14)].

If 2L is an integer greater than -2, then any solution
y(L; z) which is linearly independent of jy(L; z) can, by
standard techniques, be seen to have the form

WLiz)= 5 g L)z

+a(L)§:) w,(L) 25" In(z2), (9.4)

where g,(L)#0 and g,,,(L) if L+ -3 or g,(-3) and
af{-%)#0 are the constants of integration. The coeffi-
cients g,(L) and a(L) can be evaluated by means of the
recurrence relations [with g_ (L) =0]

gn(L) =(_ gn-Z(L) + G’i (l/m' )(— ﬁ)mgn-m-l(L))

fnin ~2L -1)] for 0 <n <2L +1 (9.5a)
with L:%’ L, %: R
a()= (~g02a(1) 46 Z (1/m1 ) B52,.1)/
(2L +1) (9.5b)
WithL:Oy%s L.,
L) =(=ral) 46 5 1/m = A5, (D)
-(2n=2L -1y o{LYw, ,; (L))/In{n-2L -1)] {9.5¢)

for n>2L +1 with L==3, 0, §,++-.

The coefficients w,(L) are those defined by Egs. (3.3).
By comparison with Eqs. (3.3) we have, with L
=0, %, 1, .-,

g L) =g(L)w,(-L -1) for n <2L +1
and

al(L)=2g,(L) [(s +L +1) L )] P (9.5¢e)

Changing the constant g,;.,(L) is equivalent to adding
a multiple of jy(L; z).

If 2L =1,2,3, -« ., it may happen for particular pairs
of values of (G, 8) that Eq. (9.5b) yields a(L)=0 and

(9.5d)
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the logarithmic terms in Eq. (9.4) do disappear. Such
cases are related to the indeterminacy points of the S
matrix studied by Ahmadzadeh, Burke, and Tate.?®

The problem now under consideration is to determine
the constants of integration such that the solution (9. 4)
just represents ny(—3 +N; z) or uy(N; 2), respectively.

C. Neumann-type solutions for L equal to half an
odd integer

If L is half an odd integer, the expression (8.3b) for
the Neumann-type solution in terms of the Bessel-type
solutions becomes indeterminate because of Egs. (3.1)
and (9.2), and the appropriate limit has to be taken.
Inserting the expansion (3.1) for the Bessel-type solu-
tions and performing the limiting process one finds that
the result has the expected analytical structure (9.4).
Comparison of the initial coefficients of the different
series with the corresponding ones in Eq. {9.4) then
yields, for N=0,

Zol=5)=@/m2c(-%) {¥(1) +1n(2)

+[dn{c(L)}/dL ], 2}, (9. 6a)

a(-3)= (/M2 C(-3),
and, for N=1, 2, 3,..-,
&l=5 +N)==(2/m*/ 22" (N -1)1 C(=3 +N), (9.6¢)

(9. 6b)

of=3 +NY=(2/m*22°F(1/N1)C(-5 - N), {9.6d)

Gon(=5 +N)=71"2af[272/T(E +L)]C(~L -1)
+(= 1) [25/T( - L)]
Xty (=L ~1) C(L)}/dL]L=-1/2.N~ (9. 6e)
To obtain Eq. (9.6d) use has been made of the relations
Cl=5=N)=(=1N2¥N1 (-3 +N)

Ky {~L =1)/TG LNy ooy (9.7a)

or

Clet =M= =2 (W=D -+

X <—w2N-2(—% —'N) +Gii=(;1 (l/m')

X (= B a1 ‘N)> (9. ™)
which follows from Eqgs. {3.1) and (9.2}. Because of
Eq. (9.Tb), the result (9.6d) for (-3 +N) is consistent
with Eq. (9.5b).

While the expressions for a(-3), go{-2z +N), and
a(-% +N) are quite simple, the expressions obtained
for g,(~ %) and g,y(—3% +N) are complicated because of
the required derivatives of C(L) and C(~ L —1) which
are inconvenient to evaluate. And although Eq. (9. 6e)
can be cast into a more suitable form, we do not show
this expression since it still contains the derivatives of
c(L).

On the basis of the analytical structure (9.4) of
ny{—% +N) and the expression (9. 6d) for a(-3 +N) we
may now obtain the circuit relations for the Neumann-
type solutions
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ny[=% +N; zexp(2Mi)]
=(=1)¥[ny(=% +N; 2) +4MiC(-3 - N)
XC(=3 +N)jy(=5 +N; 2)]. (9.8)

And then, by means of Eqs. (7.9), (8.2), and (9.8),
we are able to derive the circuit relations for the
Hankel-type solutions

ry'" (-3 +N; zexp(2Mni))
=(=1)¥{[1 —2MC(~% = N)
XC(=% +N)hy(=% +N; 2) =2MC(-3 = N)

XC(=5 +N) hy (=3 +N; 2)], (9.9a)

ny'® (=3 +N; zexp(2Mni))
=(=1)*{2MC(-5 - N)
XC(=% +N)hy' (=% +N; 2)
+[1 +2MC(-3 = N)C(=5 + N hy® (=3 +N; 2)].
{9.9b)

Alternatively, Eqs. (9.9) can be obtained from Egs.
(7.10) by a limiting process.

D. Neumann-type solutions for L equal to an integer

If L becomes equal to an integer, some complications
arise due to the fact that the connection coefficients
D(~L ~1) and D*(—-L -1) have simple poles at L=N
for N=0,1,2, -++, but while D{-L -1)/(T'(~ L) remains
analytic there, this is neither true for C(-L -1)/T(- L)
which is discontinuous in changing its sign nor for
6(=~ L -1) which is discontinuous in jumping by 7. The
reason for this behavior lies in our definition (7.1) of
C(- L =1) which for obvious reasons has been chosen
so that C(=L -1)— +1 if G— 0, at least for L# N,

From Eq. (7.8) we find, mod(n),

5(~N=1) = 6(N) +1/2=0, (9.10)
and, by means of Eqs. (5.8), (7.3), and (8.2),

JV(=N=1;2)=x(=-1)"jy(N; 2), (9.11)

ny(=N~1;2)=+{-1)"ny(N; 2). (9.12)

The sign ambiguities in Eqs. (9.11)=—(9.12) are due
to the discontinuities of C(— N -1) and 6(~ N —1) which
do affect jy(~ N -1;z) and ny(- N -1;2).

In order to find the behavior at the origin of ny(N; z)
it is again necessary to consider the ilimit of Eq. (8.3b).
In a similar way as in Sec. 9. C but taking account of
the complications mentioned above we obtain

2N =(=1)¥2¥[[(3)/T(z - M]c), (9.13a)

(V) =2¥[C3)/TG = N)] () (— Wyy (=N 1)

+G%(1/m!)(—B)meN_m(-N—l) (2N +1),
™ (9.13b)
Zawe (M) =(1/7) [d{cos[6(=L =1) = 8(L) + (L +3)]
XC(= L -1)sin(aL)2 X [T(3)/T(3 +L)]
-C(L)25[r(3)/T(G - L)} sinfnL)

xwzml(‘L"l)}/dL]L:m (9.13¢)
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Again, while the expressions for g,(N) and «(N) are
simple, the expression for g,y.,(N) is complicated, and
casting it into a more convenient form would be of little
use because of the remaining derivatives of C(L).

From Egs. (3.1) and (9. 4) the circuit relations for
the Neumann-type solutions are found to be

ny(N; z exp(2Mmi)) = ny(N; 2) +2Mui (N} jy(N; 2), (9. 14)
where
y(N)=a(N) C(N) 2" T(3 + N)/T(3) (9.16a)
or, because of Eq. {(9.13b),
HN) = (=) [C(M 2T (3 +N)/T(3)F
x(-sz_l(“N—}-) +G§ (l/mY)
x(-p" wm-m(-N—l)). (9.15b)

By means of Egs. (8.2) we may now obtain the circuit
relations for the Hankel-type solutions

hy YN 2 exp(2M7i))
=[1 =Mry(NM]hy'(N; 2)

- M7 y(N) exp[-2i 6(N) ] hy P (N; 2), (9.16a)
hy'P(N; z exp(2M#i))
= Muy(N)exp[2i 6(N) | hy' VP (N; 2)
+[1 +M7y (N hy P n; 2). (9. 16b)

10. THE CASE WHEN A= 2,/0 FOR SOME INTEGER Q
A. Q equal to a positive integer

1. General aspects

If the parameter B happens to be such that @ 3=2¢ for
some positive integer @, complications arise at the
singular points {=MpB +¢ as is shown by the break down
of the recurrence relations (4.19¢) and (4, 20a) for
m - M =¢. The reason is that then, if m > @, the in-
homogeneous term of the differential equation for b, (¢)
has one of its singular points coinciding with one of the
singular points of the homogeneous equation.

The necessary modifications do not touch upon the
definition (5. 1b) of hy'®'(L; z) and its asymptotic expan-
sion, the coefficients of which remain, in fact, well-
defined. The integral representation (5. 1a), however,
cannot be expected to still represent hy'*’(L; 2) after
the limit 8— 2{/@Q has been taken in the integrand. The
reason is that the contour of the integral passes in be-
tween the two singular points =i and { = - ¢ + @8, which
will coalesce when 8—~ 2i/@. The right-hand side of Eq.
{5.1a) with 8=2i/Q therefore is obtained as the analyti-
cal continuation, with respect to 8, of the integral with
a contour which encloses both of these two singular
points. It therefore represents, according to Egs.
(6.12)—(5.13), the solution

hy N L; 2) =hy'(L; 2) + G[a@O*(L)/a®(L) ) hy* (L ; 2)

(10,1)
rather than the solution 7y**X(L; 2).

Since the modifications begin to occur at m =@, let
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us consider b5(f), which according to Eq. (5.2b) with
QB=2iis

bL(E) = (¢ =3i) L3t ~ i) =t
xf:b’_I(T)(T—3z')L(T—z‘)"dT. (10, 2)

The singular points of b5_(T) are at T=+¢ +2ni/Q
where n=0,1,2,...,@ -1, and therefore T =1 is among
them while T =3 is not. The expansion of b5_,(T)
around T ={ has singular terms proportional to
aQt °(LNT -i)" "', so that the integrand of Eq. (10.2)
has a term with a3 ' %(LXT ~:)"!. Since ad'%L)=0
unless @ =1 according to Eq. (4.23), the analytical
structure of b5(¢) remains unchanged for @ =2,8,4, -+,
but logarithmic terms do occur for @ =1. As a further
consequence,

a9 (L) = [ "4 (TUT =30)*(T ~i)FaT (10.3)

remains well defined for @ =2,3,4, -+, but does not
exist for @ =1. More generally, the same statements
are true for b),y(t) and a3 @*¥*(N), respectively

(N=1,2,3, -+ +). We will therefore treat the different
cases @=2,3,4, .-+ or @=1 in separate subsections,

20=2,34,...

The modifications in this case are not so drastic,
since the analytical structure of the b,,, (!} remains the
same as in Sec. 4.C. The recurrence relation {4.19¢)
for m=Q +Nand M=N with N=0,1,2, ... has simply
to be replaced by

a2 ¥(L) = (2ni)(n + L) alN ML) +a2¥ ¥ (L)),
(10.4)

so that the original recurrence relation, from which
Eq. (4.19c) followed after division by a now vanishing
factor, is satisfied for arbitrary a2** ¥(L), and this is

true even for n=1 since ad*" '¥(L)=0 for @
=2,3,4, +++. Similar modifications occur for the

c?*¥¥(L). As to the initial coefficients, Eq. (4.23) no
longer holds when m =@ +N and M =N, but we now have

ad*V¥(L)=-explinL) ad*¥ @¥ *(L)
= —eXp(inL)f;B“bé,N_l(T)

X(T =NB=)*(T - NB~-34)LdT. (10.5)
This equation is a direct consequence of the fact that the
singular points t =N +i{ and {=(N +Q)B8 ~{ do coincide.
Since for @ =2,3,4, - -+ the integral (10.5) exists,
a29*(L) is well defined and we may Solve Eq. (10.1) for
hy“"(L; z), which therefore is also well defined. The
asymptotic expansions of hy“YL; z) or 2y'*)(L; z) have
the same structure as in Sec. 5. B. It is only the coeffi-
cients p,, which have to be modified as a consequence

of Eqs, (10.4) and (10.5) with N=0. In place of Eq.

(5. 7a) with » =Q we now have

Pon=02n) [~ + D -1 ~)pg,, +bou1, s

(10.6)

with the initial coefficient
Pop=0

as in Sec, 5.B in case of #y''Y(L; z) or

(10.7a)
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Poo=—~exp(inl)ad“*(L)/a’(L) (10, o)

in case of zy®'(L; z). Changing the initial coefficient
P oo 1 equivalent to adding a multiple of ky?'(L; 2). It
should be noted that if a solution with p 4, # 0 like
hy®(L; z) is considered and its asymptotic expansion
written in the form of Eq. (5. 6a), the sum over = has
to start at n =0 rather than n=wm.

3Qa=1

In order to see what happens in this case we consider
the Eq. (5.2b) for b.(¢) with m =@ =1 and split the path
of integration into three parts so that

B-1i +i 3
RS NRI NSRS (10.82)
with
J= [T =) EUT +0) 2T - 8= )T = p+1)"dT.
(10. 8b)

By means of well-known formulas [Ref, 7, Egs.
{3.211) and (9.182.1) or (3.197,1) and (9.131.1)] there
are several ways, none particularly convenient, to
show that

Jp=(/2)(4/B3) ¥ [D(L +1) (L +1)/T(2L +2)]

X, FAL+1, L +1, 21 +2; ~4/8%), (10.9)

The other two integrals J, and J, are more difficult
to evaluate, but it suffices to obtain those terms which
do not vanish (or even are singular) when g— 2i, for
t — i different from but in the vicinity of zero. We there-
fore put

=i +7. (10.10b)

It suffices, and is appropriate in view of the branches
required, to consider values of ¢ which are real and
positive. The integral J, remains well defined when
€— 0 and is found [Ref. 7, Eq. (3.197.1); Ref, 8, Egs.

(15.1.23) or (15.1.28)] to be
Iy ~(4) UL /2 +1) = (L/2 +5)], €—~0. {10.11)

The behavior when ¢— 0 of the integral J, can be seen
from Eq. (10.9) by means of a suitable transformation
formula of the hypergeometric function [Ref. 8, Eq.
(15.3.10)],

J, ~exp[~in(L +5)] [¥(1) - (L +1) +in/4 - (&) In(e)].

(10.12)

Introducing for J, a new variable of integration
s=T —i we have

J,=(3)exp[-in(L +5)]
X [ fs 1 45 /@0)] 4
x[1 +(e-5)/2))" (s —€)tds.

Since we need the behavior of J, for ¢ — 0 while
Inl <2, it is reasonable to expand the second and third
factor of the integrand by means of the binomial
theorem. We then have to consider, for m,n
=0,1,2, .-+, the integrals

Jlm,m)= f: s L-lm(g _e)lmgs,

(10.13)

(10.14)

For m +n=1,2,3, - -+ we immediately have
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Jm,n)~=n™"/(m +n), €0, (10.15)
but for m =% =0 we obtain
7,(0,0)= = (L +1)" (1 —¢/n)*"
X F. (1, L+1; L +2; 1-¢/n) (10.16)

or, by means of the appropriate transformation formula
of the hypergeometric function [Ref. 8, Eq. (15.3.10)],

J,(0,0) ~P(L +1) = (1) +1n(e) —Inln), €—0. (10.17)

Collecting the results we see that the In{e) terms cancel
so that we may take the limit €=0 and obtain, with cer-
tain coefficients y,,

J=(z)exp[-in(L +%)](¢(1) - L +1) +in/2 =1n(n)

+Zi ¥, n”)+(4i)'1[w(L/2 +1) = (L/2 +3)].
(10.18)
On the basis of this result we see that at the singular
point /={ the analytical structure of b{{¢), or more
generally of the bl ,(f) for N=0,1,2, ---, is given by
bl y(8)=2"L"exp[—in(L +1)/2] (Zf,,“” OL)(t =iyt

n=0

s

+ 2@y L) (¢ =) (- “)

0

+2, eI =)

83

(10.19)

with the initial coefficients
FLo(L) = a%(L) (40) 2L +1) - 29(1) =i
—explnLl) [$(L/2 +1) = $(L /2 +3)]}, (10.20a)

@ (L) = = (i/2)a®*(L) = - (i/2) ad™(L), (10. 20b)

FINUL) =gtV 1¥(L)=0 for N=1,2,3, -+, (10.20c)

c;’ *(L)=0 for n=0,1,2, -+, (10.20d)

and ¢y 1 *(L) according to Sec. 4.C for N=1,2,3, ---,
Inserting the expansion {10.19) into the differential
equation (4.16) we find that, while the coefficients
cI*¥t*(L) and a'*¥ ' *(L) obey the same recurrence
relations as in Sec. 4,C, the coefficients ;¥ °(L) can
be obtained from the recurrence relations

FRL) = @ni) [(n + L) £5(L)

= 2al (L) +art (L) + ()], (10.21a)

FEVOLY=[-4NW +1)(n =L -1)]" [2i(2N +1)
x(n=1) fr AL)=-(n +L - 1) £ (L)

+AN(N +1)a ¥ (L) +2:2N + 1) gl ¥ P H(L)

n-1

—ap ¥ VR L) - £, (10. 21p)
where
FAL) =aX(L). (10.21c)
Because of Eqs. (4.23) and (10.20b) we have
ay M ML) = - (i/2)al° *(L). (10.21d)

We are now prepared to obtain the asymptotic ex-
pansion of £y®’(L; z) in a similar way as in Sec. 5.B.
The integrals with the logarithmic terms
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J, explat) (¢ =) 1 In(t - i) at
Q
=— (d/dL)fC, exp(at) (¢ = 8) 5 dt

= —(d/dL)[expliz) zE*(2mi)/T(L +1 =n)]

yield a factor In(1/2) +3(L +1 ~n) as compared with the
usual integrals not containing the factor In(¢ - 7).
Introducing, for N=0,1,2, .- -, the new coefficients

Grow = [D(L +1)/T(L +1 =) [f;*¥ (L)
- @/2)$(L +1 =n) a7**(L)]/ag’(L),
we obtain the asymptotic expansion

hy3(L; 2) ~z7 expliz) exp[—inlL + 1)/2]2;0 G™ exp(~2miz)

(10.22)

xé;) Gmp2 " = (i/2) Gz exp(—iz) explin(L +1)/2]

XZD G™exp(-2miz) ), pr,2" In(1/2), (10.23)
m=l n=m

~w<arglz) <m, z— o,
with the initial coefficients

qoo:p;o:]., (10. 243.)

Gro="43) {4P(L +1) =2(1) —in

—~expGaL) [p(L/2 +1) ~p(L/2 +5)]}.  (10.24b)

While the coefficients

9on=Pon (10. 25a)

and p* are those of See. 5.B with f=2¢, Eq. (5.7a)
does not apply when m =1 + N, but because of Eq.
(10.22) we have

G1p == 2n8)" [(n +D)n =1 =1) g, 1 = Qo

+iln =%) P31 08 (10. 25b)
and
Frevn= [4N(1 +N)]-1 [21(2N+1)(n - 1)q1+N n-1
+n-1=0n=~2 ‘l)‘hw n-2 " dNn-1
—i(n=3)py,. +@N+1)p5 ] (10.25¢)

for N=1,2,3, .-+, with the coefficients equal to zero
whenever an index becomes negative. Again, these
recurrence relations can be derived in two different
ways, as mentioned in Sec. 5.B,

The terms multiplied by In(1/z) in Eq. (10.23) rep-
resent the asymptotic expansion of - (i/2) Ghy*'(L; z).
Similarly, changing the initial coefficient ¢,, would
correspond to adding a multiple of hy®'(L; 2).

Since a3'*(L) does not exist when g=2{, we cannot
solve Eq. (10.1) for kv ’(L; 2), which also does not
exist. In fact, the asymptotic expansion of 4y (L; z)
does not exist for 8— 27 or, when multiplied by an
appropriate factor such that all the terms remain finite
for B— 2i, becomes proportional to the asymptotic ex~
pansion of ky?(L; 2).

B. Q equal to a negative integer
1. General aspects

If @=—R is a negative integer, the complications
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arise at the singular points {=Mpg-i, Consequently

the necessary modifications do not touch upon the
definition (5.1a) of y'*’(L; 2) and its asymptotic expan~
sion. The integral representation (5.1b), however, with
the limit 8 — -~ 2{/R taken in the integrand, represents
the solution

hy'™(L; 2) =hy®(L; 2) + G*aZ*(L)/a(L) ] hy* (L 2)
{10.26)

rather than the solution 2y (L; z).

2 R=2234,...

For R=2,3,4, - - the asymptotic expansions of
hy®(L; z) or hy'"¥(L; 2) have the same structure as in
Sec. 5.B. It is only the coefficients pg, which have to
be modified and are now given by

Pra=(~2ni)" [=(n+D)n =1 ~1)p} . +b5.1,]

(10.27)
with the initial coefficient
Pro=0 (10.28a)
as in Sec. 5.B in case of ky?)(L;z) or
pho=—exp(-inL)a¥®(L)/a¥(L) (10.28b)

in case of hy'*'(L; z).

3 R=1

For R=1, hy'®(L; 2) does not exist. The asymptotic
expansion of y'¥(L; 2} then is

hy'*(L; 2) = 2" exp(~ iz) exp[in(L +1)/2]
x io G™ exp(2miz) i{)q;,,z'" +(i/2)G 2™
X expliz) exp[-in(L +1)/2]

X an; G™exp(2miz) Z_:mpm"z'" In(1/2),

(10.29)
-7m<arg(z) <m, z— o,
with the initial coefficients
dao=Po=1, (10.30a)
gro="(=49)"{4p(L +1) = 29(1) +im
—exp(~iaL) [¥(L/2 +1) = p(L/2 +$)]}. (10.30b)
While the coefficients
do, =D& (10. 31a)

and p,, are those of Sec. 5.B with 8= -2i, we have
for the new coefficients

q{n:(Zm‘)" [(’1 +l) (" -1 ~l)(11",.-1 ‘_q:n

= i(n ~3)Pgny tPon) (10. 31b)

and
qfwn = [4N(1 +N)]-l[‘2i(2N+1)(n - 1)‘11*4»' n=1

+(n=1+1)(n-2 —l)q;‘w n-z—‘I; n-1
+i(n —%)PNn-z +@2N+1)py o]
for N=1,2,3, -+-.

(10.31c)
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The more detailed comments missing here are quite
analogous to those of Sec. 10. A,

11. APPLICATION TO POTENTIAL SCATTERING

A. Convergence of the expression for the S matrix

The main results of this paper may immediately be
applied to the scattering of particles by a Yukawa
potential, for it is simply the ratio of the connection
coefficients D(I) and D*({) which determines the S
matrix

S=D{l)/D*(l) = exp([2i5(1)] (11,1)

and the scattering phase shift which is equal to our
quantity 8(I) of Eq. (7.2). Since in case of the scattering
problem 8= u/k is real and positive, the expressions
(6.18) for the connection coefficients converge without
any further restriction on 8. That they do not converge
for =0 is related to the well-known pathology of the
Coulomb scattering problem., Furthermore we note that
the expressions for the connection coefficients, which
appear as expansions in powers of G=g/k, converge for
arbitrarily large coupling constants g (if |g| <) or
arbitrarily small momenta & >0, Since we have I(L)

=1 if pis real and Re(L)= 0, it follows from the esti-
mate (6.14n) and Eq. (6.13) that, for Re(l)= 0, the rate
of (absolute) convergence is comparable to the rate of
{absolute) convergence of the expansion of the exponen-
tial function

exp(G/B) =exp(g/u)=1+g/u +(g/u)?/2! ++ -+,
(11.2)

irrespective of the value of k.

B. First Born approximation

It might be of interest to see how the well-known
first Born approximation value of the § matrix is re-
produced by our method. Assuming that G is sufficient-
ly small we may expand S in powers of G and obtain to
first order in G, using Eqs. (6.13) and (11.1),

Sgom — 1 = Glaz"(t) = ag** (1)) /ad() (11.3)
or, because of Eqs. (5.2a) and (6.10e)~—(6, 101),
Spom—1==G [ (T* +1)" (T = gF +1]'dT. (11.4)

Since this integral appeared already in Sec. 10, we ob-
tain immediately, by means of Eq. (10.9),
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Spom — 1 ==G(i/2)(4/8%)* [T +1) T( +1)/T(21 +2)]
X F (1 +1, 1 +1; 21 +2; —4/8%), (11.5)

Using a suitable transformation formula for the
hypergeometric function we may express this result as
a Legendre function of the second kind,

SBom_lz-iGQl(l +62/2), (11.6)

which, by means of a table of integrals of Bessel func-
tions,” can be represented by an integral

Sgom ~1==2iG [ (j (2)) zexp(~ B2)dz, ar.m

so that finally the familiar first Born approximation
result

Spom = 1=2ik [ (j (k7)) [~ g7 exp(= ur)]ar
is obtained.
According to Egs, (11.5) or (11.6), the first Born
approximation value of the § matrix diverges when
B— +2i, that is when k— + 1 /(2i). This fact is related

to the appearance of logarithmic terms in the asymptotic
behavior of the wavefunction as explained in Sec. 10.

(11.8)

A more extended discussion of potential scattering or
of the bound state problem is beyond the scope of the
present paper.
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An infinite number of conservation laws for coupled
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The n-dimensional Zakharov-Shabat eigenvalue problem and the corresponding time dependency of the
vector eigenfunctions are considered. It is known that certain coupled systems of nonlinear partial
differential equations are equivalent to the time invariance of the spectrum. Here, for any such coupled
system, an infinite sequence of conservation laws is explicitly derived. As an example, this result is applied
to the equations describing three resonantly interacting nonlinear wave envelopes.

1. INTRODUCTION

The inverse-scattering transform method was first
discovered by Gardner, Greene, Kruskal, and Miura'+?
in their now classic investigation of the Korteweg—de
Vries equation, The method involves showing that a non-
linear evolution equation is equivalent to the consistency
of a time-invariant linear eigenvalue problem (which,
for the Korteweg—de Vries equation, was the Schrddinger
eigenvalue problem) and a linear equation for the time
evolution of the eigenfunction, Zakharov and Shabat?
{based on some ideas of Lax!) considered an eigenvalue
problem consisting of two coupled first order differen-
tial equations, enabling them to analyze the cubic non-
linear Schrédinger equation. Subsequently, by utilizing
the Zakharov—Shabat eigenvalue problem, Ablowitz,
Kaup, Newell, and Segur®® generated a wide class of
nonlinear partial differential equations. The coupled
equations of a nonlinearly interacting resonant triad of
wave envelopes were analyzed by Zakharov and Mana-
kov’ using the inverse-scattering method, This moti-
vated Ablowitz and Haberman® to consider the eigen-
values ¢ of the following system of differential equations:

A

L2 - itDV+NV,

x t.1)

where appropriate homogeneous boundary conditions are
prescribed (for example, V is bounded as x —+ =),

The time dependency of the n-dimensional eigenfunction
V is chosen such that

v
3= Qv,

1.2)
where D, N, and Q are »Xn matrices (we assume N,
=0 and D is constant and diagonal). The consistency of
(1.1) and (1, 2) and the time invariance of the eigenvalues
imply that the generalized potentials N evolve according
to a system of nonlinear partial differential equations.
This incorporates the previously obtained results.

One of the fundamental properties of the nonlinear
partial differential equations which have been analyzed
by this inverse-scattering method is that they have an
infinite sequence of conservation laws, This has been
shown by a variety of different methods for all the equa-
tions which correspond to a second order spectral prob-
lem, Here we will show this for any system of nonlinear
partial differential equations which correspond to (1.1)
and (1. 2),
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2. CONSERVATION LAWS

We show that (for each ¢) an infinite number of con-
servation laws all follow from the rather trivial conser-
vation law,

9 19 =212
E [at(an,.ﬂ =%t [ax(lnv“)]
or 2.1)
Kkl (av at)_i (aV“(ax)
ox V“ - ot V” ’

where V,,; is the kth component of the ith linearly inde-
pendent eigenvector V¥ (i=1,...,n).

By using (1.1) and (1. 2), the latter form of {2, 1)
becomes

i(l&.i’u) J.(ZM)
ax Vi /] ot Vi :

This suggests that the matrix I" be introduced, equal to
the ratio of the components of an eigenvector

T, =Vy/Vy (Tg=1).

Thus

a—i (?Quru) =% (?N,,,l",,) . 2.2)
We obtain an infinite number of conservation laws by

considering the asymptotic expansion of the eigenfunc-

tions as { — =, This idea was first developed by Gardner,

Greene, Kruskal, and Miura.”® However, our approach

here generalizes to n Xn gystems the method used for

2 X2 systems by Konno, Sanuki, Ichikawa, and

Wadati, 1-1? Using the Liouville—Green expansion for

large ¢ of (1.1) (see Appendix), the leading order asymp-

totic behavior as £ —~« of V, is

Vag =A4(E, £) exp(itdgx)[ 64, + O(1/0)],

if the 7th eigenvector is chosen in an appropriate manner,
In this way we see that

Ty=0(1/t) for k#i, 2.3)

Although the asymptotic expansion of V,, is often easier,
involving linear equations (see the Appendix), the asymp-
totic expansion of I',; is needed and will be calculated
shortly. In fact, since Q is assumed to be known as a
function of { and N, the asymptotic expansion of 'y
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yields, divectly from (2.2), an infinite sequence of con-
servation laws.

We now obtain the asymptotic expansion of I',, without
dividing two asymptotic expansions, Using (1.1) and the
definition of I'; yields

KR
™ Ty =1¢ld, - dl)rkx+z;( emLmi = DpiNimDmg). (2. 4)

The differential equation for I',; contains guadratic non-
linearities of the Riccatti type (rather than being linear
as are the equations for V,,). For k+#i,

. @30Ty = 5 (N T = Ty N T )
1

£~ dy) ' .9
The asymptotic expansion of I',; for k#1,
F(i) I'\(Z)
r + A +.
W zg(d -dy)  litld,-d)F
r(p)
(2.6)

ot [lé(dk djp’

can be explicitly determined after substituting (2, 6) into
(2. 5). Recalling (2.3), we see

4y _
rkl =7 Nkb

2.1

2}
= 'a_xNkf+ZNkmNmi‘
m

A recursive formula is easily obtained;

I“;t‘ﬂl)_ ‘b) E N, 1"( +2Nim(2 F(p-s)r(s))

for p=1, (2.8)
where the last term is to be ignored for p =1, One notes
that part of the conserved quantity, 3N, Te8/[iid,
—-d)P, is a (p +1)-degree polynomial in the generalized
potentials N (the rest, of lower degree, depends also on
derivatives of N).

3. THREE-WAVE INTERACTIONS

As an example, we will determine the infinite se-
quences of conservation laws for the three-wave inter-
action equations. By cross differentiation of (1.1) and
(1. 2), Ablowitz and Haberman® showed that

Qip = Ny €05, ¢L 3.1)
implies that the generalized potentials evolve according
to

a
Nu—aua Ni}+ E (030 = 0y )Ny N5, 3.2)

of
where, for i#k, a,,= (c‘ -¢,)/id, - d,). [These equa-
tions, (3.2), represent a resonant triad of interacting
waves if we discuss 3 X3 maltrices and if N;,=0,Ny;
for j >k with 0,,0,,=—- 0y, for £ >j >k, This result is
equivalent to the work of Zakharov and Manakov,? The
conservation laws can be derived without these limita-
tions, however. |

By substituting (3. 1) into (2. 2), using asymptotic ex-
pansion (2, 6), we determine that the leading order non-
zero term is O(1/¢) and
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o(1/£%):
? r(P)
at L%N (d,,-d,)’J

il j QL2
= ki
ax [;L; a5 Ny (d d‘)’]

For each 7 (for three-wave interactions i=1,2,3), (3.3)
is the prescription for an infinite sequence of conserva-
tion laws (p=1,2,...,=), The quantity §,,, N, I'§ Y 8/
(dy - a,) is conserved and its flux i8 § puyer o N L1/
(d dt) Taking p=1 in (3.3) and using (2.7) yields

? NN ? NN,
- 7. u0d 11 RN bt 7S 7
Bt [k;{ dk—d‘] ox [§ @ x (d,,_d,)]

If we discuss triad interacting wave envelopes and thus
let

p=1,

(3.3)

(3.4)

0 A, A,
N= [0, 4F @ A, with 0,,0,, = -0y,
03,AF 05,47 0
then (3.4) becomes
X 2
=1 o [ i {A ‘]

_ 9 [fanoy 2, 0131 L ETEN
= [ lAl s 1A \] (3.5)

ox ld, -

A similar expression follows for =2 and {=3. How-
ever, the result for i=3 is just a linear combination of
the conservation laws which occur for i{=1 and {=2,
These “energy-sharing” conservation laws are well
known, and can be verified (with some care) directly
from (3.2). Further conservation laws can be derived
using the result of Sec. 2.

APPENDIX: LIOUVILLE-GREEN ASYMPTOTIC
EXPANSION FOR LINEAR SYSTEMS WITH A
LARGE PARAMETER

Let us consgider the asymptotic expansions for large
¢ of the eigenvectors V given by (1.1). Although the
Licuville ~Green method is well known (for example,
see Coddington and Levinson®® or Nayfeh'*), we rederive
the result so as to be clear. Define V!’ as the eigen-
vector whese kth component, V,;, is asymptotically pro-
portional to exp(iZdx) for large . Thus let

Vyi=explitdx}W,,.
Then from (1.1), W,, satisfies

. il
Zg(dk - di) Wk£ = 'a_; Wkl —zm: Nk er

The asymptotic expansion of W,, follows by the substitu-
tion of

W) (2)
+1V3§-+

W W(O) +
4

The O{g) equation
ild, - d)W =0

Richard Haberman 1138



implies that
Wtﬁ‘in =A; 6,

where usually we think of 4; depending only on x. Here
A; also depends on both ¢ and £ (for example, the time
dependence determined via (1. 2) could imply A,
=exp(it’t)). By considering the next order equation,
O(1), the x dependence of 4; may be obtained:

i(dk - di) W;})
0

34,
™ W;(tn - Z)Nkmwlﬁ]i) ey Ot =~ ANy
m

Since N;;=0, 3A,/3x=0 and

0, k=i,
Wil = , .
! {-— N,A/ild, - d)), k#i,
where W;}’=0, because W!’#0 is equivalent to the in-
troduction in A; of O(1/¢) term, In a similar way, the
higher order terms may be directly calculated, Note that

the equations for W’ will be linear. From these results
we see that

Vs =A; (8, 1) expitd )5, + O/ )]
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